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The neural crest is a transient migratory multipotent cell population that originates from the neural plate border and is
formed at the end of gastrulation and during neurulation in vertebrate embryos. These cells give rise to many different cell
types of the body such as chondrocytes, smooth muscle cells, endocrine cells, melanocytes, and cells of the peripheral nerv-
ous system including different subtypes of neurons and peripheral glia. Acquisition of lineage-specific markers occurs before
or during migration and/or at final destination. What are the mechanisms that direct specification of neural crest cells into a
specific lineage and how do neural crest cells decide on a specific migration route? Those are fascinating and complex ques-
tions that have existed for decades and are still in the research focus of developmental biologists. This review discusses tran-
scriptional events and regulations occurring in neural crest cells and derived lineages, which control specification of peripheral
glia, namely Schwann cell precursors that interact with peripheral axons and further differentiate into myelinating or nonmyeli-
nating Schwann cells, satellite cells that remain tightly associated with neuronal cell bodies in sensory and autonomous gan-
glia, and olfactory ensheathing cells that wrap olfactory axons, both at the periphery in the olfactory mucosa and in the
central nervous system in the olfactory bulb. Markers of the different peripheral glia lineages including intermediate multipo-
tent cells such as boundary cap cells, as well as the functions of these specific markers, are also reviewed. Enteric ganglia,
another type of peripheral glia, will not be discussed in this review.
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Introduction

The neural crest is at the origin of many tissues in verte-

brates. These cells are believed to be an innovation of ver-

tebrates, although hypotheses of evolution from antecedent

invertebrate tissues have been proposed (Fritzsch and North-

cutt, 1993; Donoghue et al., 2008; Patthey et al., 2014). Fur-

thermore, the neural plate border that gives rise to neural

crest cells in vertebrates also exists in some invertebrates.

However, the neural crest gene regulatory network is not

complete in the invertebrate neural plate border, but interest-

ingly the “missing” genes are expressed in other tissues. This

has led to hypothetical scenarios, from which the most likely

model is based on the evolution of cis-regulatory elements

triggering in the neural plate border expression of genes that

are expressed in other tissues in invertebrates (Van Otterloo

et al., 2013). Transcriptional control mechanisms are thus key

to evolution (Wilson and Odom, 2009), as they are to induce

and maintain tissue-specific gene expression during develop-

ment and in adult organisms.

This review is focused on the transcriptional events and

regulations that control the specification of neural crest cells

into peripheral glia. I will discuss how the main transcription

factors involved in neural crest specification interact and how

they are regulated, the different origins of peripheral glia and

their specification mechanisms, their potential to change their

own fate, and their specific markers.

Neural Crest Gene Regulatory Network

Neural crest cells originate from the neural plate border that

is localized at the interface between the neuroectoderm and

the non-neural ectoderm. Combination of Wnt, FGF and

BMP signaling induces expression of neural plate border

specifiers including the following transcription factors: AP-

2a, the homeodomain-containing proteins Pax3, Pax7, Msx1,

Msx2, Dlx5, Gbx2, and the zinc finger-containing protein

Zic1. In addition, FGF-dependent expression of the Xenopus

helix-loop-helix transcription factor Hairy2, an ortholog of

the mouse Hes1, attenuates BMP signaling and upregulates
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neural plate border genes to maintain cells in an undifferenti-

ated state (Nagatomo and Hashimoto, 2007; Nichane et al.,

2008). At the end of gastrulation and during neurulation,

neural plate border specifiers synergize to trigger specification

of the neural crest (reviewed in Betancur et al., 2010). In par-

ticular, Pax3 and Zic1 play a central role: upon Wnt signal-

ing, these two transcription factors are able to recapitulate the

sequence of neural crest specifiers expression (Sato et al.,

2005; Hong and Saint-Jeannet, 2007; Milet et al., 2013),

starting by the early neural crest specifiers Snail, Sox8, and

Myc, followed by the intermediate specifiers Sox9 and

FoxD3, and finally the late specifiers Slug and Sox10 (Aybar

et al., 2003; O’Donnell et al., 2006). In contrast, BMP sig-

naling induces expression of the helix-loop-helix protein Id3,

which interacts with Hairy2 to inhibit its activity and thereby

allows the progression into specified neural crest (Nichane

et al., 2008). FGF signaling together with attenuated BMP

signaling is also able to induce expression of Slug in Xenopus

(Mayor et al., 1997; Villanueva et al., 2002). However, stud-

ies carried out so far in mouse and zebrafish embryos have

not been able to demonstrate absolute requirement of FGF

signaling for the specification of the neural crest (Jones and

Trainor, 2005).

Loss and gain of function studies in neural crest cells

have been mainly carried out in Xenopus, chick, quail, zebra-

fish, and mouse embryos. These studies revealed a fairly com-

plex network of transcription factor regulations (illustrated in

Fig. 1) that converge into expression and upregulation of

Sox10 and FoxD3, two key transcription factors for specifica-

tion, survival and migration of neural crest cells and their

derived lineages (Herbarth et al., 1998; Southard-Smith et al.,

1998; Britsch et al., 2001; Honor�e et al., 2003; Aoki et al.,

2003; Stewart et al., 2006; Teng et al., 2008). Although neu-

ral crest specifier genes are very well conserved among verte-

brates, there are differences. Of note, Snail and Slug originate

from a gene duplication, and evolution from a single gene in

chordate invertebrates to two genes in vertebrates resulted in

different expression patterns among vertebrates: Slug is the

only gene expressed in chick embryo neural tube, whereas 3

genes Snail1, Snail2, and Slug are expressed in zebrafish neu-

ral tube (Locascio et al., 2002). Furthermore, Snail and Slug

are often called Snail1 and Snail2, respectively.

Briefly: Snail, but not Slug, upregulates Sox10 expres-

sion (Honor�e et al., 2003). In turn, Sox10 induces Slug and

FoxD3 (Honor�e et al., 2003). Slug and Sox9 upregulate

FoxD3 (Nitzan et al., 2013a), and FoxD3 upregulates Snail

and Sox10 (Stewart et al., 2006). In chick embryos, anterior

Hox genes have been shown to promote neural crest specifica-

tion. Among those, Hoxb1 upregulates expression of Slug

and is the most potent to promote neural crest specification

(Gouti et al., 2011). The PR/SET domain-containing tran-

scription factor Prdm1a directly activates expression of FoxD3

and AP-2a (Powell et al., 2013). In turn, AP-2a directly acti-

vates expression of Sox9 (Luo et al., 2003; Lee et al., 2004;

Saint-Germain et al., 2004; Bagheri-Fam et al., 2006). The

Sox10 gene possesses several 50enhancers, which contain many

Sox10-binding sites and binding sites for various transcription

factors including AP-2a, Sox9, and Pax3 (Werner et al.,

2007). Consistent with this, Sox10 can activate its own

expression (Wahlbuhl et al., 2012). In addition, Sox10 main-

tains expression of Pax3, which in turn synergizes with Sox10

to upregulate Sox10 levels (Wahlbuhl et al., 2012; Jacob

et al., 2014). Finally, a very interesting study using epigenome

annotation of enhancers in human neural crest cells allowed

the identification of the nuclear receptors NR2F1 and

NR2F2 as key transcriptional activators of AP-2a, Sox9, and

Snail, and synergistic effects with AP-2a (Rada-Iglesias et al.,

2012).

Negative regulators also play a role to control specifica-

tion of neural crest cells. Indeed, the BTB domain-containing

protein Kctd15 interacts with AP-2a to inhibit its activity

and thereby neural crest formation (Zarelli and Dawid,

2013). The differentiation inhibitor Sox2 is downregulated as

neural crest cells start delaminating from the dorsal neural

tube and forced expression of Sox2 in quail embryos downre-

gulates neural crest specifiers (Wakamatsu et al., 2004a), sug-

gesting that Sox2 needs to be silenced to allow induction of

neural crest specification. The DNA methyltransferase

DNMT3A plays an essential function in this process by

methylating CpG islands in the Sox2 promoter and thereby

repressing its activity (Hu et al., 2012).

To this already intricate network of transcription factors,

chromatin-remodelers add another layer of complexity by

controlling activity and expression of these neural crest

FIGURE 1: Gene regulatory network in the neural crest. A com-
plex network of transcription factors and chromatin-remodeling
factors regulates the specification, survival and migration of neu-
ral crest cells. The different players of this network synergize to
upregulate the expression of Sox10 and FoxD3, two transcrip-
tion factors critical for peripheral glia specification.

2

ht
tp

://
do

c.
re

ro
.c

h



specifiers (Fig. 1). Indeed, we recently found that the two

highly homologous histone deacetylases (HDACs) 1 and 2

interact with Sox10 to promote the activation of the Pax3
promoter (Jacob et al., 2014). In the absence of HDAC1/2

in neural crest cells of mouse embryos, Sox10 is unable to

activate the Pax3 promoter and Pax3 expression is lost (Jacob

et al., 2014). The histone demethylase JMJD2A is also crit-

ically involved in neural crest gene regulatory network. Abla-

tion of JMJD2A in chick embryos leads to depletion of

neural crest specifiers including Sox10, Slug, Sox8, FoxD3,

and Wnt1 (Strobl-Mazzulla et al., 2010). Interestingly, this

study shows stage-specific binding of JMJD2A to the Sox10
promoter and the Slug promoter, allowing the removal of the

repressive histone methylation mark H3K9me3 and thereby

derepression of these genes at a critical time-point of neural

crest specification (Strobl-Mazzulla et al., 2010). Brg1-

containing (BAF or SWI/SNF) chromatin-remodeling com-

plexes have been also identified to play a role in the regula-

tion of neural crest specification in zebrafish (Eroglu et al.,

2006). Indeed, ablation or downregulation of Brg1 in zebra-

fish embryos leads to decreased expression of neural crest

specifiers such as Snail2, AP-2a and FoxD3 (Eroglu et al.,

2006). In this study, the authors show that Brg1 binds to the

Snail2 promoter to activate it. However, downregulation of

Brg1 in chick embryo neural tube does not prevent Sox10-

induced expression of the chick neural crest specifier HNK-1

(Weider et al., 2012). Requirement of Brg1 in neural crest

specification may thus vary among species. Alternatively, Brg1

may be required to induce Sox10 expression or be more criti-

cal at the induction of neural crest specification. In support

of the latter hypothesis, the ATP-dependent chromatin

remodeling enzyme CHD7 is essential for the formation of

neural crest cells by its interaction with Brg1-containing chro-

matin-remodeling complexes (Bajpai et al., 2010). CHD7/

Brg1 bind to and activate a Sox9 enhancer and a regulatory

region of Twist1, another transcription factor expressed in

neural crest cells and required for migration and differentia-

tion of the cranial neural crest (Linker et al., 2000; Soo et al.,

2002), to induce Sox9 and Twist1 expression, respectively

(Bajpai et al., 2010). In support of Brg1-dependent Sox10

expression, CHD7/Brg1 have been also shown to maintain

Sox10 expression in neural crest cell cultures and thereby

maintain multipotency (Fujita et al., 2014).

AEBP2, a zinc finger protein that can interact with the

mammalian Polycomb Repression Complex 2 (PRC2; Cao

and Zhang, 2004), has been reported as a regulator of neural

crest specifier genes, potentially through PRC2-mediated

H3K27me3 (Kim et al., 2011), but more work is needed to

clarify the molecular mechanisms of this regulation. The

same is true for the regulation of the Slug promoter by the

GLI-Kruppel zinc finger protein YY1, which is required to

restrict induction of Slug expression to neural plate border

cells (Morgan et al., 2004).

Neural Crest-Derived Peripheral Glia

Once specified, neural crest cells undergo epithelial-to-

mesenchymal transition (EMT) and delaminate from the dor-

sal neural tube (reviewed in Theveneau and Mayor, 2012).

They migrate along different routes to reach their final loca-

tion and they specify or pre-specify into neural crest-derived

lineages before, during, and/or after migration. Cells that

build the peripheral nervous system (PNS) migrate through

dorsal roots to form dorsal root ganglia (DRG), and further

to form peripheral nerves and the autonomic nervous system.

Among these cells, sensory neurons are the first to be speci-

fied (Sommer et al., 1996; Ma et al., 1999). Sensory neurons

have a unipolar structure. Their cell body remains localized

in the DRG while their central axon extends through the dor-

sal root into the central nervous system (CNS) and their

peripheral axon extends to the peripheral nerve. Schwann cell

precursors and satellite cells are specified after sensory neu-

rons (reviewed in Morrison, 2001). Satellite cells migrate

through dorsal roots to populate DRG and autonomous gan-

glia, where they remain tightly associated with neuronal cell

bodies, whereas Schwann cell precursors migrate through and

out of DRG onto peripheral nerves to interact with and

myelinate peripheral axons. Some Schwann cell precursors

also remain in dorsal roots to interact with sensory axons

before their entry into the CNS, and in ventral roots with

motor axons at their exit of the CNS. Dorsal root Schwann

cells and a fraction of ventral root Schwann cells and satellite

cells originate from intermediate progenitors called boundary

cap cells, which also give rise to nociceptive and thermorecep-

tive neurons at a later stage than the first waves of sensory

neurogenesis (Maro et al., 2004; Hjerling-Leffler et al.,

2005). In addition to generating PNS cells, boundary cap

cells regulate the guidance of sensory and motor axons in and

out of the CNS (Golding and Cohen, 1997), and they pre-

vent motor neuronal cell bodies to follow their axon in the

PNS (Bron et al., 2007). These cells originate from the neural

crest and are localized at the sensory entry and motor exit

points, which delineate the boundary between PNS and

CNS. To reach the motor exit point, boundary cap cells

migrate along the neural tube (Niederl€ander and Lumsden,

1996). Localization of the different cell types described above,

from neural crest cells to peripheral glia, is schematized

in Fig. 2.

Olfactory ensheathing cells are another type of glia,

which is localized in both PNS and CNS. Indeed, these cells

interact with olfactory axons of the olfactory mucosa, and

extend to the CNS where they wrap axons of the olfactory

bulb. Olfactory ensheathing cells were previously thought to
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originate, such as olfactory neurons, from the olfactory pla-

code, but recently these cells were shown to actually originate

from the neural crest (Barraud et al., 2010; Katoh et al.,

2011).

Cell Fate Decision

There are two waves of peripheral gliogenesis during embry-

onic development (Fig. 3): distal peripheral nerve Schwann

cell precursors and a fraction of ventral nerve root Schwann

cell precursors and satellite cells are specified directly from

migratory neural crest cells at embryonic day (E)11 in mice

(Morrison, 2001; Jacob et al., 2014). Boundary cap cells that

are derived from neural crest cells, are found at E10.5 at the

dorsal sensory entry point and the ventral motor exit point,

and constitute another source of peripheral glia. Indeed, these

cells give rise to all dorsal nerve root and a fraction of ventral

nerve root Schwann cell precursors at E11.25 and to a frac-

tion of satellite cells at E12.5 (Maro et al., 2004).

What are the mechanisms that direct specification of

neural crest cells into peripheral glia? Although not sufficient

on its own, the transcription factor Sox10 is essential (Britsch

et al., 2001; Paratore et al., 2001). Sox10 induces expression

of the neuregulin-1 receptor ErbB3 and neuregulin-1 activates

ErbB3 to favor differentiation into peripheral glia over mela-

nocyte cell fate (Britsch et al., 2001; Adameyko et al., 2009;

Prasad et al., 2011). Neuregulin-1 signaling is also required

for Schwann cell precursor proliferation and survival (Rieth-

macher et al., 1997; Garratt et al., 2000). Sox10 also activates

the transcription of the early determinants of peripheral glia

fatty acid binding protein 7 (Fabp7) and the glycoprotein P0

(Kurtz et al., 1994; Hagedorn et al., 1999; Peirano et al.,

2000; Jessen and Mirsky, 2005; Jacob et al., 2014). However,

all neural crest cells express Sox10. Therefore, other mecha-

nisms upstream Sox10 need to control Sox10-induced periph-

eral glia specification. We recently showed that the two

histone deacetylases HDAC1 and HDAC2 interact with

Sox10 to activate the Pax3 promoter in neural crest cells. In

turn, Pax3 synergizes with Sox10 to activate the Sox10 MCS4
(Jacob et al., 2014), a 5’ enhancer (also called U3) of the

Sox10 gene that is critical for Sox10 expression in neural crest

cells (Antonellis et al., 2008; Wahlbuhl et al., 2012). This

results in high levels of Sox10 and subsequent activation of

the Fabp7 and P0 promoters. We demonstrate that interac-

tion of Sox10 with HDAC1 and HDAC2 is required to acti-

vate the P0 promoter. Ablation of HDAC1 and HDAC2 at

E10 in mouse neural crest cells leads to loss of Pax3, strongly

reduced expression of Sox10 in the DRG and absence of

Schwann cell precursors and satellite cells, while other cell

types including sensory neurons and smooth muscle cells are

specified (Jacob et al., 2014). This mechanism (illustrated in

Fig. 4) is thus essential to direct the specification of neural

crest cells into peripheral glia.

Notch signaling is also critical for the specification of

neural crest cells into peripheral glia. Indeed, exogenous

expression of constitutively activated Notch intracellular

domain in chick embryo neural tube or the Notch ligand

FIGURE 2: Localization and migration routes of peripheral glia.
Neural crest cells (gray) delaminate from the dorsal neural tube
and migrate into dorsal roots, dorsal root ganglia and peripheral
nerves to give rise to sensory neurons (gray), Schwann cell pre-
cursors (green), and satellite cells (blue). Intermediate progeni-
tors called boundary cap cells (violet) localize at the dorsal
sensory entry point and migrate along the neural tube to also
settle at the ventral motor exit point. These cells give rise to all
Schwann cell precursors found in the dorsal roots and to a frac-
tion of ventral root Schwann cell precursors, satellite cells, and
sensory neurons.

FIGURE 3: Two waves of gliogenesis. The first wave of gliogene-
sis originates directly from neural crest cells at E11 in mouse
embryos. Intermediate multipotent progenitors called boundary
cap cells arise from neural crest cells at E10.5. These cells give
rise to a second wave of gliogenesis that generates Schwann cell
precursors at E11.25 and satellite glia at E12.5 in mouse
embryos.
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Delta in neural crest cell culture inhibit neuronal specification

and promote specification of peripheral glia (Morrison et al.,

2000). In contrast, BMP signaling mediated by BMP-2 or

BMP-4 induces neurogenesis (Jones et al., 1991; Shah et al.,

1996; Schneider et al., 1999) and represses gliogenesis by

triggering expression of the basic helix-loop-helix transcription

factor neurogenin-2 (Neurog2), which induces the first wave

of sensory neurogenesis at E9.5 in mouse embryos (Sommer

et al., 1996; Ma et al., 1999). FGF2 antagonizes this effect

by preventing Neurog2 expression and activating Notch sig-

naling (Ota and Ito, 2006). Notch signaling is dominant over

BMP signaling, as it can overcome the neuronal

differentiation-promoting signal of BMP-2 (Morrison et al.,

2000). Canonical Wnt signaling is also required to induce

sensory neurogenesis through beta-catenin activation (Hari

et al., 2002). Indeed, upon ablation of beta-catenin, neural

crest cells emigrate from the neural tube, but are unable to

upregulate Neurog2 and therefore to initiate the first wave of

sensory neurogenesis. The second wave of sensory neurogene-

sis is also impaired in the absence of beta-catenin (Hari et al.,

2002; Lee et al., 2004).

The homeodomain transcription factor Hmx1 is not

expressed in migrating neural crest cells, but is exclusively

found in Islet1-positive neuroblasts when neural crest cells

commit to a neuronal cell fate (Adameyko et al., 2009).

Downregulation of Hmx1 by siRNA leads to strong reduc-

tion of neurogenesis in favor of Schwann cell precursors and

melanocytes. Interestingly, Hmx1 downregulation results in

increased number of Schwann cell precursors along spinal

nerves, but also in Microphthalmia-associated transcription

factor (MITF)-positive melanoblasts migrating between the

DRG and the skin. This suggests the existence of a Schwann

cell/melanocyte-committed progenitor and the occurrence of

melanocyte specification from Schwann cell precursors (Ada-

meyko et al., 2009). Nitzan et al. (2013b) confirmed these

findings and further characterized the cell fate switch from

Schwann cell precursors to melanocytes. Indeed, they found

that the loss of the transcription factor FoxD3 in Schwann

cell precursors of peripheral nerves leads to the generation of

melanocytes (Nitzan et al., 2013b). Downregulation of

FoxD3 in neural crest cells is also necessary for neurogenesis

and melanocyte specification, while FoxD3 expression is

maintained in peripheral glia (Nitzan et al., 2013a,2013b).

Thomas and Erickson (2009) found that FoxD3 does not

repress MITF directly in chick embryos, but instead interacts

with Pax3 to block Pax3 binding to the Mitf promoter, which

prevents MITF expression. However, Ignatius et al. (2008)

show in zebrafish embryos that FoxD3 can interact with the

Mitf promoter and propose a direct activation of MITF

expression by FoxD3. The latter study also identifies HDAC1

as a repressor of FoxD3 expression that is essential for mela-

nogenesis (Ignatius et al., 2008). Nitzan et al. (2013a) also

demonstrate that prospective melanoblasts downregulate

FoxD3 already in the neural tube before emigration, and that

FoxD3 expression marks a population of PNS-committed

neural crest cells. If FoxD3 expression is maintained, these

intermediate progenitors that retain a similar multipotency as

boundary cap cells, will give rise to peripheral glia. Absence

of neurogenin-1 (Neurog1) expression will also lead to speci-

fication into peripheral glia (McGraw et al., 2008). The pro-

neural transcription factor Neurog1 induces the second wave

of sensory neurogenesis (Sommer et al., 1996; Ma et al.,

1999) that occurs at E10-E10.5 in mouse embryos, and

maybe induces also a later wave derived from boundary cap

cells. Interestingly, low levels of Sox10 are required to induce

the expression of Neurog1. Therefore, although rapidly down-

regulated in sensory neurons, Sox10 is necessary at low levels

for sensory neurogenesis (Carney et al., 2006).

Finally, the exceptional plasticity of Schwann cell pre-

cursors has been highlighted several times last year by studies

showing that parasympathetic neurons and some mesenchy-

mal stem cells originate from Schwann cell precursors (Dya-

chuk et al., 2014; Espinosa-Medina et al., 2014; Kaukua

et al., 2014). Authors of these studies show that the parasym-

pathetic neuron fate is induced from Schwann cell precursors

that have migrated into distal peripheral nerves. They identify

a bipotent progenitor that expresses Sox10 and the pan-

autonomic determinant Phox2B, together with the neural

crest markers FoxD3, p75NTR and the Schwann cell precursor

FIGURE 4: Concerted action of HDAC1/2, Pax3 and Sox10
directs neural crest cells into peripheral glia. HDAC1 and
HDAC2 (HDAC1/2) interact with Sox10 to activate the Pax3 pro-
moter in neural crest cells. This mechanism allows the mainte-
nance of Pax3 expression in neural crest cells. Pax3 synergizes
with Sox10 to activate the Sox10 50 enhancer MCS4 (also called
U3), which is critical for expression of Sox10 in neural crest cells.
This leads to maintenance of high Sox10 levels. Subsequently,
Sox10 indirectly activates the Fabp7 promoter and interacts with
HDAC1/2 to directly activate the P0 promoter. This mechanism
is critical to maintain high Sox10 levels and for expression of
Fabp7 and P0, two early determinants of peripheral glia.
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markers ErbB3, Cadherin-19 and PLP. This bipotent progeni-
tor gives rise to Schwann cells after downregulation of

Phox2B or maintains Phox2B expression and migrates to the

sites of parasympathetic ganglia to adopt a parasympathetic

neuron fate (Espinosa-Medina et al., 2014). Kaukua et al.

(2014) show that a fraction of mesenchymal stem cells giving

rise to pulp cells and odontoblasts originate from Schwann

cell precursors associated with peripheral nerves, and hypothe-

size that other types of mesenchymal stem cells could also be

derived from Schwann cell precursors. Interestingly, Hagedorn

et al. (1999) demonstrated the existence of post-migratory

PNS-committed multipotent cells that express both myelin

proteins P0 and PMP22 and can give rise to both neurons

and peripheral glia. These findings suggest that expression of

P0 in early steps of embryonic development is not an abso-

lute marker of glial fate decision. This has been also suggested

in two other studies (Morrison et al., 1999; Joseph et al.,

2004). Specifically, Joseph et al. (2004) show that P0-

expressing intermediate progenitors can give rise to either

peripheral glia or endoneurial fibroblasts.

Cell fate decisions and key transcriptional regulators dis-

cussed above are illustrated in Fig. 5.

Peripheral Glia Markers and Their Functions

While neural crest specifiers such as Sox9, Snail, and Slug are

downregulated during peripheral glia specification, other ones

including Sox10, Pax3, FoxD3, and AP-2a remain robustly

expressed after specification of peripheral glia, at least transi-

ently. Indeed, Sox9 is highly expressed in pre-migratory neural

crest cells and although it is required for survival and induction

of EMT that precedes migration (Cheung et al., 2005), its

expression is downregulated before migration of most neural

crest cells, except in the migrating cranial neural crest that po-

pulates the pharyngeal arches (Spokony et al., 2002). However,

Sox9 mRNA has been detected in purified Schwann cells from

E18 embryos and 3-day old rat pups (D’Antonio et al.,

2006a), indicating that Sox9 expression is turned on again, at

least at the mRNA level, at later stages of Schwann cell devel-

opment. As for Snail and Slug, at least one of them (depend-

ing on species) is expressed in pre-migratory neural crest cells

(Locascio et al., 2002) and synergizes with other transcription

factors to induce EMT. However, Snail/Slug need to be down-

regulated for neural crest cell migration, except in the cranial

neural crest where ovexpression of Slug increases the number

of both pre-migratory and migratory neural crest cells (Del

Barrio and Nieto, 2002). N-cadherin and cadherin 6B are also

expressed in pre-migratory neural crest cells, and to allow

delamination from the neural tube, a cadherin switch is trig-

gered by the coordinated action of Slug, FoxD3, Sox9, and

Sox10: N-cadherin and cadherin 6B are downregulated, while

other cadherins (7 and 11) are upregulated (reviewed in Theve-

neau and Mayor, 2012). Interestingly, N-cadherin expression is

FIGURE 5: Cell fate decision. Wnt, BMP, FGF and neuregulin-1 (NRG1) signaling orchestrate the action of the transcription factors that
direct cell fate decision of neural crest cells into either sensory neurons, melanocytes or peripheral glia. The exceptional plasticity of
Schwann cell precursors is illustrated here by the ability of these cells to give rise to melanocytes, endoneurial fibroblasts, parasympa-
thetic neurons, and mesenchymal stem cells. The dashed arrow and faded color of Sox10 indicate a requirement of low levels of Sox10
in this mechanism. Abbreviations: NCC: neural crest cells; BCC: boundary cap cells; b-cat: beta-catenin.
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turned on again in sensory neurons and at high level in

Schwann cell precursors, where it promotes cell-cell interac-

tions. These interactions allow Schwann cell precursors to build

cellular scaffolds that foster nerve compaction and enhance

contacts between axons (Wanner et al., 2006). Another cad-

herin, cadherin-19, has been reported to be specifically

expressed in rat Schwann cell precursors, and downregulated as

cells further differentiate into immature Schwann cells (Takaha-

shi and Osumi, 2005). Expression has also been shown in rat

boundary cap cells (Takahashi and Osumi, 2005). While a

transient expression of cadherin-19 in the Schwann cell lineage

is supported by cell culture differentiation data (Ziegler et al.,

2011), a study in chicken embryos shows that cadherin-19

expression is maintained at later stages of Schwann cell devel-

opment (Lin et al., 2010). Expression of this marker may thus

vary among species. Cadherins are calcium-dependent cell

adhesion proteins that connect cells by their homophilic adhe-

sion properties, but a potential specific function of cadherin-19

in peripheral glia development has not yet been demonstrated.

The neural cell adhesion molecule L1 regulates cell migration,

neurite outgrowth and fasciculation (Fischer et al., 1986), and

is expressed in migratory neural crest cells (Shimotake et al.,

1995), neurons, satellite cells and Schwann cell precursors, and

also at later stages of development in non-myelinating

Schwann cells (Faissner et al., 1984; Mirsky et al., 1986). L1

expression, such as NCAM, another neural cell adhesion mole-

cule, is upregulated by TGF-beta, which controls Schwann cell

proliferation and apoptosis in vivo (D’Antonio et al., 2002). In

cultured Schwann cells, TGF-beta also promotes proliferation,

and in addition blocks myelin gene expression (Stewart et al.,

1995; Jacob et al., 2008).

Similar to melanocytes, but in contrast to other neural-

crest derived lineages, peripheral glia maintain Sox10 expres-

sion after specification (Kuhlbrodt et al., 1998; Britsch et al.,

2001; Paratore et al., 2001) and during their entire life. In

addition to its central role in peripheral glia specification dis-

cussed in the previous section, Sox10 is required for each step

of peripheral glia development (Schreiner et al., 2007; Finzsch

et al., 2010; Fr€ob et al., 2012) and for maintenance of periph-

eral glia differentiation in adult organisms (Bremer et al.,

2011). In postnatal Schwann cells, Sox10 activates its own

expression and expression of the transcription factor of myeli-

nation Krox20 (Ghislain and Charnay, 2006; Finzsch et al.,

2010; Reiprich et al., 2010) and the myelin protein P0 (Peir-

ano et al., 2000), in conjunction with the histone deacetylases

HDAC1 and HDAC2 (Jacob et al., 2011a). Sox10 also con-

trols expression of the transcription factor of differentiation

Oct6 (Finzsch et al., 2010; Jagalur et al., 2011), and of other

myelin proteins (Bondurand et al., 2001; Wei et al., 2004).

Sox10 is also necessary in boundary cap cells to maintain bar-

rier integrity between CNS and PNS (Fr€ob et al., 2012).

The neuregulin-1 receptor ErbB3 marks migrating neu-

ral crest cells before specification and the entire peripheral

glia lineage, while it is downregulated in many other neural

crest derived cells (Meyer and Birchmeier, 1995). ErbB3

functions in peripheral glia specification are discussed in the

previous section. In peripheral nerves, neuregulin-1/ErbB3

signaling controls radial sorting of big caliber axons in 1:1

relationships with Schwann cells (Taveggia et al., 2005), as

well as myelin thickness (Michailov et al., 2004).

Pax3 expression, which is necessary (but not sufficient

on its own) for the specification of peripheral glia (Auerbach,

1954; Franz, 1990; Olaopa et al., 2011; Jacob et al., 2014),

is maintained in these cells after specification. However Pax3

is also expressed in other neural crest derived lineages, where

it plays critical functions (Auerbach, 1954). Pax3 is expressed

until E13.5 in mouse Schwann cell precursors and satellite

glia. Its expression is then downregulated, but is turned on

again in the Schwann cell lineage at later stages, where it has

been reported to act as a cell cycle regulator (Kioussi et al.,

1995; Doddrell et al., 2012).

FoxD3 and AP-2a expressions are maintained in

peripheral glia after specification and their known functions

in this process have been discussed in the previous sections.

Interestingly, AP-2a expression is lost in immature Schwann

cells, and can thus be used to discriminate between Schwann

cell precursor and immature Schwann cell stages. Consistent

with its expression pattern, AP-2a represses the transition

from Schwann cell precursors to immature Schwann cells

(Stewart et al., 2001). In addition, this transcription factor is

expressed in sympathetic progenitors and differentiated neu-

rons and is required for their survival (Schmidt et al., 2011).

The low-affinity nerve growth factor receptor p75NTR is

expressed in neural crest cells and remains expressed in

peripheral glia (Jessen et al., 1994), where it promotes apop-

tosis and thereby regulates cell number by counter-balancing

proliferation (Soilu-Hanninen et al., 1999; Syroid et al.,

2000). However, ablation of p75NTR does not affect the

number of apoptotic cells during normal development, but

does after a nerve injury (Syroid et al., 2000; Petratos et al.,

2003) indicating that p75NTR may have pro-apoptotic func-

tions only in the case of stress or injury.

In mouse embryos, Fabp7 and P0 are not expressed at

E10.5 in migrating neural crest cells, but can be detected as

early as E11 in DRG and/or peripheral nerves (Kurtz et al.,

1994; Hagedorn et al., 1999; Britsch et al., 2001; Jacob

et al., 2014). At E11, P0 mRNA is expressed in Schwann cell

precursors of distal nerves and ventral roots (Jacob et al.,

2014), and at E12, expression extends to satellite cells in the

DRG. Expression in Schwann cell precursors of dorsal roots

occurs later (Hagedorn et al., 1999). P0 is an early marker of

peripheral glia lineage in embryos of various other animal
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species including chick and rat, where expression has been

detected already in migrating neural crest (Bhattacharyya

et al., 1991; Lee et al., 1997). P0 is the most abundant struc-

tural protein of peripheral myelin, and protein levels are low

before the establishment of 1:1 relationships between

Schwann cells and peripheral axons, which precedes the onset

of myelination (Martini et al., 1988; Lee et al., 1997). How-

ever, P0 protein is produced at higher levels in boundary cap

cells at the dorsal root entry zone, with a peak of expression

from E13 till E16 in mouse embryos (Golding and Cohen,

1997). P0 may be expressed at this developmental stage to

maintain the coherence of boundary cap cell clusters by its

homophilic adhesion properties (Filbin et al., 1990). Interest-

ingly, P0 has also been shown to promote neurite outgrowth

(Schneider-Schaulies et al., 1990; Filbin and Tennekoon,

1992). As for Fabp7, a role in regulating Schwann cell-axon

interactions has been proposed (Miller et al., 2003) and it is

certainly critical for neurogenesis in the CNS (recently

reviewed in Matsumata et al., 2014), but its function in

peripheral glia remains unclear.

Desert-Hedgehog (Dhh) is a signaling molecule that is

also expressed in Schwann cell precursors and remains

expressed at later stages of the Schwann cell lineage. This pro-

tein belongs to a group of secreted factors that are involved

in cell-cell interactions (Bitgood and McMahon, 1995). Dhh

expression is induced by Sox10 in Schwann cells (K€uspert

et al., 2012), where it holds key functions in the development

of peripheral nerves (Parmantier et al., 1999; Sharghi-Namini

et al., 2006). Indeed, Dhh released by Schwann cells signals

through its receptor Patched expressed by perineurial fibro-

blasts, which in turn form and maintain the integrity of the

nerve-blood barrier (Parmantier et al., 1999).

Glutamine synthetase can also be used as a marker of

peripheral glia in adult DRG and peripheral nerves. Indeed,

this enzyme is expressed in satellite glia and Schwann cells,

while DRG neuronal cell bodies and peripheral axons express

glutaminase (Miller et al., 2002). However, there is no evi-

dence in the literature that glutamine synthetase is already

expressed in satellite cells and Schwann cell precursors during

embryonic development. Peripheral glia take up glutamate

from the extracellular environment and quickly convert it to

glutamine by their glutamine synthetase. Glutamine is then

transported to neurons and subsequently converted to gluta-

mate by their glutaminase. Neurons can then use glutamate for

synaptic transmission or to enter their metabolic cycle. DRG

and peripheral neurons activity and metabolism are therefore

highly dependent on their interaction with peripheral glia.

As discussed above, many markers are common to dif-

ferent types of peripheral glia. However, specific markers for

almost each type of peripheral glial cells have also been

described and can thus be used to distinguish them when

localization is not sufficient. Indeed, satellite cells express the

Ets domain transcription factor Erm that is not expressed in

Schwann cell precursors. However, Erm is also expressed in

peripheral neurons and in migrating PNS-committed neural

crest cells (Hagedorn et al., 2000). Erm does not seem to be

required for survival or proliferation of neural crest cells, but

is critical for neuron specification and proliferation of satellite

glia (Paratore et al., 2002).

Boundary cap cells are characterized by their robust

expression of the zinc finger transcription factor Krox20 start-

ing from E10.5 in mouse embryos (Topilko et al., 1994). At

E11.5, ventral and dorsal root Schwann cell precursors also

express Krox20 (Topilko et al., 1994), but no expression in

other types of peripheral glia is detected before E15.5 when

Schwann cell precursors further differentiate into immature

Schwann cells (Murphy et al., 1996). Although satellite cells

can express Krox20 in culture and thereby convert to a

Schwann cell fate, they do not express Krox20 in vivo (Mur-

phy et al., 1996), maybe due to repressive signaling in the

DRG. Krox20 is an essential transcription factor of Schwann

cell myelination (Topilko et al., 1994) that induces expression

of myelin genes including P0, PMP22, MAG, MBP, periaxin
(Nagarajan et al., 2001; LeBlanc et al., 2006; Jang et al.,

2006, 2009, 2010; Svaren and Meijer, 2008; Jones et al.,

2011; Srinivasan et al., 2012) and represses the marker of

promyelinating Schwann cells Oct6 (Jaegle et al., 1996) and

markers of immature Schwann cells such as Sox2, Id2, c-jun,

and p75NTR (Parkinson et al., 2004; Le et al., 2005; Sriniva-

san et al., 2006, 2012; Mager et al., 2008; Hung et al.,

2012). The function of Krox20 in boundary cap cells and

nerve root Schwann cell precursors during embryonic devel-

opment appears less clear. Krox20 has been shown to control

the expression of L20, another gene specifically expressed in

boundary cap cells (Coulpier et al., 2009), however the func-

tion of L20 is currently unknown. Wif1, a gene encoding a

secreted protein that antagonizes Wnt-dependent signaling

(Hsieh et al., 1999), has also been reported to mark boundary

cap cells (Coulpier et al., 2009), as well as genes encoding

the natriuretic peptide receptor Nrp3, the Notch-dependent

basic helix-loop-helix transcription factor Hey2, and the

embryonic and adult hemoglobins Hbb-y and Hbb-b1, 4

genes that are also expressed in nerve root Schwann cell pre-

cursors (Coulpier et al., 2009). Ablation of Krox20 or Hey2

in mouse embryos does not lead to survival defects in bound-

ary cap cells (Coulpier et al., 2009), and the functions of

these genes in the biology of boundary cap cells have not yet

been identified. Boundary cap cells have also been shown to

express monoamine oxidase B (MAOB); however, MAOB is

widely expressed in other neural crest derived cells including

chondrocytes, sensory neurons, and most likely also olfactory

ensheathing cells (Vitalis et al., 2003).
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Because most Schwann cell precursors found in nerve

roots derive from boundary cap cells, they do not only express

Schwann cell precursor markers, but also genes that mark

boundary cap cells. In addition, nerve root Schwann cell pre-

cursors express the Ca21-binding protein S100 already at E12.5

in mouse embryos (Murphy et al., 1996), while Schwann cell

precursors of distal peripheral nerves are S100-negative (Jessen

et al., 1994). In distal peripheral nerves, the transition from

Schwann cell precursors to immature Schwann cells is marked

by the expression of S100. This suggests that Schwann cell pre-

cursors in nerve roots may progress faster into the immature

Schwann cell stage. However, nerve root Schwann cell precur-

sors also express cadherin-19, which is downregulated in imma-

ture Schwann cells (Takahashi and Osumi, 2005). Satellite glia

and DRG neurons also express S100 (Cocchia and Michetti,

1981; Stefansson et al 1982; Lauriola et al., 1989), however his-

tochemical analyses of S100 protein subunits showed that

S100b subunit is more prominently expressed in peripheral

glia, while S100a is expressed in both neurons and peripheral

glia (Sugimura et al., 1989; Vega et al., 1991).

Interestingly, Seraf that encodes a secreted protein con-

taining several EGF-like repeats, has been identified as a very

early marker of Schwann cell precursors in chick embryos.

Indeed, Seraf is expressed before P0 in Schwann cell precur-

sors and its expression is downregulated when P0 starts being

expressed (Wakamatsu et al., 2004b). However, the function

of Seraf has not been further investigated and remains there-

fore unknown.

Other proteins including the myelin proteins PMP22

(Hagedorn et al., 1999) and PLP/DM20 (Griffiths et al.,

1998), as well as the growth-associated protein GAP-43 have

also been described as early peripheral glia markers, however

they are also at least transiently expressed in neurons during

embryonic development. PMP22 transcript is detected in

DRG and peripheral nerves starting from E12 in mouse

embryos, and is expressed in peripheral glia, but also DRG

neurons (Hagedorn et al., 1999). While PLP is predomi-

nantly found in oligodendrocytes in the CNS, its short iso-

form DM20 is mostly expressed in other tissues. In mouse

embryos, DM20 is expressed from E13 in Schwann cell pre-

cursors and is also found in satellite cells (Griffiths et al.,

1998; Tuason et al., 2008) and olfactory ensheathing cells

(Dickinson et al., 1997). GAP-43 has been originally

described as a growth cone protein expressed in neurons

(Jacobson et al., 1986). It is not expressed in neural crest

cells, but in addition to neurons, it is also expressed in CNS

glia (Sensenbrenner et al., 1997) and in Schwann cell precur-

sors and at later developmental stages in non-myelinating

Schwann cells (Curtis et al., 1992; Jessen et al., 1994), where

it is involved in the formation of cellular processes.

The different neural crest and peripheral glia markers

are summarized in Fig. 6, however the factors described in

FIGURE 6: Specific markers of peripheral glia and their progenitors. Colors are used for easier identification of markers that are
expressed in several lineages. When appropriate, the embryonic stage (E) corresponding to mouse development is given. Factors that
are expressed in these lineages, but also strongly expressed in other cell types such as neurons or not expressed during embryonic
development are not represented here, but they are discussed in the main text.
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this chapter that display strong expression in neurons or that

have not been detected during embryonic development are

not represented.

Olfactory ensheathing cells that are found in both PNS

and CNS and originate from the neural crest show similar

pattern of gene expression to Schwann cells, but some differ-

ences exist. Indeed, Ulrich et al. (2014) recently published a

gene expression profiling analysis comparing Schwann cells

and olfactory ensheathing cells. This study shows that olfac-

tory ensheathing cells express lower levels of the Schwann

cell-lineage marker genes including ErbB3, GFAP (not

expressed in Schwann cell precursors, but later in the

Schwann cell lineage), p75NTR, Dhh, AP2-a, P0, L1, but

higher levels of an S100a subunit and of GAP-43. Other dif-

ferences among genes that are not Schwann cell-specific

markers include higher levels of Hoxc4 and Hoxd8 and lower

levels of Cntnap2 and Efemp1 in Schwann cells compared

with olfactory ensheathing cells (Ulrich et al., 2014).

Conclusion

Despite the many years that developmental biologists have

dedicated to understand the origin of neural crest cells and

derived lineages, their migration routes, specification and sur-

vival mechanisms, major discoveries on this topic are still

emerging. If we consider the complexity of transcriptional

events and regulations that control these mechanisms, this is

not at all surprising. The fact that such an intricate network

of transcription factors is successfully orchestrated to deliver

the many neural crest derived cell types of the body at their

respective locations still seems like an enormous challenge. As

discussed in this review, the action of transcription factors is

controlled by a combination of extracellular cues and signal-

ing pathways. Recent studies also highlight the critical func-

tions of chromatin remodeling factors in the control of

transcription factor expression and activity. Our current

knowledge of transcriptional regulations occurring at the

chromatin level in the nervous system is still very scarce

(functions of HDACs and histone methylation enzymes

reviewed in Jacob et al., 2011b and Pattaroni and Jacob,

2013). It is therefore reasonable to envision that future work

on this topic will deliver breakthrough findings in develop-

mental biology. Besides developmental mechanisms, control

of regeneration processes will certainly also benefit from

deeper knowledge of chromatin-remodeling events that con-

trol cell differentiation, de-differentiation and fate switch. In

this respect, the plasticity of Schwann cells, olfactory

ensheathing cells, and mesenchymal stem cells that are found

in adult tissues (not discussed in this review), together with

in-depth understanding of the mechanisms that control their

cell cycle, appear as very promising strategies to explore for

future applications in regenerative medicine.
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