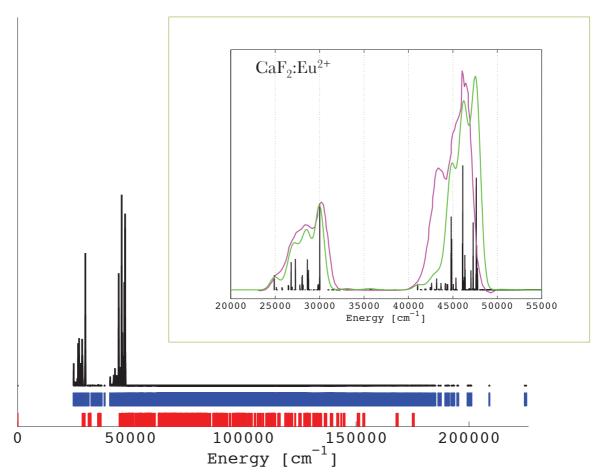
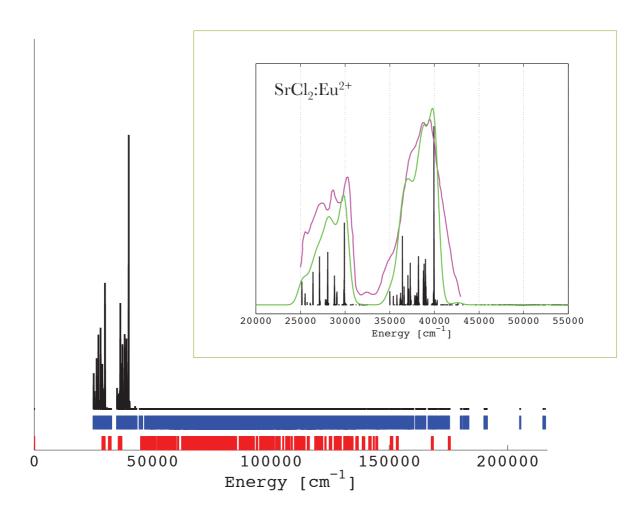
Published in "Physical Chemistry Chemical Physics 17(28): 18547–18557, 2015" which should be cited to refer to this work.

Development and applications of the LFDFT: the non-empirical calculation of ligand field and the simulation of the f - d transitions by Density Functional Theory

Harry Ramanantoanina^a*, Mohammed Sahnoun^b, Andrea Barbiero^a, Marilena Ferbinteanu^c and Fanica Cimpoesu^d*


^a Department of Chemistry of the University of Fribourg (Switzerland), Chemin du Musée 9, 1700 Fribourg, Switzerland, Fax: +41 26 300 9738; Tel: +41 26 300 8700; E-mail: harry.ra@hotmail.com

^b Laboratoire de physique de la matière et modélisation mathématique, LPQ3M, Université de Mascara, Algeria


^c Faculty of Chemistry, Inorganic Chemistry Department, University of Bucharest, Dumbrava Rosie 23, Bucharest 0206462, Romania

^d Institute of Physical Chemistry, Splaiul Independentei 202, Bucharest 060021, Romania; E-mail: cfanica@yahoo.com

Electronic Supplementary Information (ESI): 3 pages.

Fig. S1 Calculated multiplet energy levels of the $4f^7$ (in red) and the $4f^65d^1$ (in blue) electron configurations of Eu²⁺ doped into CaF₂, together with the calculated oscillator strength obtained for the transitions the $4f^7$ (${}^8S_{7/2}$) - $4f^65d^1$ (in black). Inset: comparison between the theoretical results (*i.e.* zero phonon lines (in black) and the superposition of a Gaussian with a width of 500 cm⁻¹ on the zero phonon lines (in green)) and the excitation spectrum (in magenta) reproduced from ref. [G. W. Burdick, A. Burdick, V. Deev, C.-K. Duan and M. F. Reid, *J. Lumin.*, 2005, *118*, 205.]

Fig. S2 Calculated multiplet energy levels of the $4f^7$ (in red) and the $4f^65d^1$ (in blue) electron configurations of Eu^{2+} doped into SrCl₂, together with the calculated oscillator strength obtained for the transitions the $4f^7$ (${}^8S_{7/2}$) - $4f^65d^1$ (in black). Inset: comparison between the theoretical results (*i.e.* zero phonon lines (in black) and the superposition of a Gaussian with a width of 500 cm⁻¹ on the zero phonon lines (in green)) and the excitation spectrum (in magenta) reproduced from ref. [Z. Pan, L. Ning, B.-M. Cheng and P. A. Tanner, *Chem. Phys. Lett.*, 2006, **428**, 78.]