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1 Introduction

The main goal of this article is to prove the following result:

Theorem 1 For every hyperbolic orbifold surface, the maximum injectivity radius is greater
or equal to a universal constant ρT , with equality if and only if the orbifold is a sphere with
three cone points of order 2, 3 and 7.

Theoriginal interest in this result comes from the studyof the automorphismgroupof a surface
(possibly with cusps), and in particular from the following problem: consider a hyperbolic
surface S and the group Aut+(S) of orientation preserving isometries of S. Take a point p on
S, not fixed by any ϕ ∈ Aut+(S). It is possible to choose a small radius r , depending on S and
p, such that the open disks {Br (ϕ(p))}ϕ∈Aut+(S) are pairwise disjoint, but can we avoid the
dependence on the surface and the point? More precisely, is there a universal constant ρ such
that for every hyperbolic surface there is a point p with pairwise disjoint embedded disks{

Bρ(ϕ(p))
}
ϕ∈Aut+(S)

? And which is the maximum ρ with this property? As a consequence
of Theorem 1, we can answer both questions.
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Theorem 2 For every hyperbolic surface S there exists a point p such that{
BρT (ϕ(p))

}
ϕ∈Aut+(S)

are embedded and pairwise disjoint. Moreover, ρT is the biggest possible radius if and only
if S is a Hurwitz surface.

Various results about the maximum injectivity radius are known for orientable surfaces
with or without boundary. In particular, lower bounds have been given by Yamada [12] for
surfaces without boundary and by Parlier [10] for surfaces with boundary. DeBlois [4] has
given upper bounds, depending on the signature, for surfaces without boundary, generalizing
the result of Bavard [1] for closed surfaces. For non-orientable surfaces, the only known
result is an upper bound in the closed case, again by Bavard [1].

The structure of the article is the following: after some preliminary results, in Sect. 3 we
study themaximum injectivity radius of triangular surfaces (cone-surfaces of genus zero with
three singular points) and we obtain the constant ρT . In Sect. 4 we show that ρT is a lower
bound for the maximum injectivity radius of any orbifold of signature different from (0, 3)
and the final section contains the proofs of theorems 1 and 2.

In the “Appendix” we show how to use the techniques developed in Sect. 3 to deduce a
simple proof of Yamada’s theorem described above.

2 Notation and preliminary results

A (hyperbolic) surface is a smooth connected orientable surface with a complete and finite
area hyperbolic metric. A cone-surface is a two-dimensional connected manifold that can
be triangulated by finitely many hyperbolic triangles; if it has boundary components, we ask
that they be geodesic. A point where the cone-surface isn’t smooth is called a cone point.
Note that we will distinguish between cone points and cusps.

For every cone point p, there is a collection of triangles having p as a vertex; we call total
angle at p the sum of angles at p of those triangles. We will consider cone-surfaces such that
every cone point of a cone-surface has total angle at most π , and we will call them admissible
cone-surfaces. A cone-surface is of signature (g, n, b) if it has genus g, n singular points
(cone points or cusps) and b boundary components. If b = 0, we will simply write (g, n).

If a cone point has total angle 2π
k , we say that it is of order k. We define an orbifold to

be an admissible cone-surface without boundary components such that every cone point is
of order k, for a positive integer k (depending on the point). We denote by O the set of all
orbifolds and by S the set of all surfaces.

We will use dM ( , ) for the distance on a metric space M and Br (p) for the set of points
at distance at most r from a point p ∈ M :

Br (p) = {q ∈ M : dM (p, q) < r} .

Sometimes, if the metric space we are considering is clear from the context, we will simply
use d( , ) instead of dM ( , ). Given a curve γ on M , we denote its length by l(γ ).

Let S be an admissible cone-surface; we can consider the map

r : S → R

p �→ rp,
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where

rp = max
{

r ≥ 0 |Br (p) is isometric to an open disk of radius r in H
2
}

is the injectivity radius at the point p. We will need the following result.

Proposition 2.1 The map r admits a maximum.

Proof Let ε > 0 be small. If d(p, q) < ε, then rq ≥ rp − ε, because Br p−ε(q) is embedded
in Br p (p); conversely rp ≥ rq − ε. So

∣∣rp − rq
∣∣ ≤ ε and the map r is continuous.

If there is no cusp, S is compact and r has a maximum. If there are any cusps, note that
the injectivity radius becomes smaller while getting closer to the cusp. So

sup
p∈S

rp = sup
p∈C

rp

for some compact set C in S obtained by taking away suitable open horoballs. Again, we get
that r has a maximum. ��

We define the maximum injectivity radius of an admissible cone-surface S as

r(S) := max
p∈S

rp.

The constant ρT wewant to find is the infimum of r(O) for O ∈ O. As every quotient surface
is an orbifold and every orbifold is the quotient of a surface by a group of automorphisms,
we have

inf
O∈O

r(O) = inf
S∈S

r
(
S/Aut+(S)

)
.

We will prove that the two infima are realized by the orbifold of genus zero with three cone
points of order 2, 3 and 7, which can be obtained as quotient S/Aut+(S) for any Hurwitz
surface S.

We nowwant to obtain some results about geodesic representatives of simple closed curves
and pants decompositions, in the context of admissible cone-surfaces. We will use a result
by Tan et al. [11], while other results will be similar to some obtained by Dryden and Parlier
[6], but the presence of cone points of order two will require some extra work.

Following [6], we define a (generalized) pair of pants as for compact hyperbolic surfaces,
with the difference that we allow the boundary geodesics to be replaced by cusps or cone
points with total angle at most π . A pair of pants will be called:

• a Y-piece if it has three geodesics as boundary,
• a V-piece if it has two geodesics and a singular point as boundary,
• a joker’s hat if it has two singular points and a geodesic as boundary,
• a triangular surface if it has three singular points as boundary.

An admissible geodesic of the first type is a simple closed geodesic. An admissible geodesic
of the second type is a curve obtained by following back and forth a simple geodesic path
between two cone points of order two. These admissible geodesics will have here the same
role played by simple closed geodesics in the context of hyperbolic surfaces: they will be the
geodesic representatives of simple closed curves and they will form pants decompositions.

Let � be the set of all cone points on an admissible cone-surface S. We say that a closed
curve γ on S \� is homotopic to a point p ∈ S if γ and p are are freely homotopic on
S\� ∪ {p}; γ is non-trivial if it is not homotopic to any point (including the singular ones)
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Fig. 1 A curve γ homotopic
to an admissible geodesic
of the second type δ

or boundary component. Given an admissible geodesic of the second type δ, let δε be the
boundary of an ε-neighborhood of δ (with ε small enough so that δε is a simple closed curve,
contractible in S\� ∪ δ). A curve γ on S\� is homotopic to δ if it is freely homotopic on
S\� to δε (Fig. 1).

Let α and β be two transverse simple closed curve on S\�. The (geometric) intersection
number of the corresponding free homotopy classes is

i([α], [β]) = min
{|α′ ∩ β ′| : α′ ∈ [α], β ′ ∈ [β]} .

We say that α and β form a bigon if there is an embedded disk on S\� whose boundary is
the union of an arc of α and an arc of β intersecting in exactly two points.

In [11], the following is proven:

Proposition 2.2 Let S be an admissible cone-surface, � the set of all cone points on S and
γ a non-trivial simple closed curve on S\�. Then it is homotopic to a unique admissible
geodesic G(γ ).

We also have:

Proposition 2.3 Let S be an admissible cone-surface and � the set of all cone points on S.
Given α, β two transverse non-trivial simple closed curves on S\�, then either G(α) = G(β)

or |G(α) ∩ G(β)| ≤ |α ∩ β|.
Proof Suppose G(α) and G(β) are distinct. Since they are geodesics, they do not form any
bigons.

If they are both simple closed geodesics, by the bigon criterion (see for instance [7,
Proposition 1.7]) they intersect minimally and

|G(α) ∩ G(β)| = i ([α], [β]) ≤ |α ∩ β|.
If G(α) is a closed geodesic of the second type and G(β) is a simple closed geodesics,

we can choose a curve α′ ∈ [α] in a small neighborhood of G(α) such that it doesn’t form
any bigons with G(β) (see Fig. 2), so |α′ ∩ G(β)| = i([α], [β]) ≤ |α ∩ β|. Since every
intersection of G(α) and G(β) corresponds to at least two intersections of α′ and G(β), we
have |G(α) ∩ G(β)| ≤ |α′ ∩ G(β)| ≤ |α ∩ β|.

If both G(α) and G(β) are closed geodesics of the second type, we consider two curves
α′ and β ′ in small neighborhoods of the geodesics and we apply a similar argument to the
one above. ��

Amaximal (in the sense of subset inclusion) setP of pairwise disjoint admissible geodesics
is called a pants decomposition.
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Fig. 2 G(α), G(β) and the curve
α′

Fig. 3 Two pants
decompositions with different
number of pairs of pants

Proposition 2.4 Let S be an admissible cone-surface of signature (g, n, b) and P a pants
decomposition of S. Then |P| = 3g − 3+ n + b and S\P is a set of (open) pairs of pants.

The proof follows from Propositions 2.2 and 2.3 and the fact that a topological surface of
genus g with n +b punctures has 3g −3+n +b pairwise disjoint and non-homotopic simple
closed curves.

Note that the number of curves for a pants decomposition is determined by the signature,
but the number of pairs of pants is not. For example, we can consider a sphere with four cone
points, two of order 2 and two of order 3. We can choose two different curves, each forming
a pants decomposition; one decomposes the orbifold into two pairs of pants and the other
into one, as in Fig. 3.

3 Triangular surfaces

A large portion of the work to obtain our result lies in the analysis of the triangular surfaces
case. We will study the maximum injectivity radius of triangular surfaces and we will give
an implicit formula for it. We will then prove that the triangular surface with cone points of
order 2, 3 and 7 realizes the minimum among all orbifolds of signature (0, 3).

Recall that a triangular surface is an admissible cone-surface of signature (0, 3). Every
triangular surface can be obtained by gluing two hyperbolic triangles of angles α, β and γ ,
all less or equal to π

2 ; we denote the corresponding admissible cone-surface by Sα,β,γ . We
call A, B and C the vertices of the triangles corresponding to α, β and γ respectively and
a, b and c the opposite sides (or the lengths of the sides). Such a decomposition in triangles
in unique, and since every triangle is uniquely determined (up to isometry) by its angles, the
moduli space of triangular surfaces can be seen as

M =
{

(α1, α2, α3) ∈
[
0,

π

2

]3 :
3∑

i=1

αi < π

}/
Sym(3),

where the action of the symmetric group Sym(3) on the set of triples is given by

(σ, (α1, α2, α3)) �→ (ασ(1), ασ(2), ασ(3)).
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Lemma 3.1 If a triangular surface S contains a cusp and two singular points with total
angles 2θ1 and 2θ2, the associated horocycle of length h(S) is embedded in S, where

h(S) := 4√
1 + 1

R(0,θ1,θ2)

and

R(0, θ1, θ2) := arctanh
cos θ1 + cos θ2

2
√

(1 + cos θ1)(1 + cos θ2)

is the radius of the inscribed disk in a triangle with angles 0, θ1 and θ2.

Proof Consider T , one of the two triangles that form S and let p be the center of the inscribed
disk in T . Consider the horocycle passing through the points on b and c at distance R(0, θ1, θ2)
from p. This is an embedded horocycle and direct computation shows that it is longer than
h(S). ��

Notation: if A (resp. B, C) is a cusp, we denote h A (resp. h B , hC ) the associated horocycle
of length h(S).

3.1 The maximum injectivity radius for triangular surfaces

The aim of this section is to give an implicit formula for the maximum injectivity radius of
any triangular surface. To obtain this result, we characterize points whose injectivity radius
is maximum on a given triangular surface and we get a system of equations, including the
desired implicit formula.

3.1.1 Some special loops

In this section we denote Sα,β,γ simply by S, since the angles will be fixed. For p ∈ S, we
consider the maximal embedded disk Br p (p). As rp is the injectivity radius in p, either the
disk is tangent to itself in at least a point or a cone point of order two belongs to the boundary
of the disk.

Every point where Brp(p) is tangent to itself corresponds to a simple loop on the surface,
made by the two radii from the center p to the point of tangency (Fig. 4). The loop is geodesic
except in p, its length is 2rp and it is length-minimizing in its class in π1(S\{A, B, C}, p).

If there is a cone point of order two, say A, and it belongs to the boundary of Br p (p),
we associate a loop γA obtained by traveling from p to A and back on the length realizing
geodesic between these two points. Clearly, this loop has length 2rp . We want to study the
loops described above and use them to characterize points on S with maximum injectivity
radius.

Let p be a non-singular point on S and consider one corner, say A. Suppose α = π
2 ; we

define γA to be, as before, the curve that traces the length realizing geodesic between p and
A from p to A and back.

Lemma 3.2 Let C be the class in π1(S\{A, B, C}, p) of a simple loop around A and based
at p. Then

l(γA) = inf{l(γ )|γ ∈ C}.
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Fig. 4 A tangency point and its
associated loop

Fig. 5 Cutting along γA for A
cone point of order two

Proof Consider γ ∈ C. If it crosses γA, the two curves form a bigon and γ can be shortened
while staying in the same homotopy class. So, to compute inf{l(γ )|γ ∈ C} we can assume γ

doesn’t cross γA. We cut along γ and γA and we get a subset of H
2 bounded by two curves

between two copies of P (Fig. 5): the first one is a geodesic given by γA and the second one is
given by γ , hence l(γ ) ≥ l(γA). One can construct curves in the class with length arbitrarily
close to l(γA), so the infimum is l(γA). ��

Suppose now α < π
2 .

Lemma 3.3 There exists a unique simple loop γA based at p, going around A, geodesic
except at p. Moreover, it is length minimizing in its class in π1(S\{A, B, C}, p).

Proof Consider the class C ∈ π1(S\{A, B, C}, p) of a simple closed curve with base point
p that goes around A. We first show the uniqueness of γA. Suppose then γA is a simple loop
in C, geodesic except at p. Then it doesn’t cross the length-realizing geodesic between p and
A, otherwise they would form a geodesic bigon. We can cut along the geodesic; γA is given
by the unique geodesic between the two copies of p on the cut surface.

We show now that γA exists and is length-minimizing. Let γn be a sequence of smooth
curves in C with lengths converging to inf{l(γ )|γ ∈ C}. If there is any cusp on S, since the
length of the curves γn is bounded above, we can assume that they are contained in a compact
subset of S. By the Arzelà-Ascoli Theorem (see [3, Theorem A.19]) we get a limit curve γA.
Note that γA doesn’t contain A: it is clear if A is a cusp, while if α > 0 and γA passes through
A, it forms an angle at A smaller or equal to 2α < π , so it can be shortened to a curve in
C, contradiction. In particular, γA ∈ C. By the minimality, γA is simple and geodesic except
at p. ��
Notation: lA := l(γA), lB := l(γB) and lC := l(γC ). By α̃ (resp. β̃, γ̃ ) we denote the acute
angle of lA (resp. lB , lC ) at p.

Clearly, forα = π
2 , the length is twice the distance d(p, A). So lA increases (continuously)

when d(p, A) increases.
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Fig. 6 The loop around a cusp in
the upper half plane

Fig. 7 The triangle associated to
the loop for α ∈ (

0, π
2
)

If α = 0, i.e. if A is a cusp, consider the horocycle h A. Cut along the loop itself and the
geodesic from p to the cusp. We represent the triangle we obtain in the upper half plane
model of H

2, choosing A to be the point at infinity (Fig. 6). Note that the geodesic between
p and the cusp is the bisector of α̃. By hyperbolic trigonometry, we get

1 = cos(0) = cosh

(
lA

2

)
sin

(
α̃

2

)
.

Let dh A (p) be d(p, h A), if p doesn’t belong to the horoball bounded by h A, and −d(p, h A)

otherwise. By direct computationwe get that lA is a continuousmonotone decreasing function
of α̃, so a continuous monotone increasing function of dh A (p).

If α ∈ (
0, π

2

)
, we cut along the geodesic from p to A and we get an isosceles triangle

(Fig. 7). Again, the geodesic from p to A is a bisector of α̃. Using hyperbolic trigonometry,
we obtain the equations

cos(α) = cosh

(
lA

2

)
sin

(
α̃

2

)

and

sinh

(
lA

2

)
= sin(α) sinh(d(p, A)).

In particular, lA is a continuous monotone increasing function of d(p, A).
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Fig. 8 S cut along the three
loops (case without cone points
of order two)

Fig. 9 S cut along the three
loops for A of order 2

So, for p ∈ S, we can define

distA(p) =
{

d(p, A) if α 
= 0
dh A (p) if α = 0

Similarly for B and C . We have just proven the following:

Lemma 3.4 The length lA (resp. lB , lC ) is a continuous monotone increasing function of
distA(p) (resp. distB(p), distC (p)).

Now, given a point p on the surface, we can cut along the loops γA, γB and γC . If there
is no cone point of order two, we obtain four pieces: three of them are associated each to a
singular point, and the fourth one is a triangle of side lengths lA, lB and lC (Fig. 8).

If there is a cone point of order 2, we get only three pieces: two associated to the other
singular points and again a triangle of side lengths lA, lB and lC (Fig. 9).

3.1.2 Lengths of the loops and injectivity radius

The aim of this part is to relate the lengths lA, lB and lC with the injectivity radius in a point.
We first need two lemmas.
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Lemma 3.5 Given a triangular surface S, a non-singular point p ∈ S and its three associ-
ated loops, we have

rp = min

{
lA

2
,

lB

2
,

lC
2

}
.

Proof Denote m := min
{

lA
2 , lB

2 ,
lC
2

}
.

We already remarked that either Br p (p) is tangent to itself in at least a point or its boundary
contains a cone point of order 2. In both situations,we get a loop at p of length 2rp . So rp ≥ m.

To prove the other inequality, suppose γA is the shortest of the three loops, i.e. lA = 2m.
If α = π

2 , then rp ≤ d(p, A) = lA
2 = m, since an embedded disk cannot contain a singular

point. Otherwise, if α 
= π
2 , consider the point q on γA at distance lA

2 = m from p. Every

disk of radius bigger than lA
2 overlaps in q, hence again rp ≤ m. ��

Let T ⊆ H
2 be a hyperbolic triangle with angles α, β, γ at most π

2 . If α = 0, consider a
horocycle HA based at A such that

l(HA ∩ T ) = 1

2
h(S0, β, γ ).

For p ∈ H
2, we define distA(p), distB(p) and distC (p) as before in the case of a triangular

surface, with HA instead of h A.

Lemma 3.6 Let T ⊆ H
2 be a hyperbolic triangle and p, p′ ∈ T . If⎧⎨

⎩
distA(p′) ≥ distA(p)

distB(p′) ≥ distB(p)

distC (p′) ≥ distC (p)

then p = p′.

Proof Consider a corner, say A (similarly for B and C): we define

CA := {q ∈ H
2 | distA(q) = distA(p)}

DA := {q ∈ H
2 | distA(q) ≤ distA(p)}.

So p ∈ CA ∩ CB ∩ CC ⊆ DA ∩ DB ∩ DC .
Note that if A is not an ideal point, CA is a circle and DA is the disk bounded by CA. If

A is an ideal point, CA the horocycle based at A passing through p and DA is the associated
horoball. In any case, DA is a convex set.

LetD be the unionDA ∪DB ∪DC . SinceD is star-shaped with respect to p and it contains
the three sides, T ⊆ D.

Consider now p′ ∈ T with ⎧⎨
⎩
distA(p′) ≥ distA(p)

distB(p′) ≥ distB(p)

distC (p′) ≥ distC (p)

Then

p′ ∈ T \(D̊A ∪ D̊B ∪ D̊C ).

Since T ⊆ Dwe have p′ ∈ CA ∩CB ∩CC . We show that CA ∩CB ∩CC is only one point, hence
p = p′. Suppose by contradiction that the intersection contains two points. In the Poincaré
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Fig. 10 The point P with the
orthogonal to c

disk model, CA, CB and CC are Euclidean circles, so if they intersect in two points, these
should both belong to the boundary of D. In particular p ∈ T ∩ ∂D ⊆ ∂T . Suppose without
loss of generality p ∈ c; then the circles CA and CB are tangent in p, so they intersect only in
one point. As a consequence, CA ∩ CB ∩ CC can contain at most one point, a contradiction.

��
We can now characterize points with maximum injectivity radius.

Proposition 3.7 Given a point p ∈ S, the following are equivalent:

(1) p is a global maximum point for the injectivity radius,
(2) p is a local maximum point for the injectivity radius,
(3) the three loops at p have the same length 2rp.

Moreover, there are exactly two global maximum points.

Proof (1) ⇒ (2) Clear.
(2) ⇒ (3) By contradiction, suppose only one or two loops have length 2rp . Without loss

of generality, assume lA ≤ lB ≤ lC ; by Lemma 3.5, rp = lA
2 .

If only one loop has length 2rp , then lA < lB ≤ lC . Let us consider the geodesic segment
between p and A. Every point p′ on the prolongation of the geodesic segment after p satisfies
distA(p′) > distA(p). Thus every such p′ has a longer loop around A. By continuity of the
lengths of the loops, for points that are sufficiently close to p the loop around A is still the
shortest. These points have injectivity radius bigger than rp , i.e. p is not a local maximum
point.

If two loops have length 2rp , we have lA = lB < lC ; we choose this time the orthogonal l
from p to the side c (Fig. 10). Every point p′ on l that is further away from c then p satisfies
distA(p′) > distA(p) and distB(p′) > distB(p).

So like before, every point on l in a small enough neighborhood of p has bigger injectivity
radius than rp and again p is not a local maximum point.

(3) ⇒ (1) Suppose lA = lB = lC = 2rp and suppose by contradiction that p isn’t a
global maximum point. Then there exists q with rq > rp . Let ψ be the orientation reversing
isometry that exchanges the two triangles forming S and fixes the sides pointwise. By possibly
replacing q withψ(q), we can assume q belongs to the same triangle as p. Since rq > rp , the
loops at q are strictly longer than the ones at p. So distA(q) > distA(p), distB(q) > distB(p)

and distC (q) > distC (p), in contradiction with Lemma 3.6.
We still have to show that there are exactly two global maximum points. With similar

arguments as the ones above, if two points p and p′ on one triangle are global maximum
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points for the injectivity radius, then p = p′. So we have at most one global maximum point
per triangle. To conclude that there are exactly two global maximum points, it’s enough to
show that a global maximum point cannot belong to a side. Suppose it does and assume,
without loss of generality, p ∈ c. Since the geodesics from A to p and from B to p are
bisectors of α̃ and β̃ respectively, the loops γA and γB meet the sides b and a orthogonally.
So d(p, a) = d(p, b) = rP . Let q and q ′ be the intersections of γC with a and b. Then

2rp = lC > d(p, q) + d(p, q ′) ≥ d(p, a) + d(p, b) = 2r p,

a contradiction. ��

3.1.3 Constructing the system

We can now write a system of equations for a point with maximum injectivity radius. This
will give us an implicit formula for r(S).

Suppose first α, β, γ < π
2 , and let p be a maximum for the injectivity radius. By Propo-

sition 3.7, the three loops γA, γB and γC have length 2rp . Cutting along the three loops we
get four pieces; the three associated to the singular points give us the equations

cos(α) = cosh(rp) sin

(
α̃

2

)

cos(β) = cosh(rp) sin

(
β̃

2

)

cos(γ ) = cosh(rp) sin

(
γ̃

2

)
.

Vice versa, any positive solution to these equations determines the three pieces.
The fourth piece is a triangle, equilateral since the three sides are the three loops. Denote

θ the angle of the triangle. By hyperbolic trigonometry we have

cosh(2rp) = cos(θ) + cos2(θ)

sin2(θ)
,

or equivalently

cosh(rp) =
√

1

2(1 − cos(θ))
.

A positive solution of the above equation determines the triangle. Note that θ 
= 0, because
otherwise two loops would have the same direction in p, which is impossible.

Since p is not a singular point, the angles at it should sum up to 2π . Thus, we obtain the
following system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(α) = cosh(rp) sin
(

α̃
2

)
cos(β) = cosh(rp) sin

(
β̃
2

)
cos(γ ) = cosh(rp) sin

(
γ̃
2

)
cosh(rp) =

√
1

2(1−cos(θ))

α̃ + β̃ + γ̃ + 3θ = 2π

(1)
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We want a solution that satisfies rp > 0, α̃, β̃, γ̃ ∈ (0, π) and θ ∈ (0, π
3 ). If we have such a

solution to the system, we have four pieces that can be glued to form the surface S.
Under the conditions rp > 0, α̃, β̃ ∈ [0, π) and θ ∈ (0, π

3 ), the system (1) is equivalent
to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sin
(

α̃
2

)
= cos(α)

cosh(r p)

sin
(

β̃
2

)
= cos(β)

cosh(r p)

cos(θ) = 1 − 1
2 cosh2(r p)

γ̃ = 2π − α̃ − β̃ − 3θ
Fα,β,γ (rp) = 0

(2)

where

fα,β,γ (x) = 2 cos(γ )x4 − (3x2 − 1)

(√
x2 − cos2(α)

√
x2 − cos2(β) − cos(α) cos(β)

)

− (x2 − 1)
√
4x2 − 1

(
cos(α)

√
x2 − cos2(β) + cos(β)

√
x2 − cos2(α)

)

and Fα,β,γ = fα,β,γ ◦ cosh.
When the triple (α, β, γ ) is fixed and it is clear to which angles we are referring to, we

will simply call f (respectively F) the function fα,β,γ (respectively Fα,β,γ ).

Remark 3.8 The special role of γ in the function fα,β,γ follows from the choice to express
γ̃ in terms of the other angles.

Suppose now that one angle, say α, is a right angle. Then we have only three pieces obtained
by cutting S along the three loops. We have the following system:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cos(β) = cosh(rp) sin
(

β̃
2

)
cos(γ ) = cosh(rp) sin

(
γ̃
2

)
cosh(rp) =

√
1

2(1−cos(θ))

β̃ + γ̃ + 3θ = 2π

(3)

Again, we want a solution that satisfies rp > 0, , β̃, γ̃ ∈ (0, π) and θ ∈ (0, π
3 ).

Remark 3.9 If we ask rp > 0, the equation

cos(α) = cosh(rp) sin

(
α̃

2

)

has α̃ = 0 as solution if and only if α = π
2 .

From the previous remark it follows that we can consider the same system (2) for any surface.
We look for a solution rp > 0, α̃, β̃, γ̃ ∈ [0, π) and θ ∈ (0, π

3 ).

3.1.4 Existence and uniqueness of a solution

We now prove the following:

Proposition 3.10 There exists a unique solution to (2) satisfying rp > 0, α̃, β̃, γ̃ ∈ [0, π)

and θ ∈ (0, π
3 ).
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Proof One can check that f (1) > 0 and limx→+∞ f (x) = −∞. Since f is continuous, it
has a zero in (1,+∞), i.e. F has a zero in (0,+∞).

To prove that the whole system has a solution, we have to find non-negative angles satis-

fying the equations above. Given rp such that F(rp) = 0, there are unique α̃
2 ,

β̃
2 ∈ [0, π/2)

that satisfy

sin

(
α̃

2

)
= cos(α)

cosh(rp)

sin

(
β̃

2

)
= cos(β)

cosh(rp)
.

Since

cos(θ) = 1 − 1

2 cosh2(rp)
∈
(
1

2
, 1

)
,

there is a unique solution θ ∈ (
0, π

3

)
. As

γ̃ = 2π − α̃ − β̃ − 3θ ∈ (−π, 2π),

we get γ̃
2 ∈ (−π

2 , π
)
. Using the equivalence with system (1), we know that

sin

(
γ̃

2

)
= cos(γ )

cosh(rp)
∈ [0, 1),

thus γ̃ /2 ∈ [0, π). So, for every zero of F , we have a unique solution (rp, α̃, β̃, γ̃ , θ) to (2)
with the required conditions.

A solution gives us a radius and two associated centers, one for each triangle.We know, by
Proposition 3.7, that there exist exactly two maximum points on S, which guarantees unicity
of the solution of (2). ��

From the proof above we also see that r(S) is the unique positive solution of F = 0; for
r ≥ 0

F(r) > 0 ⇔ r < r(S)

and

F(r) < 0 ⇔ r > r(S).

In terms of f , for x ≥ 1 we have

f (x) > 0 ⇔ x < cosh(r(S))

and

f (x) < 0 ⇔ x > cosh(r(S)).

3.2 Continuity

In this section we want to show the continuity of r(Sα,β,γ ) with respect to the parameters
α, β and γ .
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Consider the function

F : A × R −→ R

(α, β, γ, y) �−→ F(α, β, γ, y) := Fα,β,γ (y)

where A is the set of possible triples of angles:

A =
{
(α, β, γ ) ∈

[
0,

π

2

]3 : α + β + γ < π

}
.

Note that F is continuous, as one can see from the explicit form of Fα,β,γ (y).

Remark 3.11 Given a triangular surface S and a point p ∈ S with maximum injectivity
radius, we have

area
(
Br(S)(p)

) ≤ area(S) ≤ 2π.

So there is a constant M > 0 such that r(S) ≤ M for all triangular surfaces.

Proposition 3.12 The map

r(S∗) : A → R

(α, β, γ ) �→ r(Sα,β,γ )

is continuous.

Proof To prove the continuity, we show that for every sequence

{(αn, βn, γn)}+∞
n=1 ⊆ A

converging to some triple (α, β, γ ) ∈ A, the limit limn→+∞ r(Sαn ,βn ,γn ) exists and it is
r(Sα,β,γ ).

FromRemark 3.11,we know that {r(Sαn ,βn ,γn )}+∞
n=1 is contained in the compact set [O, M],

so it has an accumulation point y. Then there exists a subsequence

{r(Sαnk ,βnk ,γnk
)}+∞

k=1

converging to y. Since y ≥ 0 and r(Sα,β,γ ) is the only positive zero of Fα,β,γ , we have

y = r(Sα,β,γ ) ⇔ F(α, β, γ, y) = Fα,β,γ (y) = 0.

We can compute F(α, β, γ, y):

F(α, β, γ, y) = F
(

α, β, γ, lim
k→+∞ r(Sαnk ,βnk ,γnk

)

)

= F
(

lim
k→+∞

(
αnk , βnk , γnk , r(Sαnk ,βnk ,γnk

)
))

(�)= lim
k→+∞ F

(
αnk , βnk , γnk , r(Sαnk ,βnk ,γnk

)
)

= lim
k→+∞ Fαnk ,βnk ,γnk

(
r(Sαnk ,βnk ,γnk

)
)

,

where (�) follows from the continuity of F . Now for every k

Fαnk ,βnk ,γnk

(
r(Sαnk ,βnk ,γnk

)
)

= 0,

so the limit is zero too and y = r(Sα,β,γ ).
Thus, every accumulation point of {r(Sαn ,βn ,γn )}+∞

n=1 is r(Sα,β,γ ), so the sequence con-
verges and its limit is r(Sα,β,γ ). ��
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3.3 The minimum among triangular orbifolds

We will call triangular orbifold an orbifold of signature (0, 3). We want to find which one
has smallest maximum injectivity radius.

Notation: we will write (α, β, γ ) ≤ (α′, β ′, γ ′) for α ≤ α′, β ≤ β ′ and γ ≤ γ ′.

Lemma 3.13 If (α, β, γ ) ≤ (α′, β ′, γ ′), then r(Sα,β,γ ) ≥ r(Sα′,β ′,γ ′) with equality if and
only if (α, β, γ ) = (α′, β ′, γ ′).

Proof We pass from (α′, β ′, γ ′) to (α, β, γ ) in the following way

(α′, β ′, γ ′) → (α′, β ′, γ ) → (α′, β, γ ) → (α, β, γ ).

and show that in any passage the radius decreases. Consider the first step. For all x ≥ 0:

Fα′,β ′,γ ′(x) − Fα′,β ′,γ (x) = 2(cos(γ ′) − cos(γ )) cosh(x)4 ≥ 0

because γ ′ ≤ γ . So Fα′,β ′,γ ′(x) ≥ Fα′,β ′,γ (x). Since r(Sα′,β ′,γ ′) (resp. r(Sα′,β ′,γ )) is the
only solution in (0,+∞) of Fα′,β ′,γ ′ (resp. Fα′,β ′,γ ), we have

r(Sα′,β ′,γ ′) ≤ r(Sα′,β ′,γ )

The same argument applied to all the steps shows that

r(Sα,β,γ ) ≥ r(Sα′,β ′,γ ′).

��
Lemma 3.14 Given any triple of angles α, β, γ corresponding to a triangular surface Sα,β,γ ,
(α, β, γ ) is less or equal to (at least) one triple among (π/2, π/3, π/7), (π/2, π/4, π/5)
and (π/3, π/3, π/4).

Proof Suppose α ≥ β ≥ γ . By definition, all the angles are between π/2 and 0. Since
α + β + γ < π , either α = π/2 and β, γ < π/2, or α < π/2.

If α = π/2, the condition α+β+γ < π implies that β ≤ π/3. If β = π/3, then γ should
be at most π/7, hence (α, β, γ ) ≤ (π/2, π/3, π/7). If β < π/3, i.e. β ≤ π/4, then either
β = π/4 and γ ≤ π/5, or γ ≤ β ≤ π/5. In both situations, (α, β, γ ) ≤ (π/2, π/4, π/5).

If α < π/2, then α, β, γ ≤ π/3. Moreover, since α + β + γ < π and γ is the smallest
angle, then γ ≤ π/4. So (α, β, γ ) ≤ (π/3, π/3, π/4), and this ends the proof. ��

From Lemmas 3.13 and 3.14, it follows that it suffices to compare S π
2 , π

3 , π
7
, S π

2 , π
4 , π

5
and

S π
3 , π

3 , π
4
to find the triangular orbifold with smallest maximum injectivity radius.

To prove that S π
2 , π

3 , π
7
is minimal, we first compute its maximum injectivity radius. We

know that cosh
(

r(S π
2 , π

3 , π
7
)
)
is the only solution (bigger than 1) of

Fπ
2 , π

3 , π
7
(x) = 0,

from which we obtain

cosh
(

r(S π
2 , π

3 , π
7
)
)

= √
t0,

where t0 is the unique real solution of(
4 − cos2

(π

7

))
t3 − 5t2 + 2t − 1

4
= 0.
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One can check that

Fπ
2 , π

4 , π
5
(r(S π

2 , π
3 , π

7
)) < 0 and Fπ

3 , π
3 , π

4
(r(S π

2 , π
3 , π

7
)) < 0,

so

r(S π
2 , π

4 , π
5
) > r(S π

2 , π
3 , π

7
) and r(S π

3 , π
3 , π

4
) > r(S π

2 , π
3 , π

7
).

We have proven the following:

Proposition 3.15 For every triangular orbifold S, r(S) ≥ r(S π
2 , π

3 , π
7
), with equality if and

only if S = S π
2 , π

3 , π
7

.

We define ρT to be r
(

S π
2 , π

3 , π
7

)
. So

ρT = arccosh
√

t0

where t0 is the unique real root of(
4 − cos2

(π

7

))
t3 − 5t2 + 2t − 1

4
= 0

and numerically

ρT ≈ 0.187728.

4 Orbifolds of signature (g, n) �= (0, 3)

Our goal now is to show that ρT < r(S) for every non-triangular orbifold S. We will use the
fact that Y-pieces and triangles of large enough area contain disks of radius bigger than ρT .
We show that most of the non-triangular orbifolds contain a Y-piece or a big enough triangle
and we analyze the remaining cases separately.

4.1 Finding Y-pieces

We use the following well known result:

Proposition 4.1 Every open Y-piece contains two closed disks of radius ρY = log 3
2 .

One can check that Fπ
2 , π

3 , π
7
(ρY ) < 0, hence ρY > ρT . As a consequence, if we find an

embedded open Y-piece in a surface S, we know that r(S) > ρT .

Proposition 4.2 Let S be an orbifold of signature (g, n). Then S contains an embedded open
Y-piece if and only if g > 0 and 3g + n ≥ 5 or g = 0 and n ≥ 6.

Proof [⇒] To have an embedded Y-piece, we need:
• if g > 0, at least two curves in a pants decomposition;
• if g = 0, at least three curves in a pants decomposition (sincewe cannot embed a one-holed
torus).

Via Proposition 2.4, the number of curves in a pants decomposition is 3g − 3+ n, so we get
the stated conditions.

[⇐] Consider S\� as topological surface. We say that two pants decompositions P1 and
P2 are joined by an elementary move (see [9]) if P2 can be obtained from P1 by removing a
single curve and replacing it by a curve that intersects it minimally (Fig. 11).
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Fig. 11 Two pants decompositions joined by an elementary move

Fig. 12 An elementary move producing a vertex of degree 3, for g = 1

Given a pants decomposition, we can construct its dual graph G (see [3]): vertices corre-
spond to pairs of pants and there is an edge between two vertices if the corresponding pairs
of pants share a boundary curve. In particular, there is a loop at a vertex if two boundary
curves of a pair of pants are glued to each other in the surface. The number of edges of G is
the number of curves in a pants decomposition, i.e. 3g − 3 + n, and every vertex in G has
degree at most 3. Suppose v ∈ G is a vertex of degree 3 and consider the associated pair of
pants P . Passing to the geodesic representatives (via Propositions 2.2, 2.3) of the boundary
curves of P , we get a Y-piece, whose interior is embedded in S.

So, let us consider a surface S satisfying g > 0 and 3g + n ≥ 5 or g = 0 and n ≥ 6, a
pants decomposition on it and its dual graph.

If g ≥ 2, the graph has at least two circuits (that could be loops). The circuits are connected
to each other, since S is connected. So there is a vertex v on one of the circuits connected
to a vertex outside of the circuit. Thus the degree of v is 3 and, as seen before, we get an
embedded open Y-piece.

If g = 1, either the graph is a circuit with 3g − 3 + n ≥ 2 edges or it contains a circuit
as a proper subgraph. In the first case, we can choose any edge and perform an elementary
move on it to obtain a vertex of degree 3 (Fig. 12). In the second case, there is a vertex v on
the circuit connected with a vertex outside the circuit, hence deg(v) = 3. Given a vertex of
degree 3 we have, as before, a Y-piece.

If g = 0, the graph is a tree. If there is no vertex of degree three, the graph is a line with at
least 3 edges. Again we can perform an elementary move on an edge between two vertices
of degree 2 and get a vertex of degree 3, so a Y-piece in S. ��
Corollary 4.3 Every surface S of genus g with n singular points such that g > 0 and
3g + n ≥ 5 or g = 0 and n ≥ 6 satisfies r(S) > ρT .

We are left with spheres with four or five singular points and tori with one singular point.

4.2 Finding triangles in orbifolds of signature (0, 4) or (0, 5)

Let T be a hyperbolic triangle and r(T ) the radius of its inscribed disk, as in [2, pp. 151–153].
We know that

tanh(r(T )) ≥ 1

2
sin

(
1

2
area(T )

)
.
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Fig. 13 A way to cut a
5-punctured sphere into triangles

It turns out that if area(T ) ≥ π
4 , we have

Fπ
2 , π

3 , π
7

(
arctanh

(
1

2
sin

(
1

2
area(T )

)))
< 0,

so r(T ) > ρT .
Given a sphere S with n singular points, n = 4 or 5, we will look for an embedded triangle

of area at least π
4 . Let

2π
p1

, . . . 2πpn
be the angles at the singular points, where pi ≥ 2 is an

integer or pi = ∞ (i.e. the point is a cusp). Suppose p1 ≤ p2 ≤ · · · ≤ pn . The area of the
surface is

area(S) = (n − 2)2π −
n∑

i=1

2π

pi
.

If we cut the surface into 2(n−2) triangles (by cutting it first into two n-gons and then cutting
each polygon into n − 2 triangles), the average area of the triangles is

area(S)

2(n − 2)
= π

(
1− 1

n − 2

n∑
i=1

1

pi

)
.

This average is at least π
4 unless

(1) n = 5, p1 = p2 = p3 = p4 = 2 and p5 = 2 or 3, or
(2) n = 4, p1 = p2 = p3 = 2 and p4 < ∞ or p1 = p2 = 2, p3 = 3 and p4 ≤ 5.

So, if we are not in case (1) or (2), S contains a triangle with area at least π
4 , hence r(S) > ρT .

In case (1), cut the surface along geodesics as in Fig. 13.
We obtain four triangles (if we cut open along a geodesic starting from a cone point of

order two, we obtain an angle of π , so a side of a triangle). The average area of those triangles
is

area(S)

4
=

6π −
∑5

i=1

2π

pi

4
≥ π

4
,

so there is a triangle of area at least π
4 , as desired.

In case (2), cut the surface along geodesics as in Fig. 14.
We have now two triangles and the average area is

area(S)

2
=

4π −
∑4

i=1

2π

pi

2
≥ π − π

p3
− π

p4
.
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Fig. 14 A way to cut a
4-punctured sphere into triangles

If p3 ≥ 3 or p4 ≥ 4, this average is at least π
4 and we have a disk of large enough radius. The

only case that is left is p1 = p2 = p3 = 2 and p4 = 3, which we will consider separately.

4.3 Two special cases

First special case: let S be a sphere with three cone points of order 2 and one of order 3. Let
S̃ π

2 , π
3 , π

7
be S π

2 , π
3 , π

7
cut open along the side between the cone points of order 2 and 7. We

want to embed S̃ π
2 , π

3 , π
7
into S.

We decompose S into two isometric quadrilaterals by cutting along four geodesics between
pairs of cone points. Each of the two quadrilaterals has three right angles and one angle π

3 .
We call λ and μ the two sides which form the angle π

3 and l (resp. m) the side opposite to λ

(resp. μ). Using hyperbolic trigonometry, one can express λ and μ as functions of l and it is
straightforward from the obtained expressions to deduce that λ,μ >

log 3
2 . Without loss of

generality, assume λ ≥ μ. Since

tanh(λ) tanh(μ) = 1

2
,

we have

λ ≥ arctanh

(
1√
2

)
.

It is possible to check that

log 3

2
> c

arctanh

(
1√
2

)
> a

where a, b and c are the sides opposite to π
2 ,

π
3 and

π
7 in one of the triangles forming S π

2 , π
3 , π

7
.

So μ > c and λ > a and we can embed the triangle in the quadrilateral by placing B on the
cone point of order three, c on μ and a on λ (Fig. 15).

By embedding in the same way another copy of the triangle in the other quadrilateral, we
obtain the embedding of S̃ π

2 , π
3 , π

7
in S.

Given a point on S π
2 , π

3 , π
7
that realizes the maximum injectivity radius, consider the corre-

sponding point p on S̃ π
2 , π

3 , π
7

⊆ S. We know that BρT (p) ∩ S̃ π
2 , π

3 , π
7
is embedded in S̃ π

2 , π
3 , π

7
,

hence in S. Note that the distance of p to the order two points is bigger than d(p, m) or
d(p, l). So it’s enough to prove that the distances d(p, l) and d(p, m) are strictly bigger than
ρT to deduce that BρT (p) is embedded in S (Fig. 16).
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Fig. 15 The embedding of the
triangle in the quadrilateral

Fig. 16 The disk in the surface S

We have:

μ − c >
log 3

2
− c

and Fπ
2 , π

3 , π
7

(
log 3
2 − c

)
< 0, hence μ − c >

log 3
2 − c > ρT . Similarly

λ − a ≥ arctanh

(
1√
2

)
− a

and

Fπ
2 , π

3 , π
7

(
arctanh

(
1√
2)

)
− a

)
< 0,

so

λ − a ≥ arctanh

(
1√
2

)
− a > ρT .

Since d(p, l) > μ − c > ρT and d(p, m) > λ − a > ρT , BρT (p) is embedded in S.
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Fig. 17 The pentagonP with the
embedded right-angled pentagon

This shows that r(S) ≥ ρT . Actually, since d(p, l) and d(p, m) are strictly bigger than
ρT , we can choose a point p′ in a small neighborhood of p such that⎧⎨

⎩
d(p′, l) > ρT

d(p′, m) > ρT

d(p′, B) > d(p, B),

where B is the cone point of order 3. Since we are increasing the distance from B, with the
same argument used for triangular surfaces we get that rp′ > rp = ρT . So r(S) > ρT .

Second special case: tori with exactly one singular point. We will use the following result
[10]:

Proposition 4.4 Let P be a right-angled pentagon and P̊ its interior. Then P̊ contains a

close disk of radius ρP = 1

2
log

(
9 + 4

√
2

7

)
.

Note that ρP > ρT , as Fπ
2 , π

3 , π
7
(ρP ) < 0. So again, the idea is to find a right-angled

pentagon in any torus T with a singular point, to deduce that r(T) > ρT . We proceed as
follows.

First of all, we choose a simple closed geodesic on T and we cut open along it; we obtain
a V-piece. Following [5], this can be divided into two isometric pentagons with four right
angles and an angle π

n or 0.

Lemma 4.5 Let P be a pentagon with four right angles and an angle α ∈ [0, π
2 ]. Then P

contains a right-angled pentagon.

Proof If α = π
2 , the result is trivial. Let us suppose that α < π

2 .
Label the sides of the pentagon as in Fig. 17 and consider h, the common orthogonal of

l1 and l4. The pentagon bounded by l1, l2, l3, l4 and h is a right-angled pentagon contained
in P . ��

With this result we can get the following.

Lemma 4.6 Let T be a torus with a singular point. Then r(T) > ρT .
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Proof As we described before, we can find in T a pentagon with four right angles and an
angle α ∈ [0, π

2 ]. Via Lemma 4.5 this pentagon contains a right-angled pentagon, which
contains a disk of radius

ρP > ρT

by Proposition 4.4. So

r(T) ≥ ρP > ρT .

��

5 The minimum maximum injectivity radius for orbifolds

Collecting all the results of the previous sections, we get our main result.

Theorem 5.1 For every orbifold S, the maximum injectivity radius satisfies r(S) ≥ ρT and
we have equality if and only if S is the triangular surface S π

2 , π
3 , π

7
.

Proof Let S be an orbifold of signature (g, n); if it has positive genus and 3g − 3 ≥ 5 or
if its genus is zero and it has at least six singular points, r(S) > ρT by Corollary 4.3. By
the results of Sects. 4.2 and 4.3 the same holds for genus zero or one and (g, n) 
= (0, 3).
For (g, n) = (0, 3), by Proposition 3.15 we have r(S) ≥ ρT with equality if and only if
S = S π

2 , π
3 , π

7
. ��

Given a hyperbolic surface S, we define ρ(S) to be the supremum of all ρ such that there
exists p ∈ S with embedded and pairwise disjoint balls

{Bρ(ϕ(p))}ϕ∈Aut+(S).

As a corollary of the previous theorem, we give a sharp lower bound to ρ(S), for S ∈ S.

Corollary 5.2 For every hyperbolic surface S, ρ(S) ≥ ρT , with equality if and only if S is
a Hurwitz surface.

Proof For any surface S, we can consider the quotient S/Aut+(S) and the canonical projec-
tion π : S → S/Aut+(S). Note that for every p ∈ S, the balls

{Bρ(ϕ(p))}ϕ∈Aut+(S)

are pairwise disjoint if and only if ρ ≤ rπ(p). To maximize the radius ρ, we choose q ∈
S/Aut+(S) such that rq = r(S/Aut+(S)) and p ∈ π−1(q). S is a Hurwitz surface if and
only if S/Aut+(S) = S π

2 , π
3 , π

7
and the result follows. ��
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Appendix

In this Appendix we use the same techniques of the rest of the article to give a new proof of
the following theorem by Yamada:
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Theorem 5.3 (Yamada [12]) For every hyperbolic surface S

r(S) ≥ ρS = arcsinh(2/
√
3)

with equality if and only if S is the thrice-punctured sphere.

Note that another proof of this theorem has been given by Gendulphe in [8].
To simplify the notation, given a simple closed geodesic α, we will denote its length

simply by α (instead of l(α)).

Remark 5.4 Wewill use the collar lemma (cf. [3]) and in particular the fact that if two simple
closed geodesics α and β intersect n times, then

α ≥ 2nw(β)

where w(β) = arcsinh
(

1
sinh(β/2)

)
is half the width of the collar of β.

Proof Fix p ∈ S with rp = r(S); the disk Br p (p) determines at least two loops based at
p of length 2rp . If there are exactly two loops of length 2rp such that either at least one is
homotopic to a cusp, or their geodesic representatives do not intersect, we are in the situation
of Fig. 18, where α, β or γ can be cusps:

By choosing a point q in a small enough neighborhood of p on the orthogonal to the third
curve, if γ is not a cusps, or on the geodesic from p to γ , if γ is a cusp, we increase the
lengths of the two loops around α and β and by continuity all other loops are still longer. So
rq > rp , a contradiction. ��
We have then two possibilities:

(a) there are two loops of length 2rp whose geodesic representatives intersect each other
once, or

(b) there are at least three loops such that, if two are not homotopic to cusps, their geodesic
representatives do not intersect.

Case (a) consider three loops of length 2rp; they determine a 3- or a 4-holed sphere.
If there exists three loops determining a 3-holed sphere, we can write equations for p.

Denote by α, β and γ the three boundary curves or cusps, by α̃, β̃ and γ̃ the angles of the
three loops at p and by θ the angle of the (equilateral) triangle whose sides are the three
loops (see Fig. 19).

We have: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosh
(

α
2

) = cosh(rp) sin
(

α̃
2

)
cosh

(
β
2

)
= cosh(rp) sin

(
β̃
2

)
cosh

( γ
2

) = cosh(rp) sin
(

γ̃
2

)
cos(θ) = 1− 1

2 cosh2(r p)

α̃ + β̃ + γ̃ + 3θ = 2π

(4)

Fig. 18 The point p with the two
loops
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Fig. 19 Three loops determining
a Y-piece

Fig. 20 Four loops in a
four-holed sphere

Using rp < ρS , we get

α̃, b̃, γ̃ > 2 arcsin

(√
3

7

)

and

θ > arccos

(
11

14

)
,

so

α̃ + β̃ + γ̃ + 3θ > 2π

which is a contradiction. Moreover, rp = ρS is a solution if and only if α = β = γ = 0, i.e.
if we are on a thrice-punctured sphere. So in this case, r(S) ≥ ρS , with equality if and only
if S is a thrice-punctured sphere.

If no three loops determine a 3-holed sphere, fix three loops (with corresponding geodesic
representatives or cusps α, β and γ ) and the associated four-holed sphere. Denote by δ the
fourth boundary curve or cusp (Fig. 20). The loop based at p and homotopic to δ has length
at least 2rp . We can again write down equations satisfied by the pieces we obtain by cutting
the four-holed sphere along the loops.

If we assume that rp ≤ ρS , we get (similarly to before)

α̃, β̃, γ̃ ≥ 2 arcsin

(√
3

7

)
.

Consider the quadrilateral with the four loops as sides; three sides have the same length 2rp

and the fourth has length at least 2rp . The two diagonals of the quadrilateral are longer than
2rp , otherwise we have three loops of length 2rp determining a 3-holed sphere. Let’s denote
the angles as in Fig. 21.

By hyperbolic trigonometry we get

ϕ1, ϕ2 > 2 arcsin

( √
3

2
√
7

)
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Fig. 21 The quadrilateral with
the four loops as sides

and

ϕ3, ϕ4 > arcsin

( √
3

2
√
7

)
.

So

α̃ + b̃ + γ̃ + δ̃ + 2θ + 2ϕ > 2π,

a contradiction. Thus r(S) > ρS .

Case (b) assume rp ≤ ρS . Consider the one-holed torus determined by the geodesic repre-
sentatives α and β of the two loops of length 2rp . Denote its boundary curve or cusp by γ .

Since α, β ≤ 2ρS , by the collar lemma we have α, β ≥ 2 arcsinh
(√

3
2

)
.

Cut along α and denote by d the shortest path between the two copies of α. We have

(again, by the collar lemma) 2 arcsinh
(√

3
2

)
≤ d ≤ β ≤ 2ρS . If γ is not a cusp, then

cosh(γ /2) = sinh2(α/2) cosh(d) − cosh2(α/2)

= sinh2(α/2)(cosh(d) − 1) + 1.

So 17
8 ≤ cosh(γ ) ≤ 41

9 and the width w(γ ) of the collar around γ satisfies

w(γ ) > log(5/4) > log(2
√
3).

Remark 5.5 By hyperbolic trigonometry, if a point p has distance at least log(2/
√
3) from

the collar around a curve α < 2ρS , then the loop based at p and homotopic to α is at least
2ρS .

If γ > 2ρS , fix q ∈ γ . Consider a loop based at q of length 2rq and its geodesic representative
δ. There are three possibilities:

• if δ ∩ γ = ∅, by Remark 5.5 we get 2rq = δ > 2ρS ;
• if δ ∩ γ 
= ∅ and δ 
= γ , then δ crosses the one-holed torus, so it crosses α or β at least
once and γ at least twice. Thus

2rq = δ ≥ 2 arcsinh(
√
3/2) + 4 log(5/4) > 2ρS;

• if δ = γ , then rq > ρS .

In all cases, rq > ρS > rq , a contradiction.
Suppose then that γ is a curve with γ ≤ 2ρS . One can show that in these conditions

there exists a solution to the system (4), determining a point q with loops of length � >

2 arccosh(
√
37
3 ) > 2ρS . Moreover cosh(d(q, α)) = sinh(�/2)

sinh(α/2) > ρS . So there exists r > ρS

such that all loops based at q have length at least 2r , thus again r(S) > rp , a contradiction.
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If γ is a cusp, cut along α and consider a point q which is equidistant from the two copies
of α and at distance log(2/

√
3)+ ε (for ε > 0 small) from the horoball of area 2. By explicit

computations, rq > ρS > rp , contradiction again.
So in case (b), r(S) > ρS . ��
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