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We describe an implementation of the GW+DMFT method and apply it to calculate the electronic

structure of SrVO3. Our results show that there is a strong competition between the frequency-

dependent Hubbard U and the non-local self-energy via the GW approximation. It is crucial to take

into account these two aspects in order to obtain an accurate and coherent picture of the quasi-particle

band structure and satellite features of SrVO3. Our main conclusion is that the GW+DMFT results

for SrVO3 are not attainable within the GW approximation or the LDA+DMFT scheme.
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1. Introduction

The last few decades have witnessed a large amount of newly discovered and synthesized mate-

rials with many intriguing properties. A particular class of these materials are known as strongly cor-

related, meaning that conventional theories based on the one-electron or mean-field picture are found

to be far from sufficient in describing their electronic structure. Perhaps the most well known exam-

ple of this class of materials is the high-temperature superconducting copper oxides. The electronic

structure of these materials is characterized by a set of partially filled narrow bands usually originat-

ing from 3d or 4f orbitals embedded in relatively broad bands which are well described within the

one-particle picture. The narrow bands on the other hand pose a great theoretical difficulty because

the Coulomb repulsion among electrons residing in those bands becomes comparable to or larger than

the kinetic energy as measured by the band width. This leads to a failure of the mean-field picture

and necessitates a proper treatment of the Coulomb repulsion. The usual approach to describe the

electronic structure of these systems is to resort to model Hamiltonians, among the most famous are

the Hubbard model and the Anderson impurity model. These models, however, require input param-

eters in the form of tight-binding hopping parameters and the Hubbard U. Describing the electronic

structure of correlated materials fully from first principles is one of the great challenges in modern

condensed matter physics.

The dynamical mean-field theory (DMFT) [1–3] in combination with the local density approxi-

mation (LDA), known as the LDA+DMFT scheme [4–7], provides in many cases a realistic descrip-

tion of the electronic structure and spectral functions of correlated materials. This method, however,

suffers from a number of conceptual problems. One of them is the double-counting problem that arises

from the difficulty in subtracting the contribution of the LDA exchange-correlation potential in the
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correlated subspace. Another shortcoming is the DMFT assumption that the self-energy is local. A re-

cent study based on the GW approximation (GWA) [8–11] indicates that even in correlated materials,

such as SrVO3, the non-local self-energy has a non-negligible influence on the electronic structure.

In particular, it was found that the non-local self-energy widens the bandwidth significantly [12].

In this article we describe a procedure for carrying out calculations of the electronic structure

of correlated materials from first principles. The procedure starts from selecting a subspace of the

complete one-particle Hilbert space believed to be most relevant for the low-energy electronic struc-

ture. A downfolding method is then applied to determine the energy-dependent effective interaction

among electrons residing in the chosen subspace. The chosen one-particle subspace together with

the effective interaction provides a low-energy model which is solved using the DMFT method. The

self-energy of the rest of the subspace is approximated within the GWA which is then combined with

the impurity or DMFT self-energy leading to the GW+DMFT self-energy [13], after removing the

double-counting term. The GW+DMFT self-energy is then free from double counting and preserves

the non-locality or k-dependence of the GW self-energy.

The GW+DMFT scheme is illustrated by applying it to the much studied cubic perovskite SrVO3,

generally considered to be a prototype of correlated metals, as is evident from the large number of

both experimental [14–22] and theoretical works [23–31], There are two main discrepancies of the

LDA electronic structure when compared with experiment. Experimentally, a substantial t2g band

narrowing by a factor of two compared with the LDA bandwidth is observed [20]. In addition, there

are satellite features a few eV below and above the Fermi level, interpreted as the lower and upper

Hubbard bands [14–16, 20]. Intriguing kinks at low energies are also observed in photoemission ex-

periments [22]. We will show that the GW+DMFT scheme is able to provide a consistent description

of the electronic structure of SrVO3 in agreement with the experimentally observed features.

2. Theory

2.1 Constrained RPA
We may divide the total polarisation of the system into the polarisation within the model sub-

space, which we shall call Pd, and the rest of the polarisation, which we shall call Pr. Accordingly

P = Pd + Pr. (1)

The meaning of Pd and Pr is illustrated in Fig. 1. In the example of SrVO3 in Fig. 2 the red curve

correspond to the subspace of our model (d subspace) and we wish to determine the Hubbard U or the

effective interaction among electrons residing in this subspace corresponding to vanadium t2g band.

The fully screened Coulomb interaction is obtained by solving the following equation

W = v + vPW. (2)

This equation can be rewritten as follows

W = Wr +WrPdW, (3)

where Wr fulfils

Wr = v + vPrWr. (4)

It can be readily verified by substituting (4) into (3) that (2) is recovered. We observe that the identity

in Eq. (3) allows us to interpret Wr as the effective interaction among electrons residing in the model

subspace or the Hubbard U [32] because when this effective interaction is screened further in the

model by Pd we obtain the fully screened interaction:
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Fig. 1. A schematic picture depicting the meaning of Pd and Pr. While Pd is confined to the transitions

within the d subspace, Pr may contain transitions between the d and r subspaces.

U(r, r′;ω) = Wr(r, r′;ω). (5)

As a consequence of retarded screening effects the Hubbard U is frequency dependent. A formal

derivation of the Hubbard U from the many-electron Hamiltonian may be found in [33].

Eq. (4) is exact but in practice we approximate Pr = P−Pd within the RPA, which takes the form

P(r, r′;ω) =

occ∑
kn

unocc∑
k′n′

{
ψ∗kn(r)ψk′n′(r)ψ∗k′n′(r

′)ψkn(r′)
ω − εk′n′ + εkn + iδ

− ψkn(r)ψ∗k′n′(r)ψk′n′(r′)ψ∗kn(r′)
ω + εk′n′ − εkn − iδ

}
, (6)

where {ψkn, εkn} are usually chosen to be the Kohn-Sham eigenfunctions and eigenvalues and k =
(k, σ) is a combined index for the k-vector and the spin σ. For systems without spin-flipping pro-

cesses, k and k′ evidently have the same spin. Pd has exactly the same form as in Eq. (6) but with the

bands n and n′ restricted to the d subspace. We note that Pr contains not only transitions inside the r
subspace but also transitions between the d and r subspaces as illustrated in Fig. 1.

2.2 The GW+DMFT method
Although the GW+DMFT method was proposed more than a decade ago in Ref. [13] only very

recently its implementation became possible. The reason for this is due to the appearance of energy-

dependent Hubbard U in the impurity problem and only a few years ago an algorithm based on

the continuous-time quantum Monte Carlo (CT-QMC) technique was invented to solve an impu-

rity problem with dynamic U [34–39] which has made a proper implementation of the GW+DMFT

scheme possible. Our calculations are based on the strong-coupling CT-QMC technique explained in

Refs. [37] and [38].

The formalism of the GW+DMFT scheme is described in detail in an earlier publication [13].

Here we describe a practical implementation of the scheme. In the GW+DMFT scheme the total

self-energy is given by the sum of the GW self-energy and the DMFT impurity self-energy with a
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Fig. 2. The LDA density of states of SrVO3. The red curve corresponds to the vanadium t2g band.

Fig. 3. The Wannier orbital corresponding to the vanadium 3d orbitals of t2g character.

double-counting correction:

Σ̂(ω) =
∑
knn′

|ψkn〉ΣGW
nn′ (k, ω) 〈ψkn′ |

+
∑
mm′

|ϕm〉
[
Σ

imp
mm′(ω) − ΣDC

mm′(ω)
]
〈ϕm′ | , (7)

where the {ψkn} are the LDA Bloch states and the {ϕm} are the Wannier orbitals constructed from the

vanadium t2g bands. illustrated in Fig.3. The Wannier function centered at R is calculated as

ϕmR =
1

Nk

∑
kμ

e−ik·RS μm(k)ψμk(r) (8)
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where S (k) is the transformation matrix that yields the maximally localized Wannier orbitals accord-

ing to the prescription of Marzari and Vanderbilt [40,41]. We employ a recently proposed symmetry-

constrained routine [42] to construct symmetry-adapted Wannier functions using a customized ver-

sion of the Wannier90 library [43].The GW self-energy and the impurity self-energy are calculated

separately, the latter is obtained from the LDA+DMFT scheme with dynamic U [35–37, 44]. The

double-counting correction ΣDC is the contribution of ΣGW to the onsite self-energy which is already

contained in the impurity self-energy Σimp calculated within the DMFT with dynamic U. The explicit

formula for the double-counting correction is

ΣDC
mm′(ω) = i

∑
m1m2⊂t2g

∫
dω′

2π
Gloc

m1m2
(ω + ω′) × W loc

mm1,m2m′(ω′), (9)

where

Gloc(ω) =
∑

k
S †(k)G(k, ω)S (k) (10)

is the onsite projection of the lattice Green function of the t2g subspace. In Eq. (9), Wloc is not the

local part of the usual screened Coulomb interaction, but it is the screened interaction corresponding

to the impurity problem in DMFT with the frequency-dependent interaction. The matrix elements of

W loc are

W loc
mm1,m2m′(ω) =

∫
d3rd3r′ϕ∗m(r)ϕm1

(r)W loc(r, r′;ω)

× ϕ∗m2
(r′)ϕm′(r′), (11)

and W loc is obtained from

W loc(ω) =
[
1 − U loc(ω)Ploc(ω)

]−1
U loc(ω). (12)

Here, U loc(ω) is the onsite Hubbard U of the impurity problem calculated using the constrained

random-phase approximation (cRPA) [32] and Ploc = −iGlocGloc is the local polarization for each

spin channel:

Ploc(r, r′;ω) = −i
∫

dω′

2π
Gloc(r, r′;ω + ω′)Gloc(r′, r;ω′), (13)

and Gloc is given in Eq. (10).

The quasi-particle band structure is obtained from the solution of

Ekn − εkn − ReΣnn(k, Ekn) = 0, (14)

where Σnn(k, ω) = 〈ψkn|Σ̂(ω)|ψkn〉 and ˆΣ(ω) is given in Eq. (7). In calculating the quasiparticle en-

ergies, the shift of the Fermi level is taken into account according to Hedin’s prescription [45]. In

a perturbative non self-consistent approach like G0W0, the mismatch of the Fermi energy between

the initial and final states leads to unphysical broadening of quasiparticle peaks near the new Fermi

energy. The prescription to solve this problem proposed by Hedin is to calculate the spectral function

as [45]

A(ω) =
1

π

∑
k

∑
n

|ImΣn(k, ω − Δ)|
[ω − εkn − ReΣn(k, ω − Δ)]2 + [ImΣn(k, ω − Δ)]2

. (15)

The energy shift Δ is given by
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Δ = EF − εF

where εF is the original LDA Fermi level and EF is the new quasiparticle Fermi level. The shift Δ is

determined self-consistently such that EF obtained from

∫ EF

−∞
dωA(ω) = electron number

reproduces the starting Δ. The shift Δ makes sure that for ω = EF we have

ImΣn(k, EF − Δ) = ImΣn(k, εF) = 0,

as it should be. Without the shift, ImΣ calculated at the new Fermi level would not in general be zero

and lead to a negative spectral function. In practice, we obtain Δ by calculating the self-energy shift

for a state kn closest to εF :

Δ = ReΣn(k, Ekn − Δ) = ReΣn(k, εkn). (16)

In this work, the LDA and GW calculations have been performed using the full-potential lin-

earized augmented plane-wave codes FLEUR and SPEX [46, 47].

3. Application to SrVO3

3.1 Quasi-particle band structure
We first consider the quasiparticle band dispersion. Angle-resolved photoemission (ARPES)

measurements confirms the presence of well-defined quasi-particle band dispersion associated with

t2g symmetry and a broad almost structureless incoherent feature centered at −1.5 eV below the Fermi

level [20]. From the slope of the band dispersion around the Fermi level, an estimated mass enhance-

ment by a factor of 2 is found [20], consistent with the electronic specific-heat coefficient γ within

the Fermi-liquid picture [15].

We compare in Fig. 4 the quasi-particle band structure obtained from several approaches. The

bandwidth within LDA, GW, LDA+DMFT, and GW+DMFT are respectively 2.6, 2.1, 0.9, and 1.2

eV. It is well known that from the measured effective mass [15, 20], the LDA band width is a factor

of two too large and one may then infer that the experimental bandwidth should be approximately

1.3 eV. The GW band width of 2.1 eV is significantly narrower than that of the LDA but still much

too wide in comparison with the estimated experimental value. This result is in agreement with a

recent work by Gatti and Guzzo [48] who also demonstrate that self-consistency within the so-called

quasiparticle self-consistent GW (QSGW) scheme hardly alters the one-shot result and hence is not

important in the case of SrVO3. The bottom of the valence band within the GWA is found to be at 0.9

eV whereas experimentally it is about 0.6 eV.

Interestingly, the LDA+DMFT with dynamic U yields a quasi-particle bandwidth of 0.9 eV,

which is too narrow compared with experiment. This result is well anticipated since the nonlocal

self-energy, missing in the LDA+DMFT scheme, tends to widen the band, as pointed out in an earlier

work [12]. With the inclusion of nonlocal self-energy within the GW+DMFT scheme, the bandwidth

increases to 1.2 eV, in very close agreement with the experimental result. From ARPES data [20] the

bottom of the occupied band is -0.6 eV, which is in good agreement with the GW+DMFT whereas

the corresponding values for LDA, GW, and LDA+DMFT are respectively -1.0, -0.9, and -0.4 eV, as

can be seen in Fig. 4. Unfortunately little experimental data is available for the unoccupied part of the

band.

Intriguing kink features in the band dispersion were recently observed: a sharp kink at ∼ 60 meV,

likely of phonon origin, and a broad high-energy kink at ∼ 0.3 eV below the Fermi level [22]. Since
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Fig. 4. (Color online) Upper panel: the quasi-particle band structure of SrVO3 within LDA, GW,

LDA+DMFT, and GW+DMFT. Lower panel: To emphasize the kink structure near Γ, the GW+DMFT band is

plotted against a renormalized GW band. The figure is taken from Ref. [53].

SrVO3 is a Pauli-paramagnetic metal without any signature of magnetic fluctuations, the presence of a

kink at high energy suggests a mechanism which is not related to spin fluctuations and it is explained

as purely of electronic origin [27]. We also observe very weak but visible broad kinks between −0.1
and −0.4 eV in the vicinity of the Γ-point in the GW+DMFT band structure as can be seen in the

lower panel of Fig. 4, where one of the GW+DMFT bands is plotted against a renormalized GW
band, as was similarly done in Ref. [27]. The broad kinks can be recognized as deviations from a

parabolic band. The origin of these kinks may be traced back to the deviation from a linear behavior

of ReΣ between -0.5 and +0.5 eV.

3.2 Spectral functions
Angle-resolved photoemission (ARPES) measurements confirms the presence of a broad and

almost structureless incoherent feature centered at −1.5 eV below the Fermi level [20], which may

be interpreted as the lower Hubbard band. Inverse photoemission data reveals a satellite feature at

around 2.5 eV above the Fermi level that may correspond to the upper Hubbard band.

The LDA density of states naturally does not show such satellite features since they originate from

many-electron interactions. The GW spectral function on the other hand does contain satellite features

but at too high binding energy, a well-known problem associated with the GWA. While the screened

interaction contains the plasmon-like excitation at the right energy, the imaginary part of the GW
self-energy places the peak at too high energy. The problem may be traced back to the GWA being

first-order in the screened interaction W. The GW+DMFT spectra is shown in Fig. 5 where a broad

lower Hubbard band is found centered at -1.5 eV, in agreement with a recent photoemission data by

Yoshida et al [20]. No conclusive data are available for the upper Hubbard band but our theoretical

calculation predicts its position at about 2 eV above the Fermi level. Calculations of the spectral

functions within the GW+DMFT scheme for SrVO3 have also been performed in Refs. [49, 50].
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3.3 Static vs dynamic U.
An issue which is only recently possible to address is the role of frequency dependence of the

Hubbard U. It can be formally shown that downfolding the full many-body Hamiltonian to a low-

energy model results in a frequency-dependent effective interaction [33]. The major effect of the

dynamic U is the reduction in the quasi-particle weight or the Z-factor, as can be inferred from the

slope of the self-energy along the Matsubara-axis at ω = 0 [Z ≈ 1/(1 − ImΣ(iω0)/ω0)], which is

larger in the dynamic than the static U case. This reduction in the quasi-particle weight is due to the

coupling to the high-energy plasmon excitations, missing in the static U calculation. This effect was

first observed and discussed in the case of transition metal nickel within the GWA [32]. This increase

in the slope of ReΣ or decrease in Z can be understood by writing the correlation part of ReΣ as a

Hilbert transform:

ReΣ(ω) =
1

π

∫
dω′

| ImΣ(ω′)|
ω − ω′ .

The slope is given by

∂ReΣ

∂ω
= −1

π

∫
dω′

| ImΣ(ω′)|
(ω − ω′)2

.

Since the integrand is positive it is quite clear that additional weight in ImΣ due to the coupling to

plasmon excitations will increase the magnitude of the slope around the Fermi level and decrease the

Z-factor.

The reduction in the Z-factor due to the dynamic U results in a band narrowing. This band nar-

rowing has been interpreted in a previous work [51] as the result of a two-step process: first the

high-energy part of U renormalizes the one-particle LDA band via the self-energy and then the re-

maining low-energy U, which is approximately the static U, renormalizes these bands further, so that

the final bandwidth is significantly narrower than the one obtained from just the static U. It was then

argued that in order to obtain the same band narrowing as in the full calculation with dynamic U,

the starting bandwidth should be reduced if the static cRPA U is to be used [51]. Indeed, to achieve

the experimentally observed band narrowing a larger static U (∼ 5 eV), compared with the static

cRPA U of 3.4 eV, is needed in DMFT calculations. The larger static U however leads to an inconsis-

tency: while the band narrowing or the mass enhancement is correct, the separation of the Hubbard

bands becomes too large [26, 49]. For example, the lower Hubbard band came out too low at ∼ −2.5
eV [26, 27].

The importance of dynamic U was also demonstrated recently in a study of the electronic struc-

ture of the superconductor iron-based pnictide BaFe2As2, in which the fequency dependence of U
substantially modified the behavior of the self-energy around the Fermi level yielding an almost

square-root like dependence of ImΣ(iωn) along the Matsubara axis, in strong deviation from the

linear dependence expected from the Fermi liquid theory [44].

4. Summary

In summary, we have performed calculations of the quasi-particle band structure as well as the

spectral function of SrVO3 within a simple version of GW+DMFT. While the bottom of the occupied

GW band is too deep (−0.9 eV) and the DMFT with dynamic U too high (−0.4 eV), the GW+DMFT

scheme yields a value of -0.6 eV, which is consistent with experimental data. From the point of view

of the GWA the result illustrates the importance of onsite vertex corrections whereas from the DMFT

point of view it demonstrates the significance of the non-local self-energy. A well-defined upper

Hubbard band centered at around 2 eV is obtained whereas a rather broad incoherent feature is found

below the quasi-particle peak centered at around -1.5 eV.
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Fig. 5. (Color online) The total spectral function within LDA, GWA, LDA+DMFT, and GW+DMFT. The

figure is taken from Ref. [53].

The results also support the conclusion in a previous work [52] that there is a strong cancellation

between the effects of momentum and energy dependence in the self-energy: The LDA+DMFT result

with a dynamic U yields a band width narrower than the one obtained with a static U and inclusion of

momentum dependence via the GW self-energy increases the band width. More detailed description

of the work described in the present article may be found in Ref. [53].
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