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Abstract. We present a laser-based atomic magnetometer that allows inferring the modulus of a magnetic
field from the free Larmor precession of spin-oriented Cs vapour atoms. The detection of free spin precession
(FSP) is not subject to systematic readout errors that occur in phase feedback-controlled magnetometers
in which the spin precession is actively driven by an oscillating field or a modulation of light parameters,
such as frequency, amplitude, or polarization. We demonstrate that an FSP-magnetometer can achieve
a ∼200 fT/

√
Hz sensitivity (<100 fT/

√
Hz in the shotnoise limit) and an absolute accuracy at the same

level.

1 Introduction

The past decade has witnessed the development of
a wealth of atomic magnetometer methods deploying
laser-based preparation and readout of precessing spin
polarization in paramagnetic atomic vapours/gases [1].
Applications of atomic magnetometers cover the detec-
tion of magnetic fields of biological origin, such as in mag-
netocardiography [2,3] and magnetoencephalography [4],
the detection of ultralow-field NMR [5] and ultralow-field
MRI [6] as well as the monitoring of fields in fundamen-
tal symmetry experiments [7]. Most of those applications
call for magnetometers with the highest possible sensitiv-
ity, i.e., the best capability to detect small magnetic field
changes, where the absolute precision and accuracy of the
field determination are of secondary importance.

Our team is involved in a large collaborative effort [8]
searching for a permanent electric dipole moment of the
neutron (nEDM experiment). In that experiment an ar-
ray of Cs vapour magnetometers monitors the spatial and
temporal stability of a 1 μT magnetic field applied to an
ensemble of ultracold neutrons, a task, for which both sen-
sitivity and accuracy are primary issues. The magnetome-
ters use optically detected magnetic resonance (MR) in
the so-called Mx-geometry, in which the frequency of a
weak oscillating magnetic field is actively kept in reso-
nance with the atomic spin precession at the Larmor fre-
quency [9,10]. Although a frequency measurement is an
intrinsically very precise metrological technique, it suffers
from the fact that small errors of the feedback signal’s
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phase yield systematic frequency shifts that may be or-
ders of magnitude larger than the intrinsic magnetometer
sensitivity.

Here we report on a magnetometer approach, in which
an initially spin-polarized sample of Cs vapour atoms is
allowed to freely precess (and decay) at the Larmor fre-
quency in the magnetic field of interest. The free spin pre-
cession (FSP) of the atomic spin-polarization is recorded
by a weak intensity probe laser beam that affects the FSP
process in a minimal way. FSP magnetometry avoids sys-
tematic readout errors of feedback-driven magnetometer
schemes, while maintaining all advantages associated with
performing the field measurement in terms of a frequency
measurement, thus offering the potential for a field deter-
mination with both high sensitivity and high accuracy.

2 FSP magnetometry

The first recording of an optically detected FSP signal in
an atomic vapour was reported by Dehmelt [11] in 1957
who showed that the optical absorption coefficient of an
atomic vapour is modulated by precessing polarized spin
1/2 atoms. Kukolich [12] extended the work of Dehmelt to
spin 1 and spin 2 atoms. In more recent times pump-probe
experiments recording the FSP of atomic (electronic) spin
polarization were used to study collisional dynamics and
light shifts in alkali vapours [13,14].

FSP signals have been deployed for specific mag-
netometry tasks using (nuclear) spin-polarized mercury
atoms [15] and 3He atoms [16,17], or (electronic) spin-
polarized alkali atoms [18–20]. The good signal to noise
ratio and simplicity of its implementation makes the FSP
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Fig. 1. (a) Geometry of the magnetically-silent FSP magnetometer. (b) One measurement cycle of duration T . The spin
polarization is created by amplitude-modulated light with peak power Pp during a pumping time Tp, following which the FSP
signal is recorded by a weak readout beam during a time Tr at constant power Pr. The top graph represents the laser power
before the cell and the lower graph represents the transmitted light power detected by the photodiode (PD). Note that the
power and frequency are not presented to scale for clarity.

technique based on atomic alignment (i.e., using linearly
polarized light) a useful tool for the easy calibration of
magnetic coils [21], or for measuring the magnetic field
orientation and modulus [20]. Recently an FSP magne-
tometer using nuclear-spin-polarized 3He gas was reported
claiming a relative precision ΔB0/B0 below 10−12 for the
determination of fields B0 > 100 mT [16].

The FSP magnetometer described hereafter is “mag-
netically silent”, in the sense that its operation does not
require the application of an oscillating magnetic field
to the sensor cell. This offers a certain advantage when
the magnetometer is to be operated in harsh environ-
ments, such as in high vacuum and/or in proximity of
a high voltage electrode, such as in the mentioned EDM
experiment [8].

3 Experiments

3.1 Apparatus

Figure 1a shows the layout of the magnetometer. The ex-
periments were performed in Cs vapour using light from a
single mode diode laser whose frequency is actively stabi-
lized to the 4 → 3 component of the Cs D1 transition by
means of Doppler-free saturation spectroscopy. The laser
light is carried to the spectroscopy cell by an optical fiber
with an integrated electro-optic modulator, EOM (model
AM905 from Jenoptik) that allows the electronic control of
the laser power. Prior to entering the cell the light emerg-
ing from the fiber is collimated to a beam of ∼4 mm di-
ameter that is made circularly polarized by a polarizer
and a λ/4-plate. A photodiode with a radiant sensitivity
of ∼0.54 μA/μW (∼75% quantum efficiency) placed af-
ter the cell detects the transmitted laser power. Cesium
vapour with a saturated vapour pressure at room temper-
ature is contained in a 30 mm diameter paraffin-coated
Pyrex cell [22]. The cell is exposed to a homogeneous
magnetic field B0 of ∼1 μT, produced by a solenoid, and

oriented at 90◦ with respect to the light’s propagation di-
rection k̂. The sensor cell, solenoid and photodetector are
mounted inside of a multi-layer μ-metal shield.

3.2 Recording FSP signals

A measurement cycle of duration T consists of a pump
(preparation) phase of duration Tp, followed by a read-
out (probe) phase of duration Tr (Fig. 1b). During the
pump phase atomic spin polarization is created by op-
tical pumping with the circularly-polarized beam. Since
optical pumping by cw light in a (polarization destroying)
transverse magnetic field is not very efficient, we use the
synchronous amplitude modulation method introduced by
Bell and Bloom in 1961 [23]. That method was recently ex-
tended to excitation by an intensity-modulated laser beam
combined with phase-sensitive detection [24–26]. In Bell-
Bloom pumping the light intensity is modulated from “on”
to “off” state by means of the EOM driven by a square
wave of duty cycle η, meaning ton/toff = η/(1 − η), pro-
ducing a peak power Pp. The modulation frequency is
chosen to coincide with the Larmor precession frequency
of the spin polarization around the transverse field B0.
The Larmor frequency of the Fg = 4 Cs ground state is
given by ωL = γ4|B0| where γ4/(2π) ≈ 3.50 Hz/nT is
the corresponding gyromagnetic ratio. After the prepara-
tion cycle the light power is lowered to a constant (i.e.,
unmodulated) value Pr that is sufficiently weak, so that
it does not induce significant optical pumping (Fig. 1).
The time dependent photodiode signal during this read-
out phase constitutes the signal of interest. The readout
signal is recorded with 16 bit vertical resolution by a digi-
tal USB oscilloscope (model HS5 from TiePie engineering)
sampling the photodiode signal at a rate of 6.25 MHz. It
has the generic shape of a damped oscillation, and the
extraction of its oscillation (i.e., Larmor) frequency by
post-processing of the data allows the determination of
the magnetic field. The method is similar to the method
described by Jensen [27].
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4 FSP signal modeling

The build-up of spin orientation by an intensity-
modulated laser beam was discussed by Grujić and
Weis [26]. The FSP signal originates from the fact that the
absorption coefficient of the atomic medium depends on
the degree and orientation of its spin polarization S. The
explicit time dependence of the transmitted laser power
depends on k̂ ·S(t), i.e., on the projection of the polariza-
tion onto the light propagation direction k̂.

We model the spin polarization as a vector polarization
(orientation) S that is proportional to 〈F 〉, F being the
total angular momentum operator. Optical pumping with
circularly polarized light produces also a tensor polariza-
tion (alignment) oriented along k̂. However, it is known
that alignment contributions are very small on the Cs
4 → 3 transition of the D1 line [26]. Moreover, alignment
contributions to the FSP signal will manifest themselves
as oscillations at 2ωL only (for k̂ · B̂0 = 0) that can easily
be discriminated by filtering.

Neglecting alignment contributions we can model the
FSP dynamics by time-dependent solutions of the Bloch
equations for the spin orientation vector S

Ṡ = S × ωL − γS + γr

(
Sk̂ − S

)
, (1)

where γ is the polarization relaxation rate (assuming equal
longitudinal γ1 and transverse γ2 rates [28,29]). The last
term in equation (1) takes the production of spin polariza-
tion by optical pumping (at a rate γr) with the low power
readout beam into account. The spin orientation Sk̂, par-
allel to k̂, would be reached asymptotically by optical
pumping if there was no relaxation in the system, i.e.
γ = 0.

We choose B0 = B0 êy and k̂ = êz (cf. Fig. 1a) and
solve the Bloch equations (1) with the boundary condition
S(t = 0) = −S0 êx. The solution for the polarization com-
ponent along the light propagation direction is given by

Sz(t) = ac

(
1− e−Γt cosωLt

)
+ as e−Γt sinωLt, (2)

where the damping rate γ is affected by residual optical
pumping (at rate γr) by the readout beam according to

Γ = γ + γr. (3)

To first order in γr/γ, the oscillation amplitudes are
given by

ac =
γ

ω2
L + γ2

γr and as =
ωL

ω2
L + γ2

γr + S0, (4)

which reduce to

ac ≈ γr

γ

1
Q2

and as ≈ γr

γ

1
Q
+ S0, (5)

in the high-Q limit, where Q = ωL/γ.
Following the discussion in references [28,29] the power

of a circularly polarized light beam transmitted by an

optically thin (κ0L �1) ensemble of polarized atoms is
given by

P (t) ≈ P0(1− κ0L) + P0κ0Lα
(1)
43 Sz(t), (6)

where κ0 is the optical absorption coefficient of the unpo-
larized ensemble (Sz = 0) at the peak of the Doppler-
broadened 4 → 3 transition, and where the constant
α

(1)
43 is a hyperfine transition specific orientation analyzing

power [28,29].
Inserting (2) into (6) then yields a time dependent pho-

tocurrent of the general form

I(t) = IDC + (Ic cosωLt+ Is sinωLt) e−Γt. (7)

The last equation has to be modified in order to take
hyperfine relaxation into account. In fact, at the end of
the pumping cycle, a substantial population of atoms has
transferred to the Fg = 3 hyperfine ground state that is
not coupled to the light field therefore reducing the popu-
lation N4 on the Fg = 4 state to the value N4p. At the end
of the weak light probing period a new equilibrium will be
established with population N4r. The light absorption is
proportional to κ0(t) = N4(t)σ4→3, where σ4→3 is the
light absorption cross section leading to a change of light
absorption during the probing period with relaxation rate
γhf between two hyperfine ground sates. The relaxation
mechanism can be modeled empirically by

N4(t) = N4r − (N4r − N4p) e−γhf t, (8)

where t refers to the readout process starting at t = 0. As
a consequence, the time-dependent power will have the
general form

I(t) = IDC + Ihf e−γhf t + (Ic cosωLt+ Is sinωLt) e−Γt.
(9)

5 Data analysis and system optimization

Figure 2a shows a raw experimental FSP trace (expressed
in terms of the photodiode current) that was obtained
under optimized experimental conditions in a field B0

of 1 μT. The Fourier transform of that signal (Fig. 2b)
shows resonances at νL ∼ 3.5 and 2νL ∼ 7 kHz, that
represent the FSP of the orientation (νL) and alignment
(νL and 2νL). The DC offset and the slowly decaying back-
ground from equation (9) are represented by the resonance
at 0 Hz.

In order to isolate the signal of interest at ωL we fil-
ter the raw data (in time space) by a numerical band-
pass filter that removes low frequency components (drift
of the laser power, exponential decay from hyperfine relax-
ation) and the alignment contribution at 2ωL, yielding the
cleaned-up FSP signal shown in Figure 2c. The filter is a
finite impulse response band pass that we have described
earlier [21]. The filter’s transfer function in the frequency
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Fig. 2. (a) Typical FSP time series (raw data) in a 1 μT magnetic field recorded by a digital oscilloscope with 16 bit vertical
resolution at a 200 kHz sample rate. The inset shows 5 ms of data from the middle part of the signal. The solid line is drawn to
guide the eye. (b) FFT of the data from (a) showing oscillations at ωL/(2π) ∼ 3.5 kHz and 2ωL caused by precessing orientation
and alignment. (c) FSP signal after offline digital filtering (in time space) by a finite response bandpass filter. The solid line
represents a fit of the data by the function (11). (d) FFT of the filtered signal in (c), with inset showing the transfer function
of the finite response filter G(ν). In both FFT graphs (b,d), the solid and dashed lines represent the average white noise level
of 4.0 pA/

√
Hz near the orientation resonance and the photon shotnoise level of 0.55 pA/

√
Hz, respectively.

domain (see inset of Fig. 2d) is given by

G(ν) =
1
2

[
erf

(
ν − νc + δν

β

)
+ erf

(
ν + νc + δν

β

)

− erf
(

ν − νc − δν

β

)
− erf

(
ν + νc − δν

β

)]
,

(10)

where νc (set to νL), δν, and β represent the filter’s cen-
ter frequency, its spectral width, and the steepness of its
edges, respectively.

The precession frequency ωL, the damping rate Γ and
the FSP amplitude are obtained by fitting the function

IF (t) = (Ic cosωLt+ Is sinωLt) e−Γt, (11)

to the filtered data. The FSP amplitude is then I0 =√
I2
c + I2

s . We found that the use of the fit function (11)
is computationally less power demanding and yields more
stable fit results than the equivalent simpler expression
IF (t) = I0 sin(ωLt+ ϕ) e−Γt with tanϕ = Ic/Is.

5.1 Cramér-Rao lower bound for the standard
deviation of ωL

The statistical precision with which the frequency ωL can
be extracted from the recorded time series can be ex-
pressed by σω . Estimation theory allows expressing the
lower bound for σω – known as Cramér-Rao lower bound
(CRLB) [30,31] – in terms of experimentally measurable
parameters.

The FSP time series consists of discrete data points
(photocurrent values)

i(n) = I0 cos(ωL nΔt+ ϕ) e−Γ nΔt + w(n), (12)

that are recorded by a digital oscilloscope, where w(n)
represents white Gaussian noise, and where the sampling
intervalΔt is the inverse of the sampling rate. An unbiased
frequency estimator, assuming constant B0 and Gaussian
noise, can determine the frequency of a single FSP trace
with an uncertainty σf = σωL/(2π) that is no better than

σf ≥
√
12

(I0/ρI) T
3/2
r

C, (13)

where I0/ρI is the signal to noise ratio (SNR), ρI being
the photocurrents’s spectral noise density at the resonance
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frequency. Tr is the length and N = Tr/Δt the number
of data points of the time series. The correction factor C
is unity for an undamped sine wave, while for a decaying
signal it is given by

C =
N3

12

(
1− z2

)3 (1− z2N
)

z2 (1− z2N)2 − N2z2N (1− z2)2
, (14)

where z = e−ΓΔt [32]. Note that C strongly depends on
Γ and Tr while its dependence on N is negligible for a
reasonably high sample rate 1/Δt.

The standard deviation σf translates into a lower
bound for the statistical uncertainty of the field deter-
mination from a single FSP by

σB0 =
σωL

γF
=

σf

2π γF
. (15)

Since an FSP cycle requires a total time T = Tp + Tr,
the measurement bandwidth is given by fbw = 1/(2T ) =
1/2 (Tp + Tr)−1. Assuming white noise, σB0 can be con-
verted to a noise density

ρB0 =
σB0√
fbw

= σB0

√
2T , (16)

which measures the magnetometer sensitivity independent
of the bandwidth fbw.

5.2 Optimizing experimental parameters

We characterize the FSP magnetometer’s sensitivity in
terms of ρB0 which has the unit T/

√
Hz. Equation (13)

shows that the magnetometric sensitivity depends on the
signal to noise ratio I0/ρI , the factor C, and the total
FSP recording time T . Each of these quantities depends
in a non-trivial way on the experimental parameters of
the pump process, viz., Pp (the peak pump power), η (the
duty cycle of the pulsed pump process, and Tp (the pump
process duration) as well as the parameters of the probe
process, viz., Pr (the readout power, characterized by IDC ,
the DC photocurrent) and Tr (the FSP recording time).
We have carried out a systematic study of the dependence
of ρB0 on those parameters.

The FSP amplitude I0 is a function of Tp, Pp, η and the
residual polarization of the medium at the moment when
pumping was started. Figure 3 shows the dependence of
I0 on the pumping time Tp. The readout duration Tr was
chosen to be several relaxation periods long, so that the
ground state sublevel populations have fully thermalized
before the following pump pulse train. The scattering of
the data for Tp > 100 ms is most likely due to laboratory
temperature, i.e. Cs density variations. The dashed line
represents a fit of the data with A = a(1−e−γpTp), yielding
a pump rate (during the pump process proper) of γp =
2π22 Hz. The overshoot of the data near Tp ∼ 50 ms is
probably due to the loss of atoms in the Fg = 4 state by
hyperfine pumping to the uncoupled Fg = 3 state.

I 0
(μ

A
)

Tp (s)

Fig. 3. Dependence of the FSP amplitude I0 =
√

I2
c + I2

s on
the pumping time Tp with a pump power Pp of 40 μA, a duty
cycle η of 30% (determined to be optimal in an auxiliary ex-
periment) and a readout power Pr of 1 μA.

Γ
/
(2

π
)

(H
z)

probe power, IDC (μA)

Fig. 4. Effective FSP relaxation rate Γ = γ + γr as function
of probe power Pr, represented by the DC photocurrent IDC.
The solid (red) line represents a second-order polynomial fit,
the linear part of which is shown as dashed (black) line. The
inset shows the range of low probe powers that are relevant
for the FSP-magnetometer operation. The intrinsic relaxation
rate, i.e. Γ (γr → 0), is γ/(2π) = 2.83(2) Hz.

5.3 Performance in the shotnoise limit

The effective relaxation rate Γ = γ + γr depends, via γr

(residual pump rate during the probing phase) in a lin-
ear manner on the probe power Pr. The data in Fig-
ure 4 demonstrate that this linear dependence is obeyed
for γr<γ. The saturation behaviour observed for larger
probe power levels originates from the creation of higher
order atomic polarization moments [33] that are not taken
in account by our model that considers only vector polar-
ization. Large readout power levels (γr
γ) increase the
correction factor C, while low probe power levels (γr�γ)
reduce the signal to noise ratio I0/ρI of the detected FSP.

Based on the above, one expects the magnetometric
noise density ρB0 to exhibit a minimum as a function
of probe power. The data in the lower part of Figure 5
demonstrate that the probe power dependence of ρB0

(evaluated in the shotnoise limit) shows indeed a shallow
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(b)

Fig. 5. Shotnoise-limited magnetometer sensitivity as a func-
tion of probe power (measurement time T = 100 ms, duty
cycle 30%), assuming photocurrent-shotnoise-limited perfor-
mance (a) and with real world noise (b). In both graphs
the blue (solid) and purple (dashed) lines represent results
obtained with pump power values Pp of 30 and 15 μA,
respectively.

TP (ms)

P
p

(μ
A

)

60 fT/
√

Hz

70
80

90
100

58

Fig. 6. Dependence of the shotnoise limited magnetometric
sensitivity on the pumping time Tp and the pump power Pp.
The measurement time was 100 ms, the probe power 1 μA and
the pump duty cycle η = 30%. The experimentally determined
minimum of ρB0 is below 60 fT/

√
Hz in the shotnoise limit.

minimum for γr ≈ γ. The displayed ρB0 values were cal-
culated from equations (13), (16) and (14) using as input
parameters the experimentally determined values of I0

and Γ as well as the set value of Tr, while the spectral
noise density ρI in (13) was taken to be the shotnoise
value, ρI =

√
2eIDC of the DC photocurrent IDC .

Figure 6 shows contour plots of constant ρB0 values as
a function of the pump power Pp and pumping time Tp, as-
suming shotnoise-limited detection with a probe power Pr

of 1 μA. The elongated region of best sensitivity along the
Tp-direction reflects the saturation behaviour of Figure 3.
We note that the pump power of ≈30 μA required for op-
timal performance is ∼ 10 times larger than the optimal

ρ
2 I

(p
A

2
/
H

z)

probe power, IDC (μA)

ρ2
I =ρ2

0+ρ2
1+ρ2

2

ρ2
1∝IDC

ρ2
2∝I2DC

Fig. 7. Probe power dependence of the spectral noise power
density ρ2

I of the signal as estimated from the FFT of the sig-
nal (black dots). The signal was sampled at 6.25 MHz with a
16 bit resolution. The individual contributions ρ2

1 = α1 IDC,
and ρ2

2 = α2 I2
DC are shown below. The fit parameters are

ρ2
0 = 1.76(6) pA2/Hz, α1 = 2.13(15) pA2/(μA Hz), and

α2 = 1.76(6) pA2/(μA2 Hz). The line connecting the ex-
perimental data points represents a linear regression σ2

α =
1.12(9)I2

DC + 2.13(15)IDC + 1.76(6) pA2/Hz. The dashed
(black) line presents the theoretical lower limit of the σ2

α given
by the shotnoise 2eIDC .

power for operating the same vapor cell in the Mx mag-
netometer mode [10] using cw light.

5.4 Real world magnetometer performance

The FSP magnetometer’s performance shown in Figures 5
and 6 is based on experimental parameters, assuming the
spectral noise density ρI to be given by the shotnoise
of the average photodiode current IDC during the FSP
recording time. In real experiments the noise level gener-
ally exceeds the fundamental shotnoise limit, sources of
excess noise being technical noise of the laser power, fre-
quency fluctuations of the laser (converted to signal ampli-
tude fluctuations by the spectral line shape of the optical
absorption line), intrinsic amplifier noise and noise from
the analog/digital conversion process in the data acquisi-
tion system. The different noise contributions depend in
a different manner on laser power, and a measurement of
the power dependence of the signal noise density near the
Fourier component of interest (fL = ωL/(2π)) is useful
for identifying different noise sources. The result of such a
measurement is shown in Figure 7, together with a fit by a
second order polynomial ρ2

I(IDC) = ρ2
0+ρ2

1+ρ2
2. One sees

that the magnetometer noise has a large IDC -independent
contribution ρ2

0 of ≈1.7 pA2/Hz, which we believe to origi-
nate from digitization noise that results from the interplay
of the 16 bit digitizer and the 6.25 MHz sample rate. The
contributions ρ2

1 and ρ2
2 are proportional to IDC and I2

DC ,
respectively. While the contribution ρ2 ∝ IDC represents
technical laser power noise, the contribution ρ1 is expected
to represent the shotnoise (ρ1 ∝ √

IDC) of the photocur-
rent. The data in Figure 7 show that the latter contri-
bution is ∼6 times larger than the anticipated shotnoise
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contribution of ρ1 =
√
2eIDC . The mentioned digitization

noise may also be responsible for this excess noise, and
planned future experiments with a higher resolution digi-
tizer may shine more light on this.

Knowing the experimental dependence of ρI on the
probe power IDC we can represent the dependence of the
real-world magnetometer sensitivity on the probe power.
This result is represented by the upper traces in Figure 5,
from which we may claim that our present FSP magne-
tometer is able to measure magnetic field changes below
250 fT with a detection bandwidth of 1 Hz or, equivalently,
a recording time of 0.5 s.

6 Precision and accuracy

The shotnoise-limited sensitivity of the FSP magnetome-
ter reported above is typically a factor of 10 worse than
the sensitivity achieved with a feedback-drivenMx magne-
tometer using the same cell at the same temperature [22].
The duty cycle of the FSP mode of operation, in which
preparation alternates with readout (actual measurement)
contributes a degradation factor of ∼1.5 to this effect. To
this add contributions from the lower readout power and
signal damping in the FSP mode compared to the con-
tinuous operation mode. It is precisely this aspect which
motivated the research described here. Many atomic mag-
netometry applications, such as the recording of magnetic
fields for biomedical purposes [2–4,6] call for magnetome-
ters with the highest possible sensitivity, i.e., the best ca-
pability to detect small magnetic field changes. For such
applications, the accuracy of the field determination is of
secondary importance.

In our collaborative effort searching for a permanent
electric dipole moment of the neutron [8] an array of
Cs Mx-magnetometers monitors the spatial and tempo-
ral evolution of the magnetic field applied to an ensemble
of ultracold neutrons, a task, for which sensitivity is a
primary issue. However, the control of systematic effects
in that experiment requires the control of magnetic field
gradients, derived from readings of two magnetometers
located at different positions. An accurate gradient deter-
mination sets severe constraints on the precision of those
readings.

Precision limitation of Mx-magnetometer

In an Mx-magnetometer a continuous oscillation at the
Larmor frequency is sustained by active feedback [9,10].
In more detail: atomic spin polarization created by op-
tical pumping is made to precess around the magnetic
field B0 of interest by driving the magnetization with a
weak magnetic field B1(t) oscillating at frequency ωrf in
a direction perpendicular to B̂0 or rotating at that fre-
quency around B̂0 in a plane orthogonal to the field. As
a consequence the transmitted light intensity oscillates at
the frequency ωrf , the phase relation between the light
modulation and the rf-drive being those of a classical har-
monic oscillator (Fig. 8). On resonance the two oscillations

ϕ

ωrf

ωL

2γ

Δϕ

Δω

±100 mrad≈ ±100 pT

Fig. 8. Phase between rf excitation and optical response in an
Mx-magnetometer that is used for the magnetometer’s feed-
back operation. The linear dependence near resonance extends
over a range of ±100 pT (for a linewidth γ/(2π) of 3.5 Hz),
over which the magnetometer has a maximal sensitivity. When
an accuracy of ∼100 fT is sought, the phase has to be locked
to ϕ = −π/2 with a precision of ∼10 fT.

are dephased by –90◦, and near resonance (ωrf ≈ ωL) the
phase obeys

ϕ ≈ −π

2
− δω

γ
= −π

2
− ωrf − ωL

γ
. (17)

This linear dependence is used as a discriminator in a
feedback loop that actively locks ωrf to ωL.

In order to yield accurate measurement results, the
feedback loop has to assure that the phase is precisely
locked to ϕ = −π/2. A sought accuracy ΔB, say of 10 fT,
requires a phase control Δϕ = γF ΔB/γ of 10 μrad, as-
suming a relaxation rate of γ = 2π 3.5 Hz. Even if this
precision in the phase setting may be achieved – noting,
en passant, the requirement of a phase detector with at
least 17 bit resolution to achieve this – it will be practi-
cally impossible to guarantee its stability, thinking, e.g.,
of temperature dependent impedance changes in the feed-
back circuitry.

From Figure 8 one sees that the discriminator function
is linear in a range of ±100 mrad near resonance, corre-
sponding to several 100 pT, and the magnetometer will
keep its high sensitivity, when the phase is locked within
that range. An Mx-magnetometer may thus be able to
measure field changes in the lower fT range, while its ab-
solute field reading may be wrong in the upper pT range.

The Bloch-Siegert shift [34] is a major source for
systematic readout errors in Mx-magnetometers. For
practical reasons the rf field used to drive the magnetic
resonance is usually laid out as an oscillating, rather
than a rotating field. In the rotating wave approxima-
tion, one considers only the rf field component that co-
rotates with the polarization around B̂0. The neglected
counter-rotating field shifts the magnetometer’s oscilla-
tion frequency by the Bloch-Siegert shift δBBS on the or-
der of ≈γ/2Q, where Q is the resonance’s quality factor.
As an example the Cs magnetic resonance frequency in
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a 1 μT field (ωL/(2π) = νL = 3.5 kHz), measured with
a 5 Hz linewidth, has a Q-factor of 700, thus shifting the
resonance by δνBS = 3.6 mHz, corresponding to a readout
error on the order of 1 pT.

7 Systematic effects in an FSP
magnetometer

Since the FSP magnetometer described here records the
free precession of the Cs spin polarization it is not subject
to the above systematic shifts associated with driving the
resonance in a feedback mode. Nonetheless, its precision
and accuracy are affected by several systematic readout
errors that we address below. To note that some of these
systematic effects will also affect the Mx magnetometer,
in addition to the effects discussed above.

7.1 Light shift

It is well-known that circularly-polarized light may induce
a magnetic sublevel shift that is proportional to the op-
tical pumping rate γr, itself proportional to the intensity
of the readout light beam. This level shift has the same
characteristics as the shift induced by a magnetic field
directed along the laser propagation direction k, so that
the light-induced shift can be expressed in terms of an
effective field bLS = bLSk̂. The effect vanishes when the
laser frequency is tuned exactly to the center of the optical
absorption line, and for a laser frequency that is slightly
(δωopt � ΓD) detuned from the line center the light shift
reads bLS ≈ (δωopt/ΓD)(γr/γF ), where ΓD is the Doppler
width of the optical transition. For ΓD/(2π) ≈ 300 MHz,
δωopt/(2π) = 0.3 MHz and γr/(2π) = 3.5 Hz one has
bLS ≈1 pT. Noting that bLS is nominally perpendicular
to B0, which implies, for a 1 μT field, a shift of δBLS =
|B0 + bLS | − B0 ≈ b2

LS/2B0 that is below 10−18 T and
thus completely negligible for any practical application.

7.2 Quadratic Zeeman effect

In very low magnetic fields the magnetic-field-induced en-
ergy spacing of adjacent magnetic sublevels |Fg, mFg〉 and
|Fg, mFg − 1〉 are all equal and proportional to B0. In
this linear Zeeman regime, a magnetic resonance transi-
tion between magnetic sublevels of the hyperfine ground
state level Fg consists of 2Fg degenerate overlapping lines
that represent the 2Fg magnetic resonance transitions
|Fg, mFg 〉 → |Fg, mFg−1〉 between ground state magnetic
sublevels. In larger fields the sublevel spacings acquire –
by virtue of the Breit-Rabi interaction – an m2

F depen-
dent change that is proportional to B2

0 . This quadratic
Zeeman effect (QZE) lifts the degeneracy of the over-
lapping lines, which manifests itself (in the general case)
in an asymmetrically-broadened magnetic resonance line,
assuming that quadratic shifts to be smaller than the
linewidths of the individual components. As a consequence
the center frequency of the magnetic resonance shifts,

leading to a magnetometric readout error, when the res-
onance center frequency is used (as is the case with both
the FSP and the Mx magnetometers) to infer the field
value. The quantitative value of this shift depends on the
degree (and nature, i.e., vector vs. tensor) of the spin po-
larization created by optical pumping. In a 1 μT field the
maximum QZE, i.e., the shift obtained with a 100% polar-
ized sample, is on the order of 3 pT. Since this shift can be
calibrated, it can be accounted for by a (field dependent)
correction of the readout signal.

We note that the magnitude of the QZE-induced shift
depends on the field orientation. We have verified that un-
der ideal geometrical conditions, i.e., for k ⊥ B0, the FSP
magnetometer is not affected by the QZE (as expected
from symmetry considerations), while the oscillation fre-
quency of a readout beam propagating along a direction
making an angle ϑ 
= π/2 with the magnetic field is af-
fected by a frequency shift that can be explained by the
Breit-Rabi formula.

7.3 Imperfect light polarization

Last, but by far not least, we mention our (puzzling) ob-
servation that the purity of circular polarization of the
readout beam is crucial for avoiding systematic readout
errors. We found in fact that in an non-ideal geometry
where k 
⊥ B0 – a small ellipticity of the laser beam’s po-
larization (i.e., contamination by a finite degree of linear
polarization) produces a readout error in the pT range for
a ∼1 μT field. This effect and the quadratic Zeeman effect
are currently under detailed study in our lab.

7.4 Magnetometer accuracy

With the exception of the effect associated with light po-
larization (that we are not yet in a position to quantify),
all discussed systematic effects are either negligible or can
be corrected for when the system parameters are known.
The FSP magnetometer can thus have an accuracy that is
comparable to its shotnoise-limited sensitivity. Since the
field determination relies on a frequency measurement, the
gyromagnetic ratio γF plays the role of an atomic calibra-
tion constant and the accuracy of any inferred field value
will be limited by the precision of the numerical value
of γF . The gyromagnetic ratio of the Fg = 4 hyperfine level
of the 62S1/2 Cs ground state used in the FSP magnetome-
ter has the experimental value of γ4 = 2π 3.49862110(36)
Hz/nT that can be derived from the ground state’s elec-
tronic (gJ ) and nuclear (gI) Landé factors [35]. The rela-
tive uncertainty ΔγF /γF of ∼10−7 therefore limits the ab-
solute accuracy of a ∼1 μT field determination to∼100 fT,
again comparable with the statistical uncertainty.

8 Summary and conclusion

We have presented an atomic magnetometer based on the
free spin precession of orientation in the Fg = 4 hyperfine
ground state of Cs atoms contained in a paraffin-coated
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cell at room temperature. We have optimized the experi-
mental parameters (power, duty cycle and duration of the
pump process as well as the readout power and duration)
in order to achieve an optimal magnetometric sensitivity
ΔB0.5 s

0 with a 0.5 s total measurement time.
Under optimized conditions the magnetometer has a

shotnoise-limited sensitivity ρB0 < 60 fT/
√
Hz, which rep-

resents the average fluctuation of 5 subsequent FSP signals
cycles, each one 100 ms duration. Our real-world exper-
iment yielded a sensitivity of ≈200 fT/

√
Hz. The sensi-

tivity may be enhanced by shortening the pumping time
using a spectrally broader laser beam (in combination,
eventually with a repumper), and expanding the laser
beam to fill the whole cell.

We have addressed several systematic effects that may
affect the magnetometer’s absolute accuracy and can-
not identify any effect that would lead to an accuracy
above the current (200 fT/

√
Hz) or shotnoise limited

(60 fT/
√
Hz) sensitivity of the magnetometer. We note,

however, that the last statement is only valid under ideal
conditions, viz., k ⊥ B0. We stress that an unexpected –
so far unexplained – large frequency shift occurs when this
condition is violated. It is very likely that the latter effect
is not present in FSP magnetometers operated with lin-
early polarized light, i.e., detection of the free spin preces-
sion of atomic alignment. So far no quantitative studies of
the accuracy of alignment-based FSP magnetometers has
been performed.

Note also, that in a B0 = 1 μT field, the relative sen-
sitivity ΔB0.5s

0 /B0 is of the same order of magnitude as
the relative accuracy of the gyromagnetic ratio γ4 of the
Fg = 4 state.

We feel that FSP magnetometry will be useful for the
precise measurement of ratios of gyromagnetic factors [36]
in different atoms, such as Cs, 3He, 4He, Hg, Rb etc. We
also propose to deploy an array of FSP magnetometers as
the one described here (or an extension towards aligned
atoms) for measuring and monitoring the spatial field dis-
tribution in experiments relying on accurate field deter-
minations, such as nEDM experiments. All sensors of the
array may be driven by beams derived from a single laser,
using only a single EOM. The all-optical feature implies
the absence of any galvanic connection to the sensor heads,
easing the operation in harsh environments (vacuum, un-
derwater, or near high voltage electrodes), providing that
the light to the sensor head and from the head to the
photodetector is carried by optical fibers.

This work was supported by the grant 200020 140421/1
of the Swiss National Science Foundation. We are grateful
to H.-C. Koch and M. Kasprzak for useful comments and
discussions.
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