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The study of the properties of glass-forming liquids is difficult for
many reasons. Analytic solutions of mean-field models are usually
available only for systems embedded in a space with an unphysi-
cally high number of spatial dimensions; on the experimental and
numerical side, the study of the properties of metastable glassy
states requires thermalizing the system in the supercooled liquid
phase, where the thermalization time may be extremely large. We
consider here a hard-sphere mean-field model that is solvable in
any number of spatial dimensions; moreover, we easily obtain
thermalized configurations even in the glass phase. We study the
3D version of this model and we perform Monte Carlo simulations
that mimic heating and cooling experiments performed on ultra-
stable glasses. The numerical findings are in good agreement with
the analytical results and qualitatively capture the features of
ultrastable glasses observed in experiments.

glass transition | mean-field theory | ultrastable glasses | planting |
replica theory

The theoretical interpretation of the properties of glasses is
highly debated. There are two extreme viewpoints:

• One approach, the random first-order transition (RFOT) the-
ory (1), which uses mostly the replica method (2) as its central
tool, assumes that the dynamical properties of glasses do re-
flect the properties of the appropriate static quantities [such
as the Franz–Parisi potential (3); for a review see refs. 2 and 4].

• The other approach, kinetically constrained models (KCMs),
assumes that the glass transition is a purely dynamical phe-
nomenon without any counterpart in static quantities (5–7).

The mean-field version of the RFOT approach predicts the
presence of a dynamical transition [identified with the mode-
coupling transition (8)] at a nonzero temperature Td, whereupon
the configuration space of the glass former splits into a collection
of metastable states. Below Td the system will remain trapped
inside a metastable state. Beyond mean-field theory the dy-
namical transition Td becomes a cross-over point: At Td the
correlation time and the dynamical correlation length become
very large, but finite. Below Td, the relaxation time increases
rapidly and becomes comparable with human timescales, leading
to the phenomenological glass transition. In the KCM approach
this slowdown is a phenomenon originated only by constraints
on the dynamics, whereas the RFOT picture views the off-
equilibrium states as metastable, thermodynamic states, that can
be identified with the minima of a suitable equilibrium free-
energy functional and then studied using a modified equilibrium
formalism, generally built on the replica method.
According to replica formalism, the system explores the whole

collection of possible states, with lower and lower free energy,
as the temperature is lowered from Td to another temperature
TK (the Kauzmann temperature), where the states with the
lowest free energy are reached. Most RFOT models (but ac-
tually not all, because TK = 0 for some models) predict then an
equilibrium phase transition at TK , with a real divergence of the
relaxation time.

To test this scenario, it would be necessary to perform
experiments and simulations at various temperatures in this
range, but then one must face the problem of equilibrating the
glass former at temperatures T ≈TK � Tg (where Tg is the
phenomenological glass transition temperature), where it is by
definition impossible to do so. Indeed, a simple estimate shows
that the increase of the equilibration time below Td is so sharp
that one cannot get nearer to TK than ΔT ≈ 1

3TK without falling
out of equilibrium, making it impossible for us to get a good
look at the lowest states: Only the high free-energy states near
Td can be probed experimentally.
Some progress in this direction has been made recently both in

experiments (9) and numerical simulations (10), with the in-
troduction of the so-called vapor deposition technique, which
allows one to obtain extraordinarily stable glasses [usually re-
ferred to as ultrastable glasses (10–13)] in a relatively short time,
even for temperatures much lower than Td. First numerical
simulations on an ultrastable glass of binary Lennard-Jones
mixture seem to support the existence of a thermodynamic phase
transition (10). On the theoretical side, the intrinsic out-of-
equilibrium nature of glass poses another challenge, because the
methods of equilibrium statistical mechanics cannot be used
in the usual way, requiring, in principle, to resort to dynamical
tools. This strategy is actually viable and was used, for example,
by Keys et al. (14), where a suitably tuned East model has been
shown to reproduce well the experimental behavior observed in
DSC (differential scanning calorimetry) experiments on different
glass-former materials, for example glycerol (15) and boron ox-
ide (16). This approach, however, has the drawback of being
phenomenological in nature.
The recent introduction (17) of a semirealistic soluble model

for glasses, the Mari–Kurchan (MK) model, gives us the possi-
bility of addressing both the equilibration and the theoretical
problem. It allows us to obtain equilibrated configurations also
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beyond the dynamical transition and deep into the glass phase,
using the so-called planting method (18). Moreover, it is in prin-
ciple solvable in the replica method, allowing us to study the
metastable glassy states with a static formalism, without having to
solve the dynamics.
Our aim is to use this model to simulate slow annealing experi-

ments usually performed on glasses and ultrastable glasses, to
compare the numerical outcomes with experimental results and
theoretical predictions in the replica method.

The Model
We consider the potential energy of the family of models in-
troduced by Mari and Kurchan (MK model) (17):

V
�
x; l

�
=

X
ði;jÞ

v
�
xi − xj − lij

�
; [1]

where x = fx1; . . . ; xNg are N d-dimensional vectors, represent-
ing particles positions, and the particles move in a d dimen-
sional cube of size L, with periodic boundary conditions. The
main feature of the model are the variables l = flijg: They are
NðN − 1Þ=2 quenched random vectors, called random shifts, in-
dependently drawn out from a uniform probability distribution
inside the cube. The function v could be in principle any inter-
esting short-ranged repulsive pairwise interaction.
The main effect of the random shifts is to destroy the direct

correlation among the particles that interact with a given particle
(17). This makes the computation of static quantities very simple,
because in the Mayer expansion of the grand-canonical potential
only the tree diagrams survive in the thermodynamic limit (17).
The idea is quite old (19), and had important applications to
turbulence, but has only recently been applied to glasses.

Static Thermodynamic Properties in Liquid Phase. Here we will sum-
marize analytical and numerical results obtained by Mari and
Kurchan for this model. In the following D will denote the diameter
of spheres. In hard-sphere systems the potential vðxÞ is infinite at
distances less than D and the role of inverse temperature is played
by the packing fraction φ=NVdðDÞ=Ld = ρVdðDÞ, where VdðDÞ is
the volume of the d-dimensional sphere of diameter D; we will call
it density absorbing the multiplicative factor in its definition.
The Hamiltonian contains random terms and the interesting

quantities have then to be averaged over these parameters. We
can define the annealed entropy SA and the quenched entropy SQ
given by

SA ≡ log
�
Z
�
l
��

; SQ ≡ log
�
Z
�
l
��
 : [2]

The computation of SA can be easily done and one finds

sAðρÞ= SAðρÞ
N

=−logðρÞ− 2d−1   VdðDÞ  ρ+ logðNÞ: [3]

The presence of the logðNÞ term is due to the fact that in this
model particles are distinguishable for a given realization of
random shifts.
A more interesting quantity is the quenched entropy. In this

model one finds that SAðρÞ= SQðρÞ in the liquid phase (i.e., be-
low the Kauzmann transition density φK ). The Kauzmann tran-
sition is avoided in the thermodynamic limit: The total entropy
sA grows as logðNÞ whereas the vibrational entropy is a non-
decreasing function of ρ that diverges in the infinite-density limit.
This implies that the configurational entropy contains a term
proportional to logðNÞ. As a consequence, the Kauzmann den-
sity φK (i.e., the point where the configurational entropy van-
ishes) diverges logarithmically in the thermodynamic limit.

Using standard termodynamic relations one can derive from
Eq. 3 the liquid-phase equilibrium equation of state

P= ρ+ 2d−1   VdðDÞ  ρ2; [4]

where P is the pressure.
For what concerns the radial distribution function, one has to

take the random shifts into account:

gðrÞ= 1
ρ2

 

*XN
i≠j

δ
���xi − xj + lij

��− r
�+

; [5]

where the bracket average is computed using the ensemble
distribution function (Gibbs–Boltzmann distribution at equi-
librium) and the bar average is computed using the random
shifts probability distribution. The result is

gðrÞ= θðr−DÞ ; [6]

where θ is the usual Heaviside step function. This result is the
same obtained with high-dimensional hard spheres (20), but the
mean-field nature of the model has allowed us to get it in any
number of spatial dimensions. The equilibrium pressure is re-
lated to density by the usual relation for hard spheres (21),

P= ρ+ 2d−1   VdðDÞ  gðDÞ  ρ2; [7]

from which, using Eq. 6, the equilibrium equation of state (Eq. 4)
can be derived again.

Glassy Properties. The model is interesting because despite the
extreme simplicity of the statics (a feature that it has in common
with facilitated models) the dynamics is extremely complex. At
high densities there is the glass phase that in the thermodynamic
limit is separated from the liquid phase by a mode coupling
transition. This transition exists only if we embed the model in
a space with an infinite number of dimensions d; when d<∞,
hopping effects destroy the transition, which becomes only a
cross-over region (22).
Accurate simulations (22) give a higher value for the mode-

coupling dynamical density (i.e., φd = 1:91). A more careful analysis
of the properties of the system near the putative mode-coupling
transition can be found in ref. 22, where the effects of hopping are
carefully studied. Other features, such as a violation of the Stokes–
Einstein relation and dynamical heterogeneities, are present in this
model (17, 22).

Numerical Simulations
When a glass is gradually heated during DSC experiments
thermodynamic quantities, like the internal energy, continue to
follow the glassy behavior also in the liquid phase, until the so-
called onset temperature Ton is reached. For T >Ton the system
gradually approaches equilibrium; during this relaxation process
the specific heat reaches a maximum value, higher than the
equilibrium one. The value of Ton quantifies the stability of the
initial glass and is considerably higher for glasses prepared
through the vapor deposition technique than ordinary glasses
aged for many months (9, 10). The vapor deposition procedure
has been recently mimicked by a computer algorithm, and nu-
merical simulations over a Lennard-Jones binary mixture showed
the same behavior (10, 11).
We aim to study numerically this deviation from equilibrium in

the liquid region and the subsequent relaxation process in the
MK model. In the MK model we are able to obtain equilibrium
configurations beyond the dynamic transition via a special
procedure, allowed only by the presence of random shifts, the
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so-called planting (18) method. Basically, planting consists of
two steps: the generation of a random configuration of sphere
positions, independently drawn out from the uniform distribu-
tion over the volume, and the generation of the random shifts
configuration flijg so that the nonoverlap condition imposed by
the hard-sphere potential energy (Eq. 1) is satisfied for every
pair of spheres (see Supporting Information for details). The
mean-field nature of the interaction guarantees that planted
configurations are equilibrated (18). The planted glass in the
MK model, like vapor-deposited ultrastable glasses in real
world, is the best possible starting point for the study of the
deviation from equilibrium in the liquid phase. We start from
a planted configuration and mimic DSC heating experiments
by running adiabatic stepwise decompression scans, where the
system performs jumps between different density values and
a large number of Monte Carlo steps for each density value, to
reach thermalization.
We refer to Supporting Information for all other simulation

details. We present now the results of numerical simulations,
based on the Monte Carlo method, of a system composed of
N = 800 spheres of diameter D= 1 in d= 3 dimensions, with
periodic boundary conditions.

Decompression Jump and Spheres Contact Region Emptying. The
outcome of the planting technique is a thermalized initial con-
figuration at a certain density φ0 >φd (see Fig. S1). We discuss
now the effects a density jump φ0 →φ1 on gðrÞ, where φ1 <φ0
(decompression). Results for φ0 = 2:5 and φ1 = 1:7 are shown in
Fig. 1. When the sphere radius is decreased, particles originally
in contact separate, causing a drop of gðrÞ in the contact region
r∼ 1. While the system evolves at the new density value φ1,
gradually particles return in contact, causing the filling of the
contact zone. In the glass phase this filling can only be partial for
realizable time scales. In the liquid region and for densities
sufficiently far from the dynamical transition it is possible to see
a complete filling.
We consider now the following decompression protocol: We

start from a planted configuration at φ0 = 2:5, we jump to φ1 =
1:6 and wait 222 steps, then we jump to φ2 = 1:55 and we wait
again 222 steps, then φ3 = 1:5 and φ4 = 1:45. Fig. 2 shows the
temporal behavior of gð1Þ for various values of φ. We do not see
structural relaxation for φ= 1:55; 1:5 (liquid phase): the system,
after a partial, fast relaxation process reaches the metastable

plateau and it does not have enough time to escape. When
φ= 1:45, the lifetime of the original metastable state is smaller
than 222 steps and we observe a clear structural relaxation, cor-
responding to the complete filling of the contact zone.

Mean Square Displacement and Structural Relaxation Time. To study
the behavior of the relaxation time as a function of density in the
liquid phase and evaluate the dynamic glass transition density φd,
we turn our attention to another observable, the mean square
displacement ΔðtÞ (MSD) of spheres from their initial positions:

ΔðtÞ= 1
N

XN
i=1

jxiðtÞ− xið0Þj2: [8]

Because we are interested only in the relaxation time, we start
from a thermalized configuration at φ0 = 2:5 and we jump di-
rectly to the density value φ we are studying. We stress that in
Eq. 8 xið0Þ is physical position of sphere i immediately after the
density jump. We let the system evolve for 2k steps at this density
φ. For φ<φd, as expected in a glassy system not too far from its
dynamical glass transition, we can observe a two-step relaxation
process: The system reaches a metastable plateau after about
210​ −  ​ 211 steps, remains trapped in it for a long time, after which
structural relaxation occurs. For each value of density we fitted
the MSD’s escape from the plateau with a power law function
and obtained the value of the relaxation time (see Supporting
Information for details). We fitted the resulting curve of τR as
a function of φ, displayed in Fig. 3, with the power law behavior
τR =Aðφ0 −φÞ−γ , obtaining in this way φ0 = 1:73± 0:04, γ = 4:1±
0:7. One can notice that the value for γ is not too different from
the one obtained in ref. 17 performing a similar analysis on the
relaxation time, whereas the value of φ0 is definitely smaller
than φd, but not too far from the one obtained in ref. 17.

Decompression and Compression Scans: Qualitative Comparison with
Experiments. In Fig. 4 we represent the behavior of the reduced
pressure p=P=ρ as a function of density for a decompression
protocol with starting density φ0 = 2:5 and a constant density-jump
amplitude Δφ=φn −φn−1 =φ1 −φ0. We have different curves for
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Fig. 1. Radial distribution function gðrÞ for φ1 = 1:7 at various times t,
starting from a thermalized initial configuration at φ0 = 2:5. Immediately
after the density jump, there are no particles in contact and gðrÞ shows
a drop where r ∼D (red points). While the system evolves at the new density
value φ1 = 1:7, spheres gradually return in contact, partially filling the dip.
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Fig. 2. Temporal behavior of the ratio Δp=Δpeq =gð1Þ between the excess
pressure Δp=p− 1 and the equilibrium value Δpeq for various φ values in the
liquid phase, for the decompression protocol with φ0 = 2:5, φ1 =1:6, φ2 =1:55,
φ3 = 1:5, φ4 = 1:45. We do not show the curves for φ=φ0 = 2:5 (planted con-
figuration, gð1Þ=1) and φ=φ1 = 1:6, not comparable with φ= 1:55,1:5,1:45
because the system reaches φ= 1:6 after a larger density jump. Only for φ= 1:45
we can observe a clear sign of structural relaxation, whereas for higher densities
the system remains trapped in the original metastable state.
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different values of the number 2k of Monte Carlo steps performed
at each density value. For sufficiently high φ, we see a deviation
from equilibrium independent from the decompression rate.
For values well above φd, for example φ= 2:0, the system is in the
glass phase, so relaxation takes place inside the original meta-
stable state and pressure deviates from its equilibrium value.
This deviation continues for the largest density values below φd,
for example φ= 1:6; 1:65; 1:7: The system continues to relax in-
side the original metastable state, not yet having sufficient time
to reach equilibrium. When density is sufficiently low, the life-
time of the original metastable state becomes smaller than 2k
and the onset of relaxation toward equilibrium takes place. The
relatively sharp pressure reclimb is dependent on decompression
rate, and it is faster for slower rates.
The decompression protocol adopted for our system, com-

posed by hard spheres, is equivalent to the typical DSC’s heating
scans, with two crucial differences. (i) In DSC experiments we
move toward the glassy phase by decreasing the temperature: In
the case of hard spheres the inverse of the density plays the same
role of the temperature. (ii) The starting configurations of the
dynamics are fully equilibrated and this corresponds only to the
case of DSC with infinitely slow cooling speed and relatively fast
heating speed. The observed deviation of pressure from equi-
librium for φ<φd is qualitatively the same phenomenon typically
observed in DSC experiments. One point is important to note: In
DSC experimental heating data the relaxation toward equilib-
rium for T >Ton is gradual and smooth (9), internal energy and
enthalpy are continuous at the onset point and the specific heat
gradually reaches its maximum value, whereas in Fig. 4 the re-
climbing of pressure seems relatively sharp, probably signaling
an underlying singularity (with infinite compressibility).
In Fig. 5 curves for different values of φ0 are represented,

corresponding to different metastable states. The performed scans
start from a planted configuration, corresponding to a point on the
equilibrium line, and lead the system to a pressure lower than the
equilibrium value during decompression. As expected, during de-
compression the relaxation of pressure toward equilibrium is sharp
and starts at a lower onset density the higher φ0 is, that is, the more
stable is the original glassy configuration: The system has memory of
the initial state of the glass (hysteresis). This effect is analogous to
what is observed in ultrastable real glasses (9): The more stable the
initial glass obtained via vapor deposition is, the longer is the de-
viation from equilibrium in the liquid phase and, as a result, the
higher is the onset temperature. When we compress the system

(only from φ0 = 2:5 in Fig. 5), pressure becomes higher than the
equilibrium one, as expected. This effect mirrors what happens
in decompression and the two sets of data concerning decom-
pression and compression scans from φ0 = 2:5 join smoothly,
as expected.

Replica Computation of Metastable States Curves
So far we have shown how the MK model allows one to prepare
the system in a glass state, even at densities much higher that the
dynamical one, without incurring the problem of extremely large
equilibration times. In addition, this model has another re-
markable advantage: It is in principle solvable, thanks to its
mean-field nature. The interaction network is tree-like (or, al-
ternatively, without loops) in the thermodynamic limit, like in
Van der Waals liquids (17, 21), and thus it also allows for a ready
comparison between numerics and analytic computations. In
particular, it allows us to perform computations in the replica
method. Although the MK model is soluble, its actual analytic
solution is exceedingly complex (23), so we have to resort to
some kind of approximation: Here we assume that the cages
have a Gaussian shape (22).
In the replica approach to the glass transition (1, 4), it is as-

sumed that for densities φ>φd the configuration space can be
unambiguously split in subsets, denoted as metastable glassy
states. These states are theoretically identified with the local
minima of a suitable functional, which plays in this context the
same role of the Thouless–Anderson–Palmer free energy in spin
glasses (2). In a mean-field situation and in the thermodynamic
limit, where metastable states live forever, the system becomes
then immediately trapped in one of these states and fails per-
manently to attain relaxation (the so-called mode coupling transi-
tion). However, out of mean field or with finite system size the
system will be finally able to hop out of the state (22) and relax,
although an extremely long time will be needed to do so (5).
The most important feature of these metastable states is that

they are degenerate, that is, they can have the same free entropy.
In fact, if one fixes a density φ>φd and a value s for the free
entropy, it is possible to see that the number of states that share
it (in the functional picture, the number of minima that all have
the same height s) scales exponentially with the size of the sys-
tem, Nðs;φÞ∝ eΣðs;φÞN . This causes the total free entropy of the
system to gain an extra term to take this fact into account:

Sðs;φÞ= s+Σðs;φÞ;

where Σðs;φÞ is called complexity (or, alternatively, configura-
tional entropy), a central quantity in replica theory.
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Fig. 3. Relaxation time as a function of density, computed as described in
the text. Red points are the result of an extrapolation (when τR is larger than
the largest number of performed Monte Carlo steps at each density value,
i.e., 222 steps) so they were discarded in the fit. Blue line is the fit result.
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decompression rates (k is the number of Monte Carlo steps performed at
each density value).
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The Replica Method. The replica method provides us with a stan-
dard procedure to compute the complexity and also the in-state
entropy (24). Its concrete application to hard-sphere systems is
described in full detail in section III of ref. 4; here we recall it
briefly. It consists of introducing m independent replicas of the
system and forcing them to occupy the same metastable state.
The entropy of the replicated system becomes then

Sðm;φÞ=Σðφ; sÞ+ msðφÞ;

where s is the free entropy of the state. In the thermodynamic limit,
the partition function will be dominated with probability 1 only by
the states with the entropy seq that satisfies the optimum condition

dΣðs;φÞ
ds

+m= 0: [9]

The in-state entropy seqðm;φÞ of those states and their complex-
ity Σeqðm;φÞ can then be derived using the following relations:

seqðm;φÞ= ∂Sðm;φÞ
∂m

; [10]

Σeqðm;φÞ=m2∂
�
m−1Sðm;φÞ�

∂m
; [11]

and the function Σðs;φÞ can then be reconstructed from the
parametric plots of seqðm;φÞ and Σðm;φÞ.
Isocomplexity Approximation. The replica formalism has been ap-
plied to the study of infinite dimensional hard spheres in a series
of papers (20, 25, 26) with remarkable success. However, those
results concern only the properties of the glass former after
equilibration, whereas our numerical results concern the glass
former when it is still trapped inside a metastable state, before
equilibration takes place. Indeed, one could argue that, for ex-
perimental and practical purposes, getting predictions for this re-
gime is even more important than the study of the equilibrium
solution for infinite waiting times. This program, however, poses
a challenge because in principle it requires solving the dynamics

for different preparation protocols. To this day, the only first-
principles dynamical theory for glass formers is the mode cou-
pling theory (8), which performs well near the dynamical transition
but notoriously fails at higher densities, forcing one to use
phenomenological models for the description of the high-density
(or low-temperature) regime, as done by Keys et al. (14). We
present here a computation that has the advantage of being
both fairly simple and static in nature.
Because the system is trapped in a single metastable state

during the simulation, it is clear that its physical properties are
determined only by the in-state entropy sðφÞ of that single state.
We can easily determine seq at the beginning of the experiment,
when the system is at equilibrium and it corresponds to seqðφ0; 1Þ,
but it is nontrivial to determine it when the density is changed
and the system falls out of equilibrium, because Eq. 9 allows us
to compute only quantities related to the states that dominate
the partition function. Indeed, we can see that for every density φ
we can choose the value of seq simply by appropriately tuning the
parameter m, but in principle we still have no way of knowing
what is actually the state the system is trapped into, that is, we
lack a criterion to choose a function mðφÞ consistent with the
requirement that the system remain trapped in a single meta-
stable state (27).
To overcome this difficulty, we assume that every state can

be followed in density without any crossings between states, or
bifurcations, or spinodal points (28); this means that the number
(and thus the complexity) of states that share the same value s of
the in-state entropy is a conserved quantity during the experi-
ment and can then be used as a label for the states. This method
is usually referred to as isocomplexity (27, 28).
In summary, to choose mðφÞ we impose that

ΣðmðφÞ;φÞ=Σð1;φ0Þ=Σ0 = const: [12]

This assumption is false in most cases. For example, it has been
recently shown that for infinite-dimensional hard spheres a full
replica symmetry breaking scenario holds for sufficiently high
density (26), invalidating the isocomplexity hypothesis. The only
exact method to tackle the problem would then be the state-
following approach, which uses the two-replica potential as a cen-
tral tool (3). However, this method is far more complex and its
application goes beyond the scope of this paper; here we always
use the isocomplexity approximation, referring to ref. 29 for the
complete state-following computation. For a systematic compar-
ison of the different approaches in the context of p-spin
glasses, see ref. 30.
We refer to Supporting Information for the details of the compu-

tation of the isocomplexity lines displayed in Fig. 6. Once the po-
tential sΣo

eq ðφÞ= seqðmΣ0ðφÞ;φÞ has been obtained, one can compute
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Fig. 5. Inverse of the reduced pressure p as a function of density during
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The black line represents the equilibrium pressure (Eq. 4). and black arrows
indicate the direction of experimental time, which runs from right to left
during decompression scans (points above the equilibrium line) and from left
to right during compression (points below the equilibrium line).
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Fig. 6. Isocomplexity curves (blue lines) in the ðm,φÞ plane for φ0 =
2,2:25,2:5,2:75,3. Green line is the clustering line.
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the desired physical observables using standard thermodynamic
relations (21). Final results for pressure during decompression and
compression are shown in Fig. 5 and compared with simulation
results. There is a good agreement between analytical and nu-
merical curves, especially for density values not too far from φ0.

Conclusions
We studied a mean-field model of glass transition, the MK model.
We were able both to obtain a stable glass, thanks to the planting
technique, and to study numerically and analytically (within
replica method and isocomplexity assumption) the variations
of pressure caused by relatively fast changes of density. We
showed, both numerically and analytically, that qualitatively
this model displays the same behavior of experimental ultra-
stable glasses reported in refs. 9 and 10. Our model seems to
show a first-order phase transition when evading from meta-
stable equilibrium (see ref. 29 and Supporting Information). This
is in qualitative agreement with experiments, which show that
the melting of ultrastable glasses (12, 13) has some features in
common with first-order transitions.

We have also shown that the RFOT approach, together with
the replica method, is able to qualitatively describe the process of
glass formation through a slow annealing, with very little com-
putational cost and without resorting to a posteriori phenome-
nological considerations. Our results can be compared with the
DSC experiments where cooling is much slower than heating and
as a result the cooled configurations (before heating) may be
approximated with equilibrium configurations. We can study this
situation in the MK model just because we can plant a thermal-
ized equilibrium configuration at the density we prefer. The very
interesting problem of understanding the behavior of DSC ex-
periments when the cooling speed is the same (or faster) than
the heating speed is not studied in this paper: In this situation
analytic computations could be done only if we had the dynamics
under analytic control, a goal that has not yet been reached.
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