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The calcium-binding protein parvalbumin (PV) hallmarks subpopulations of interneurons in the murine brain. We serendipi-
tously observed the de novo expression of PV in ependymal cells of the lateral ventricle wall following in vivo lesioning and
brain slicing for the preparation of organotypic hippocampal slice cultures (OHSCs). In OHSCs, de novo PV-expression begins
shortly after the onset of culturing, and the number of ependymal cells implicated in this process increases with time. PV-
immunopositive ependymal cells aggregate and form compact cell clusters, which are characterized by lumen-formation and
beating cilia. Scratches inflicted on such clusters with a sharp knife are rapidly closed. Exposure of OHSCs to NF-RB-
inhibitors and to antioxidants reduces PV-expression in ependymal cells, thereby implicating injury-induced inflammation in
this process. Indeed, in vivo stab injury enhances PV-expression in ependymal cells adjacent to the lesion, whereas neuramini-
dase denudation is without effect. PV-knock-out mice manifest an impaired wound-healing response to in vivo injury, and a
reduced scratch-wound reparation capacity in OHSCs. Whole-transcriptome analysis of ependymal-cell clusters in OHSCs
revealed down-regulation of genes involved in cytoskeletal rearrangement, cell motility and cell adhesion in PV-knock out
mice as compared with wild-type mice. Our data indicate that the injury-triggered up-regulation of PV-expression is mediated
by inflammatory cytokines, and promotes the motility and adhesion of ependymal cells, thereby contributing to leakage clo-
sure by the re-establishment of a continuous ependymal layer.
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Introduction

A monolayer of multiciliated, cuboidal ependymal cells

lines the brain ventricles (Bruni, 1998; Del Bigio, 2010).

The ependymal cell layer of the lateral ventricles is in inti-

mate spatial contact with the subventricular zone (SVZ),

which harbors both neural stem cells (NSCs) giving rise to

neuroblasts throughout life and differentiated niche cells

(Zhao et al., 2008). This neurogenic niche has a finely-

regulated microenvironment created by the two main niche

cells, ependymal cells and astrocytes (Mirzadeh et al., 2008),

which facilitates the maintenance of neurogenesis (Kazanis

et al., 2008; Kokovay et al., 2008). It is characterized by a

stringent spatial organization in which the ependymal cells

form a pinwheel-like structure around monociliated NSCs

(Mirzadeh et al., 2008). Ependymal cells also secrete substan-

ces that influence the proliferation of stem cells, such as the

pigment epithelium-derived factor (PEDF) (Ramirez-Castil-

lejo et al., 2006), noggin (Lim et al., 2000) and low-density

lipoprotein-related protein 2 (LRP2) (Gajera et al., 2010).

Ependymal cells could promote various functions in the

NSC-niche, including detoxification and scavenging of sub-

stances in the cerebrospinal fluid (Del Bigio, 2010), modula-

tion of ion transport and regulation of neuroblast migration

(Sawamoto et al., 2006). Disruption of the ependymal-niche

assembly by a removal of the lateral-membrane-

adaptor-protein ankyrin-3 leads to a disorganization of the
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SVZ-architecture and to a massive reduction in neurogenesis

(Paez-Gonzalez et al., 2011), highlighting the impact of ependy-

mal cells in the maintenance of stem cell proliferation and neuro-

blast migration. Niche ependymal cells and astrocytes were

recently found to maintain a high level of plasticity and to be

interconvertible by disrupting Notch- and EphB-signaling or

upon niche remodeling following injury (Nomura et al., 2010).

Ependymal cells express epidermal growth factor receptor

(EGFR) and platelet-derived growth factor receptor alpha

(PDGFRa) (Danilov et al., 2009), acquire a reactive phenotype

post stroke (Young et al., 2013) and during aging (Capilla-Gonza-

lez et al., 2014), and display similar functional properties to those

shown in astrocytes, such as the presence of gap junction cou-

pling, KIR channels, and glutamate transporters (Liu et al., 2006).

Nevertheless, the ependymal layer, unlike other epithelial

linings, is nonregenerative; ependymal cells do not proliferate in

the adult brain (Spassky et al., 2005). During the process of

aging or following neuraminidase-induced denudation of the

ependymal layer, a limited repair response is sustained by an

active SVZ-stem-cell niche in mice (Luo et al., 2008). In the

aging brain, stretching of the ependymal cells (Shook et al.,

2013) and the acquirement of a flattened and elongated mor-

phology (Capilla-Gonzalez et al., 2014) has also been observed,

indicating that they retain limited capacity for local remodeling.

One traditional ependymal-cell marker is S100b, a

calcium-binding protein (CaBP) of the EF-hand family that

also labels astrocytes (Cocchia, 1981). S100b exerts both intra-

and extracellular functions; intracellularly, S100b is a Ca21-

sensor, acts as a stimulator of cell proliferation and migration,

and might be implicated in the activation of astrocytes in the

course of brain damage (Donato et al., 2009). Another mem-

ber of this family, parvalbumin (PV), is classically expressed in

discrete populations of neurons in the brain, as well as in mus-

cle fibers (Celio, 1990; Celio and Heizmann, 1981). No signif-

icant intrinsic PV-expression has been detected in either

developing or adult glial cells, with only sporadic PV-

expression reported in isolated ependymal cells of the lateral

ventricle (Celio, 1990; Solbach and Celio, 1991) (see also

www.brain-map.org for negative in situ hybridization results).

We report that mechanical brain injury involving the lat-

eral ventricle wall triggers the de novo expression of PV in a

large subpopulation of ependymal cells close to the site of injury

in vivo and in organotypic cultures in vitro. Our data suggest

that the de novo expression of PV in ependymal cells promotes

their motility and adhesion, thereby facilitating wound repair

and preventing the leakage of cerebrospinal fluid.

Materials and Methods

Mice
C57BL/6 (Janvier, Lyon, France), Parvalbumin-Cre/loxP-DsRed-

loxP-EGFP (hereafter: PV-Cre/EGFP), PV-KO, PV-KO/EGFP and

Foxj1/EGFP mice (Jackson Laboratory, Bar Harbor, ME) were used

to prepare organotypic hippocampal slice cultures (Table 1). Mice

expressing Cre under the parvalbumin promoter were crossed with

an IRG (insulator/red/green) transgenic, double-fluorescent, Cre-

reporter strain [B6;C3-Tg(CAG-DsRed,-EGFP)5Gae/J; Jackson Lab-

oratory, Sacramento, CA], which has a widespread expression of a

loxP-flanked red fluorescent protein variant (DsRed-Express) prior

to Cre recombinase exposure, and enhanced green fluorescent pro-

tein (EGFP) following cre-mediated recombination. When bred to

mice that express Cre under the parvalbumin promoter, the resulting

offspring have the DsRed-Express cassette deleted in the

parvalbumin-expressing cells, allowing expression of the EGFP cas-

sette located just downstream. In a second set of experiment, PV-

KO/EGFP mice were generated by crossing a PV/EGFP strain

(B6.Tg(Pvalb-EGFP)1Hmon) to a PV-KO strain (B6.Pvalbtm1Swal

XB6Tg(Pvalb-EGFP)1Hmon). In a third set of experiments, a

Foxj1/EGFP mice strain [(B6;C3-Tg(FOXJ1-EGFP)85Leo/J, Jackson

Laboratory, Sacramento, CA, USA] expressing EGFP under the con-

trol of the human forkhead box J1 (Foxj1) gene promoter (Ostrow-

ski et al., 2003) was used for organotypic cultures. All animal

experiments were performed according to institutional guidelines

and with the permission of the Swiss federal and cantonal committee

on animal experimentation (Permission Nr: 22170 2012_26_FR and

21260 2010_26_FR).

Organotypic Hippocampal Slice Cultures (OHSCs)
Organotypic hippocampal slice cultures (OHSCs) were generated

from 7 postnatal-day-old C57BL/6, PV-Cre/EGFP, PV-KO, PV-KO/

EGFP, and Foxj1/EGFP mice, using the interface method previously

described (G€ahwiler et al., 2001; Stoppini et al., 1991). After decapi-

tation and excision of the brain, hippocampi were isolated manually

under a stereomicroscope. Once isolated, the hippocampus was

sliced to 400-mm-thick cross-sections with a McIlwain Tissue Chop-

per (Mickle Laboratory Engineering, Goose Green, UK). The hippo-

campal slices were transferred onto sterile cell culture inserts of 0.4-

mm pore size and 30-mm diameter (MillicellVR , Millipore, Zug, Swit-

zerland). In some experiments, slice cultures were also prepared—as

described above—from the region of the brain containing the lateral

wall of the lateral ventricle, following the isolation and removal of

the hippocampi. Slice culture inserts were placed into standard six-

well plates (Fisher Scientific, Wohlen, Switzerland) in an automatic

CO2 incubator (Fisher Scientific, Wohlen, Switzerland) at 37�C in

5% CO2 in serum-based medium (50% DMEM, 25% HBSS, 25%

horse serum, 6.5 g L21 glucose, fungizone, penicillin/streptomycin)

or transferred after 2 days in a serum-free medium (Neurobasal-A

medium with B27-supplement, 5 mM Glucose, 2.5 mM L-gluta-

mine, Fungizone, penicillin/streptomycin). All cell culture media,

reagents and supplements were from GIBCO (Life Technologies,

LuBioScience, Lucerne, Switzerland). Culture medium was replaced

every 2–3 days in a laminar flow. In some experiments, slice cultures

were treated with different compounds added to the dissection- and

culturing medium to block the effect of certain cytokines and growth

factors, e.g. nuclear factor kappa B (NF-RB) activation inhibitors

pyrrolidine dithiocarbamate (PDTC, 500 mM, Sigma–Aldrich,

Buchs, Switzerland) and 6-Amino-4-(4-phenoxyphenylethylamino)
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quinazoline (Act, 100 nM, Millipore, Zug, Switzerland); antioxidant

N-acetyl-cysteine (NAC, 100–500 mM, Sigma–Aldrich, Buchs, Swit-

zerland), gamma-glutamylcysteine synthetase-inhibitor buthionine

sulfoximine (BSO, 100–500 mM, Sigma–Aldrich, Buchs, Switzer-

land) and EGFR inhibitor cyclopropanecarboxylic acid-

dianilinopyrimidine (50 lM, Millipore, Zug, Switzerland). Slice cul-

tures were maintainted for 1–70 days in vitro (DIV1-DIV70), then

fixed for 3 h in 4% paraformaldehyde (PFA, Sigma-Aldrich, Buchs,

Switzerland) solution in 0.1M Phosphate Buffer (pH 7.4) at room

temperature, and processed for further experiments.

Mechanical Lesion of the Ependymal Zone in OHSC
OHSCs prepared from C57BL/6, PV-KO, PV-Cre/EGFP, and PV-

KO-EGFP mice (n 5 3 for each mouse line, number of slices varied

from six to nine slices per mouse; i.e. �18 scratch-wounds per mouse

line were evaluated) were subjected to a manually performed mechani-

cal lesion at the region of the ependymal zone at DIV7. The lesion

was implemented under a stereomicroscope with a sharp microdissec-

tor of 100-mm tip-size. Lesioned OHSCs were then placed into a

Leica DMI6000 time-lapse fluorescent microscope (Leica, Germany)

equipped with an environmental chamber and images were taken

every 15 min for a total duration of 41 h. To assess the scratch closure

time, the image series obtained in the bright field channel were used

to define and measure various parameters, such as the scratch-wound

area (in mm2) and the wound edge distances (in mm) along three par-

allel lines drawn in the area of the scratch, perpendicular to the angle

of the lesion. These parameters were measured over the whole dura-

tion of the time-lapse recording at an interval of every 3 h in each slice

subjected to a scratch. The obtained values were normalized to the ini-

tial scratch wound area and wound edge distances measured at the

“zero” time-point (the first image of the time-lapse recording after the

scratch) and are presented as percentages of the initial parameters. In

addition to the above mentioned parameters, the motion of individual

cells expressing EGFP (in mice of PV-Cre/EGFP and PV-KO-EGFP

slices) around the scratch were also measured as the distance (in mm)

between their initial position at the beginning of the time-lapse

recording and their position 24 h later. As control, the motion of

EGFP-expressing cells in unlesioned slices was measured.

TABLE 1: Transgenic Mice Used in the Study

Transgenic mice
name in the study

Systematic strain name Reference

PV-Cre/EGFP B6;129P2-Pvalbtm1(cre)Arbr/J X
B6;C3-Tg(CAG-DsRed,-EGFP)5Gae/J

Hippenmeyer S; Vrieseling E; Sigrist M; Portmann T;
Laengle C; Ladle DR; Arber S. 2005. A developmental
switch in the response of DRG neurons to ETS
transcription factor signaling. PLoS Biol 3(5):e159.
[PubMed: 15836427] [MGI Ref ID J:100886]

De Gasperi R; Rocher AB; Sosa MA; Wearne SL;
Perez GM; Friedrich VL Jr; Hof PR; Elder GA. 2008.
The IRG mouse: a two-color fluorescent reporter for
assessing Cre-mediated recombination and imaging
complex cellular relationships in situ.
Genesis 46(6):308-17. [PubMed: 18543298]
[MGI Ref ID J:137251]

PV-KO B6.Pvalbtm1Swal Schwaller, J. Dick, G. Dhoot, S. Carroll, G. Vrbova,
P. Nicotera, D. Pette, A. Wyss, H. Bluethmann,
W. Hunziker, M.R. Celio, Prolonged contraction-relaxation
cycle of fast-twitch muscles in parvalbumin knockout mice,
Am. J. Physiol. Cell Physiol. 276 (1999) C395 - C403

PV-KO/EGFP B6.Pvalbtm1SwalXB6Tg
(Pvalb-EGFP)1Hmon

Schwaller B. The use of transgenic mouse models to reveal
the functions of Ca21 buffer proteins in excitable cells.
Biochim Biophys Acta. 2012 Aug;1820(8):1294-303.
doi: 10.1016/j.bbagen.2011.11.008. Epub 2011 Nov 27.
Review. PubMed PMID: 22138448

Foxj1/EGFP (B6;C3-Tg(FOXJ1-EGFP)85Leo/J Ostrowski LE; Hutchins JR; Zakel K; O’Neal WK. 2003.
Targeting expression of a transgene to the airway surface
epithelium using a ciliated cell-specific promoter.
Mol Ther 8(4):637-45. [PubMed: 14529837]
[MGI Ref ID J:101822]

List of the transgenic mice used in the study, including the abbreviated form used throughout the manuscript, the systemic name of the
strains and the relating references.
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Cell Death Assays
OHSCs prepared from 7-day-old C57BL/6 and PV-KO (n 5 5

each) mice were subjected to an evaluation of cell death by assessing

propidium iodide (PI) uptake combined with measurement of lactate

dehydrogenase (LDH) activity in the culture medium. PI (Clontech,

Mountain View, CA) was added to the culture medium at a concen-

tration of 0.5 mg mL21 on DIV6. At DIV7, multiple OHSCs from

C57BL/6 and PV-KO (n 5 3 each) mice were subjected to a

mechanical lesion at the region of the ependymal zone as described

above, while control OHSCs from C57BL/6 and PV-KO (n 5 2

each) mice remained unlesioned. PI-stained cell nuclei in the epen-

dymal regions of all OHSCs of each animal were imaged using an

inverted fluorescent microscope (Leica DMI6000) at six different

time-points (1 h prior to scratching, 1, 8, 24, 48, and 72 h post-

scratching). Lactate dehydrogenase (LDH) release to the culture

medium was measured in culture wells containing OHSCs from

C57BL/6 and PV-KO (n 5 3 each) subjected to mechanical lesion

in the ependymal zone at DIV7, and OHSCs from control, unle-

sioned mice (C57BL/6 and PV-KO, n 5 2 each). For each animal,

two insert membranes—each holding 10 OHSCs—were cultured

and 20 mL of the culture media was obtained from each of the cul-

ture wells at six different time-points (1 h prior to scratching, 1, 8,

24, 48, 72 h post-scratching). The culture media samples were sub-

jected in technical duplicates to a quantitation of LDH activity using

the lactate dehydrogenase activity assay kit (Sigma–Aldrich, Buchs,

Switzerland) following the manufacturer’s instructions. In brief,

LDH reduces NAD1 to NADH, which is detected by a colorimet-

ric assay (kmax 5 450 nm). Culture media samples were incubated

at 37�C in 96-well plates and absorbance at 450 nm was measured

every 5 min by a spectrophotometric multiwell plate reader (Victor

X3 by Perkin Elmer, Waltham, MA), followed by calculation of the

LDH activity based on the amount of NADH generated. Fresh cul-

ture media was used as negative control.

Whole-mount Immunohistochemistry
Whole-mount immunohistochemistry was performed with well char-

acterized antibodies to PV (1:1,000, polyclonal PV-28, monoclonal

PV-235, goat PV-214; Swant, Marly, Switzerland), S100b (1:1,000,

Swant, Marly, Switzerland), CD133/Prominin-1 (1:500, eBioscience,

Vienna, Austria), Doublecortin (1:100, Santa Cruz Biotechnology,

Heidelberg, Germany), Ki67 (1:500, NeoMarkers/Fisher Scientific,

Wohlen, Switzerland), GFAP (polyclonal 1:650, Dako Schweiz AG,

Baar, Switzerland and monoclonal 1:1,000, Novus Biologicals, Cam-

bridge, UK), Nestin (1:500, Millipore, Zug, Switzerland), BrdU

(1:200, Abcam, Cambridge, UK) and GFP (1:3,000; polyclonal and

monoclonal from Life Technologies, Milan Analytica, Rheinfelden,

Switzerland). Primary antibodies were diluted in 0.1M TBS pH 7.3

with 0.1% Triton X-100 and 10% bovine serum added and applied

overnight at 4�C. After thorough washing, primary antibody staining

was revealed using species-specific fluorophore-conjugated secondary

antibodies (Cy5 from Jackson Immuno Research/Milan Analytica,

Rheinfelden, Switzerland; Alexa 488 and Alexa 568 from Life Tech-

nologies, LuBioScience, Lucerne, Switzerland). Antibodies against

Ki67 and the goat-antiserum PV-214 were detected with biotinylated

secondary antibodies (Jackson Jackson Immuno Research/Milan Ana-

lytica, Rheinfelden, Switzerland) and revealed using Cy5 conjugated

Streptavidin (Jackson Immuno Research/Milan Analytica, Rheinfel-

den, Switzerland).

Transmission Electron Microscopy (TEM)
OHSCs were prepared from 7 postnatal-day-old wild-type C57BL/6,

PV-Cre/EGFP and PV-KO/EGFP mice, and maintained in culture

for 7, respectively 31 days. OHSCs were fixed with a solution of 4%

PFA. Fixed whole-mount slice cultures were exposed to anti-PV-28

(rabbit, Swant, 1:2,000), respectively anti-GFP antibodies (mouse,

Life Technologies, 1:3,000) for 3 days at 4�C, followed by the

avidin-biotin-preoxidase technique. The specimens were post-fixed in

a solution containing 2.5% glutaraldehyde in 0.1 M Na-cacodylate-

HCl buffer (pH 7.4) at room temperature for 2 h and thoroughly

rinsed with 0.1 M Na-cacodylate-HCl buffer. The specimens were

post-fixed with 1% OsO4 and dehydrated through graded ethanol

concentrations. After embedding in epon, regions containing

ependymal-cell clusters were excised and affixed onto a block of resin

for preparing 0.5-lm-thick semithin sections for light microscopic

observation, followed by ultrathin sections cut with an ultramicro-

tome (Ultracut E, Reichert-Jung, Vienna, Austria). Ultrathin sections

were stained with uranyl citrate and visualized in a transmission

electron microscope (Biotwin CM-100, Philips, Eindhoven,

Netherlands).

PV-KO and C57BL/6 mice (n 5 1 each) were transcardially

perfused with a solution of 2.5% Glutaraldehyde and 2% PFA in

Na-cacodylate buffer. Brains were post-fixed overnight and then cut

into 100mm-thick coronal sections with a vibratome (Vibratome

1000 Sectioning System, Technical Products International, St. Louis,

MO). The sections were post-fixed with 1% OsO4 and dehydrated

through graded ethanol concentrations. After embedding in epon,

the medial and lateral wall of the anterior lateral ventricle and the

hippocampal wall of the caudal lateral ventricle were excised and

affixed onto a block of resin for preparing 0.5-lm-thick semithin

sections for light microscopic observation, followed by ultrathin sec-

tions cut with an ultramicrotome (Ultracut E, Reichert-Jung,

Vienna, Austria). Ultrathin sections were stained with uranyl citrate

and visualized in a transmission electron microscope (Biotwin CM-

100, Philips, Eindhoven, Netherlands).

Scanning Electron Microscopy (SEM)
PV-KO and C57BL/6 (n 5 1 each) were transcardially perfused

with a solution of 2.5% glutaraldehyde and 2% PFA in Na-

cacodylate buffer. The lateral wall of the lateral ventricle was en-face

isolated as previously described (Mirzadeh et al., 2008), followed by

the isolation of the hippocampi. The specimens were post-fixed with

1% OsO4 and dehydrated through graded ethanol concentrations.

They were subjected to critical point drying with carbon dioxide and

then covered with a 20nm-thin gold layer. The specimens were

visualized in a Phenom Pro electron microscope (Phenom-World,

Eindhoven, Netherlands).

Primary Ependymal Cell Cultures
Primary ependymal cell cultures were generated by mechanical isola-

tion of the ventricular zone of the lateral ventricle walls from brains
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of newborn PV/cre/EGFP or Foxj1/EGFP mice. Mice were sacrificed

by decapitation, brains were excised and the region containing the lat-

eral ventricle wall was dissected in ice-cold PBS. Lateral ventricle wall

explants were enzymatically digested at 37�C for 5 min in 0.05%

Trypsin/EDTA solution (GIBCO, LuBioScience, Lucerne, Switzer-

land) and resuspended in pre-warmed culture medium containing

DMEM supplemented with 10% fetal calf serum (GIBCO, LuBio-

Science, Lucerne, Switzerland) following centrifugation. Explants were

mechanically dissociated by gentle pipetting through fire-polished

glass pipettes of three different tip diameters. After centrifugation and

washing with PBS, cells were resuspended and plated in multiwell cell

culture plates (Nunc, Milan Analytica, Rheinfelden, Switzerland) at

150,000–200,000 cells mL21 in fresh cell culture medium.

In vivo Stereotactic Lesion of the Lateral Ventricle
Wall
C57BL6 (n5 8, of either sex) and PV-KO/EGFP (n5 4, of either sex)

adult mice (4- to 6-months-old) were used to perform in vivo stereotac-

tic mechanical lesion of the lateral ventricle wall. Animals were anesthe-

tized with Ketamine/Xylazine (100 and 10 mg kg21 body weight,

respectively) and the head was immobilized in a stereotactic apparatus

(Kopf Instruments, Tujunga, CA). A 0.5 mm2 opening was drilled into

the skull at the stereotactic coordinates and the lesion was carried out

unilaterally over the left lateral ventricle with a 1-mm-long-blade. The

stereotactic coordinates of the lesion were the following: mediolateral:

12.5 mm, rostrocaudal: from Bregma 21.0 mm to 22.0 mm, depth:

23.0 mm. After the blade penetrated the brain parenchyma, it was held

in position for 5 s, then removed. As control, one animal was sham-

operated, whereas it underwent the same procedure except for penetra-

tion of the blade into the brain parenchyma. To estimate the prolifera-

tion rate in the lateral ventricle zone of the mice which underwent the

in vivo injury, animals received cumulative BrdU (Sigma–Aldrich,

Buchs, Switzerland) injections intraperitoneally 24 h, resp. about 3 h

prior to transcardial perfusion at a concentration of 100 mg kg21 body

weight. Lesioned and sham-operated animals were transcardially per-

fused with a 4% PFA solution in 0.1M PBS (pH 7.4) on the 7th day

post-injury, the brains were removed and post-fixed overnight at 4�C,
transferred to cryoprotectant solution (18% saccharose) and processed

for cutting 30-mm-thick-sections with a freezing microtome (Frigomo-

bil, Reichert-Jung, Vienna, Austria). Immunohistochemistry on free-

floating sections was performed with PV and BrdU antibodies. In

another set of experiments, lesioned C57BL/6 mice (n 5 3) were

allowed a survival time of 6 weeks post-injury before sacrifice.

Intraventricular Injection of Neuraminidase
Neuraminidase from Clostridium perfringens (Roche Diagnostics,

Rotkreuz, Switzerland) was dissolved in sterile 0.9% NaCl solution at

a concentration of 50 U mL21. Young adult C57BL/6 (n 5 9) and

PV-KO (n 5 9) male mice (3- to 4-months-old) were anesthetized

with Ketamine/Xylazine (100 and 10 mg kg21 body weight, respec-

tively) and the head was immobilized in a stereotactic apparatus (Kopf

Instruments, Tujunga, CA). One microliter of diluted neuraminidase

(0.15, 1.5, and 15 mU mL21) was delivered unilaterally to the rostral

lateral ventricle with a stereotactically placed 5 mL Hamilton microsyr-

inge. (Coordinates: 20.2 antero-posterior, 1-mm lateral and 2-mm

ventral relative to Bregma). Saline injection was performed in control

mice. Animals were transcardially perfused on the 4th day following

the intraventricular injection, the brains were cut into 40-mm-thick-

coronal sections and immunostained for GFAP, S100b, and PV. The

rostrocaudal series of coronal sections were then processed for meas-

urements of the lateral ventricle size (LV) and quantification of the

fluorescent intensity of the immunostainings. The LV size measure-

ment was performed on a series of 12 coronal sections—each at 240

mm from each other—at the same Bregma levels for each animal,

whereas the surface of the LV (in mm2) was divided by the surface of

the brain in each section. Thus, we obtained percentages over a coro-

nal series and did the statistical analysis comparing the LV/Brain sur-

face ratio in each treatment group. Similarly, we conducted the

measurement of the fluorescent intensities in the region of the ven-

tricles on 12 coronal sections at 240 mm using ImageJ software.

Visualization and Image Analysis
Image analyses were performed with a Leica TCS SP5 confocal laser

microscope (Leica, Germany), a Leica DMI6000 time-lapse fluores-

cent microscopy (Leica, Germany), a digital slide scanner Nano-

zoomer 2.0-HT (Hamamatsu Photonics France, Massy, France),

respectively with transmission electron microscopy (Biotwin CM-

100, Philips, Eindhoven, Netherlands). Image post-processing and

contrast adjustments were performed using ImageJ software, LAS AF

software (Leica, Germany) and Adobe Photoshop CS2.

Quantification of the Fluorescent Intensity
To assess the fluorescent intensity of the PV-immunostaining in the

ependymal-cell clusters after exposing OHSCs to compounds that

modify the oxidative stress level, the Leica Application Suite

Advanced Fluorescence software (LAS AF) from Leica Microsystems

(Leica, Germany) was used. Out of the control and treated groups,

three OHSCs were chosen for the analysis. In each slice, ependymal-

cell clusters were identified and several regions of interest (ROIs)

with a volume of 45 mm (x) 3 45 mm (y) were fixed in the

maximal-projection images recorded of ependymal-cell clusters

throughout their whole volume. The mean fluorescent intensity was

measured and displayed on a scale ranging from 0 to 255, corre-

sponding to the pixel intensities in eight-bit images. The mean val-

ues were calculated from each of these data sets per group. Statistical

analyses were performed applying the Student’s t test to compare dif-

ferent treatment groups to each other. Differences were considered

significant at P < 0.05.

Time-lapse Fluorescent Image Recording
Image sequences were obtained with an inverted fluorescent micro-

scope (Leica DMI6000) equipped with an environmental chamber at

constant temperature (37�C). Brightfield and fluorescent images

were taken every 15–30 min for several days, respectively brightfield

images continuously recorded to assess cilia beating using the LAS

AF Software (Leica, Germany).

Antibody Array
The concentration of inflammatory mediators in the acutely dis-

sected organotypic hippocampal slices was estimated with a Mouse
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Cytokine Antibody array C3 (RayBiotech, Lucerna-Chem, Lucerne,

Switzerland). Hippocampi were dissected, sliced and maintained as

described above in serum-free medium, followed by the collection of

the medium supernatant 30 min, 2 h and 24 h after the preparation

of the OHSCs. A set of cytokines was semi-quantitatively measured

in the medium supernatant at different time points following the

manufacturer’s instructions.

Gene Microarray Experiment
OHSCs were generated from 7-day-old C57BL/6 (n 5 11, of either

sex) and PV-KO mice (n 5 10, of either sex) and maintained for 21

days in culture. On the 21st day in vitro (DIV21) the ependymal

aggregates were manually excised after identification of ependymal

clusters by the presence of beating cilia under a stereomicroscope.

The excised tissue was collected in 1.5ml Eppendorf tubes contain-

ing 350 mL RNA Lysis Buffer (Qiagen, Milan Analytica, Rheinfel-

den, Switzerland). The extracts were disrupted and homogenized

using 5-mm stainless steel beads (Qiagen) in a Tissue Lyser LT (Qia-

gen) for 2 min at 20 Hz. The tissue lysates were processed for purifi-

cation of total RNA using an RNeasy Plus Micro kit (Qiagen),

following the manufacturer’s instructions. The quantity of the

extracted total RNA was measured with a NanoDrop 2000 spectro-

photometer (Fisher Scientific, Wohlen, Switzerland) and Agilent

2100 bioanalyzer (Agilent Technologies, Palo Alto, CA). The RNA

quality and RIN (RNA integrity number) were assessed with the

RNA 6000 Pico Kit (Agilent). Samples with a RIN value lower than

7.6 were excluded from the experiment. Equivalent amounts of

RNA were pooled from three individuals out of nine C57BL/6 mice

and from three individuals out of nine PV-KO mice, resulting in

three sample series, each containing 105 ng RNA, for the wild-type

C57BL/6 samples (WT1-WT3) and three series for the PV-KO sam-

ples (PVKO1-PVKO3). The pooled RNA samples were stored at

280�C until they were processed for the whole transcript amplifica-

tion by NuGEN OvationVR Pico WTA System V2 (NuGEN Tech-

nologies, San Carlos, CA). The whole transcript amplification,

labelling and gene chip hybridization on an Affymetrix Mouse Gene

1.0 ST Array (Affymetrix, Santa Clara, CA) were performed at the

Genomic Technologies Facility (GTF) at the University of Lausanne,

Switzerland. Hierarchical clustering was performed on fold-changes

calculated from normalized expression values on log2 scale using the

software “Expression Console” provided by Affymetrix (version

1.2.1.20). The genes with a statistically consistent fold-change were

selected for subsequent analysis. Statistical analysis of the data and

further clustering was performed with Multiexperiment Viewer

(MeV) v4.9 software (TM4 Microarray Software Suite, Dana-Farber

Cancer Institute, Boston, MA) following the developers’ instructions

as previously described (Saeed et al., 2003), respectively by Meta-

Core software from GeneGO (Thomson Reuters, New York, NY).

To discover potential diversity of biological processes between WT

and PV-KO ependymal cells, Gene Set Enrichment Analysis (GSEA)

(Subramanian et al., 2005) from Broad Institute of Massachusetts

Institute of Technology and Harvard (Cambridge, MA) was used.

Gene sets were compiled from Ncl, KEGG, PFAM, Biocarta, and

GO databases. GSEA analysis was performed using gene-set permu-

tations with a false discovery rate (FDR) cut-off of 5% and family-

wise error rate (FWER) of 5%.

Results

De Novo Expression of Parvalbumin in Ependymal
Cells of Organotypic Hippocampal Slice Cultures
(OHSCs)
During the course of culturing organotypic hippocampal slices,

we observed a de novo, ectopic expression of parvalbumin in a

region corresponding to the ventricular zone (VZ) lining the

lateral ventricle (Fig. 1A,B). Ependymal cells of the lateral ven-

tricle wall which do not usually express this calcium-binding

protein were found in cell-clusters corresponding to the epen-

dymal monolayer around the edge of the slices (Fig. 1A,B), and

had elongated, bipolar forms (Fig. 1C). To investigate if de novo
PV-expression is restricted to the ependymal lining of hippo-

campal slices, we prepared slice cultures from the lateral ventri-

cle wall covering the caudatoputamen. De novo expression of

PV was found also in the ependymal-cell clusters of the lateral

wall explants (Fig. 1D,D’). In both cases, PV-immunopositive

cells had a radial morphology and were found to be co-labeled

with the ependymal-cell marker S100b (Fig. 1D,D’). The

ependymal character of the PV-positive cells was confirmed by

the presence of cytoplasmic lipid droplets, a cell-surface fringe

of microvilli, lumen-formation and the existence of motile cilia

(Fig. 1E,E’), and by S100b-immunoreactivity (Figs. 1D,D’ and

2C). PV-driven expression of EGFP was observed prompt after

the onset of culturing, and the number of PV-positive cells in

the cultured ependymal monolayers increased with time (Fig.

1F). We observed and recorded beating cilia on the apical sur-

face of PV/EGFP-expressing ependymal cells in both organo-

typic hippocampal slice cultures and in primary ependymal-cell

cultures (Fig. 1G, Supporting Information Movie S1). In pri-

mary cultures, beating cilia were observed on the surfaces of the

PV-positive ependymal cells as late as DIV45 (Fig. 1G, Sup-

porting Information Movie S1). Beating cilia were also present

on other cells which did not express PV-driven EGFP. To inves-

tigate whether the up-regulation of PV influences cilia move-

ment, we quantified the cilia beating frequency between

ependymal cells that expressed PV-driven EGFP and that were

PV-negative. We found a beating frequency of 7.81 Hz 6 2.81

in PV1 cells and 8.28 Hz 62.06 in PV- cells, an insignificant

difference (P5 0.77) (Fig. 1H). Thus, we assume that the pres-

ence of PV in ependymal cells does not influence the cilia beat-

ing frequency.

PV-immunoreactive Ependymal Cells are Positive
for Foxj1, S100b, and CD-133
Under physiological conditions, ependymal cells are considered

to be post-mitotic and quiescent (Spassky et al., 2005). How-

ever, they have been described to undergo dedifferentiation in
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FIGURE 1: De novo parvalbumin-expression in ependymal cells in organotypic hippocampal slice culture (OHSC) and dissociated primary
ependymal-cell culture (PECC). (A) Overview image of a DIV7-OHSC after epon-embedding and 1% OsO4 treatment. Dashed outline
indicates the localization of the ependymal-cell cluster. (B) Confocal z-stack projection of an ependymal-cell cluster (marked by dashed
outline) at the ventricular zone (VZ) region in an OHSC specimen from a PV-Cre/EGFP mouse fixed at DIV7. PV-expressing cells are
EGFP-positive, whereas cells not expressing PV are DsRed-positive. (C) Confocal z-stack projection of PV-positive ependymal cells
revealed by PV-immunohistochemistry and DAPI staining in OHSC of a C57BL/6 mouse at DIV7. Cells form compact cell aggregates,
occasionally extending their cytoplasmic processes over the cell island. Bi- and multipolar cell shapes with elongated nucleus and cyto-
plasmic processes are visible. (D–D’) PV is expressed in ependymal-cell clusters of both the hippocampal wall and the lateral wall of the
lateral ventricle in DIV7 C57BL/6 slice cultures. Ependymal cells have a radial morphology and are co-labeled with S100b. (E–E’) Trans-
mission electron micrographs of ependymal-cell clusters of OHSCs of a C57BL/6 mouse fixed on DIV7 reveal ependyma-specific cell
organelles, such as lipid droplets, cilia, basal bodies and microvilli, and lumen-formation. (F) Live fluorescent time-lapse image sequence
of OHSCs from a PV-Cre/EGFP mouse showing increasing number of PV-expressing ependymal cells at six time points from DIV2 until
DIV28. Dashed ellipses indicate ependymal-cell clusters. (G) Live fluorescent and bright field images of primary ependymal cell culture
from a PV-Cre/EGFP mouse at DIV45. A subset of ependymal cells express PV-driven EGFP, display long cytoplasmic processes and pos-
sess motile cilia (red arrows). The boxed area is shown at higher magnification to visualize the motile cilia bundles (pointed at by pink
arrows) at the apical surface of ependymal cells. White stars mark motile cilia at the surface of PV-EGFP negative ependymal cells. (H)
The graph shows that the cilia beating frequency of PV-expressing and PV-negative ependymal cells does not differ significantly. Error
bars show the standard deviation. (PECC: primary ependymal cell culture, OHSC: organotypic hippocampal slice culture, DG: dentate
gyrus, cil: cilium, bb: basal body, mv: microvilli, nucl: nucleus, ld: lipid droplet, lu: lumen).
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FIGURE 2: PV-positive cells in the ependymal clusters are Foxj1-, S100b-, and CD133-positive and neural progenitor and precursor cells
are intermingled between them. (A) Confocal z-stack projection of PV-immunohistochemistry on OHSCs of a Foxj1/EGFP mouse at
DIV11 reveals a Foxj1/EGFP positive ependymal-cell cluster co-labeled with PV-antibody. Most of the cells emerging from the cell island
are double-labeled (white arrows and arrowheads), although some Foxj1/EGFP positive cells are PV-negative (green arrows) and some
PV-positive cells are Foxj1/EGFP negative (red arrows). (B–G) are confocal z-stack projections of immunostainings of ependymal-cell
islands in OHSC of C57BL/6 mice at DIV7. (B) GFAP is not co-labeled with PV (green arrowheads) in the same cells. (C) S100b-
immunostaining co-labels PV-immunopositive cells in the ependymal-cell clusters (see white arrowheads in the inset on the right). (D)
Nestin-immunopositive cell bodies (red arrowheads) and processes are intermingled between PV-immunopositive cells (green arrow-
heads), but no double-labeled cells were detected. (E) CD133-immunostaining co-labels some PV-immunopositive cells in the
ependymal-cell clusters (see white arrowheads). (F) Doublecortin-immunostaining (Dcx) reveals a Dcx-positive cell (red arrowhead) and
its processes intermingled between PV-positive ependymal cells (green arrowheads), however, no co-expression can be observed. (G)
Ki67-immunostaining reveals cell nuclei in the active phases of the cell cycle. Ki67-stained cell nuclei (red arrowheads) are found around
PV-positive ependymal cells. No labeling was detected in the cell nuclei of PV-positive cells (green arrowheads), suggesting that PV-
positive cells were not actively proliferating at the time of fixation at DIV7.
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response to strong stimuli such as mechanical injury (Carlen

et al., 2009). Indeed, a subpopulation of ependymal cells

expresses Prominin-1/CD133—a stem-cell marker (Coskun

et al., 2008). In OHSCs, we observed morphological features

similar to those described in “reactive” ependymal cells,

namely, the acquirement of radial and bipolar forms (Gregg

and Weiss, 2003). The remarkable fate plasticity of ependymal

cells (Nomura et al., 2010) gives rise to questions concerning

the origin of PV-expressing ependymal cells, as well as to their

potential to generate new cells and to contribute to the process

of niche-remodeling that follows tissue damage in OHSCs and

in vivo.
Foxj1-driven EGFP-expression in the brain is restricted

to ependymal cells and to a subset of progenitor cells derived

from the ventricular zone (Jacquet et al., 2009; Ostrowski

et al., 2003). Foxj1/EGFP-expressing murine pups were used

to study the morphology and the pattern of PV-expression in

ependymal cells of OHSCs. In the ependymal clusters, co-

labeling for Foxj1/EGFP and PV was observed in the ependy-

mal cells themselves, as well as in several cells that lay close to

the ependymal nest (Fig. 2A). The cells surrounding the

ependymal clusters manifested an elongated form and pro-

truded long cytoplasmic processes, which projected radially

from the nest. Most of the cells co-expressed Foxj1/EGFP

and PV (Fig. 2A). However, amongst the cells surrounding

the ependymal clusters, a few of the Foxj1/EGFP-expressing

ones were not PV-positive, suggesting that only a subpopula-

tion of the ependymal cells produce the CaBP.

To delineate the characteristics of the ependymal-cell

clusters, DIV7 OHSCs were subjected to co-immunostaining

for the astrocyte marker GFAP and the ependymal marker

S100b. Immunoreactivity for GFAP did not coincide with

the PV/EGFP-expressing cells (Fig. 2B), whereas that for

S100b did (Fig. 2C). This finding confirms that the PV-

positive cells in the ventricular niche are a subset of ependy-

mal cells.

Increase in the Number of PV-positive Cells Reflects
De novo PV-synthesis—Not Cell Proliferation
To investigate if PV-expressing ependymal cells retain prolifer-

ative or progenitor-like properties, immunostaining for Nestin

(a marker of neural stem cells), Prominin-1/CD133 (a marker

of ependymal cells and progenitors in the VZ), Doublecortin

(a marker of neural progenitors and of migrating neuroblasts)

and Ki67 (a marker of cell proliferation) was performed.

Immunoreactivity for nestin was disclosed in several cell

bodies and in cytoplasmic processes that ran between the PV-

positive ependymal cells. However, none of the nestin-positive

cell bodies co-expressed PV (Fig. 2D). Although ependymal

cells with a certain stem-cell capacity have been shown to

express CD133 (Coskun et al., 2008), their identity remains

controversial (Chojnacki et al., 2009; Kriegstein and Alvarez-

Buylla, 2009). Immunostaining for CD133 was observed in

the PV-positive cells (Fig. 2E), thereby confirming their epen-

dymal phenotype. The neuroblast marker Doublecortin was

not co-expressed with PV (Fig. 2F). However, as was observed

for nestin-immunoreactivity, long neural processes coursing

between the PV-positive ependymal cells were labeled. Ki67

is a marker of cell nuclei in the active phases of the cell cycle,

thus it marks cells that were proliferating at the time of fixa-

tion of the tissue. Immunostaining for Ki67 revealed most of

the PV-positive ependymal cells in the clusters to be non-

proliferative at DIV7, at the time-point of the fixation (Fig.

2G). However, owing to the dense organization of the PV-

positive ependymal cells, which rendered difficult an identifi-

cation of their borders, some degree of co-localization may

not be categorically excluded. Additionally, we cannot exclude

that PV-positive ependymal cells might have been proliferat-

ing earlier than DIV7, as Ki67 marks only the cell nuclei that

are currently in the active phases of the cell cycle. But even if

a few of the ependymal cells in the OHSCs had undergone

division, the hypothetically low proliferation rate could not

have accounted for the massive increase in the number of the

PV-positive ependymal cells. Hence, we believe that the

increase in the number of the PV-positive ependymal cells

that was observed in the OHSCs reflects the de novo expres-

sion of the CaBP in a continuously recruited population

rather than proliferative activity.

The Up-regulation of Parvalbumin in Ependymal
Cells is Injury-related and Facilitates Gap Closure
After a Scratch-Wound Inflicted to OHSC
To investigate the mechanism whereby PV-expression is trig-

gered in ependymal cells, OHSCs of PV-Cre/EGFP-mice

were subjected to a scratch-wound assay. Ependymal-cell

aggregates of DIV7 OHSCs were mechanically injured with

the tip of a sterile microdissector and PV-driven EGFP-

expression was monitored by time-lapse microscopy for 41 h

and followed up for 7 consecutive days. Twenty-nine h after

lesioning, cells adjacent to the site of injury manifested

increased EGFP-fluorescence intensity than did those at some

distance from the lesion (Fig. 3A). This finding suggests that

the mechanical lesioning of the cells can directly induce an

up-regulation of the parvalbumin gene. Seventy-two hours

after scratching, the cells adjacent to the lesion still showed

more intense EGFP-expression than did those further away

from it. Six, resp. seven days after scratching, EGFP-

fluorescence was homogenously distributed throughout the

ependymal cell mass, as was the case prior to wounding (Fig.

3A). Our findings indicate that the de novo expression of PV

that was observed in OHSCs might be a direct consequence

of the mechanical lesion that occurs during their preparation.
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FIGURE 3: Mechanical lesion of ependymal-cell clusters in OHSCs induces PV-upregulation in ependymal cells adjacent to the lesion. (A)
Time-lapse fluorescent image sequence of scratch-wound experiments in ependymal-cell clusters in PV-Cre/EGFP OHSCs shows increase in
PV-driven EGFP-expression in the cells adjacent to the scratch. About 29 h following the scratch, EGFP-expression is visibly stronger in
cells at the two edges around the lesion. At 72 h after scratch, EGFP-expression is still stronger around the mechanical lesion; whereas 6
and 7 days post-scratch, EGFP-expression appears more homogeneous. (B) Time-lapse bright field image sequence of PV-Cre/EGFP and
PV-KO ependymal scratches over 24 h reveal that PV-Cre/EGFP scratch rims approach each other more rapidly than their PV-KO counter-
parts. Ependymal-cell clusters are pseudocolored with orange; the background caused by the cell culture insert membrane was subtracted
in favor of a better visualization. (C and D) The scratch gap closing time of PV-Cre/EGFP and PV-KO ependymal scratches are presented as
percentages of the initial wound area (C) and as percentages of the initial median distance between the wound rims (D). The speed of the
regression is shown as a trendline with the corresponding equations. The wound area is decreasing consistently in both PV-Cre/EGFP and
PV-KO lesions, although more rapidly in PV-Cre/EGFP (C) (P 5 0.01 at 6 h and <0.005 starting from 9 h). Likewise, the median wound dis-
tance shows a faster decreasing tendency in PV-Cre/EGFP as compared with PV-deficient ependymal-cell clusters (D) (P < 0.05 at 3 h and
<0.001 starting from 6 h). (E) The graph shows that the motion of the EGFP1 cells over 24 h around the wound rims is higher following the
scratch in PV-Cre/EGFP than in PV-KO/EGFP mice. The motion of unlesioned EGFP1 cells (5control cells) of both PV-Cre/EGFP and PV-
KO-EGFP were also measured: no significant difference can be found between their cell motility. (F) Time-lapse image sequences show the
movement of EGFP1 ependymal cells over 24 h next to a scratch (the position of the scratch is marked by dashed red line). PV-Cre-EGFP1
cells (tracked with colored arrow) show considerable cell shape alterations and move closer to the scratch line while their PV-KO/EGFP1
counterparts (tracked with colored arrow) display virtually no major movement. Error bars show the standard deviation. (***: P < 0.0005).
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Next, we compared the kinetics of wound closure following a

mechanical scratch at the continuous ependymal-cell cluster

in OHSCs of C57BL/6 (n 5 3), PV-Cre/EGFP (n 5 3),

PV-KO (n 5 3), and PV-KO-EGFP (n 5 3) mice. The suc-

cess rate for scratch closure in the C57BL/6 and PV-Cre/

EGFP ependymal cell clusters was over 80%, whereas a low

percentage of 30% was observed in PV-KO ependymal clus-

ters (examples shown in Fig. 3B). Quantification of the

wound area over time showed that the PV-KO lesions indeed

remained larger than those of the PV-Cre/EGFP lesions

(69.6% of the initial wound area 69.1% for PV-KO com-

pared with 27.7% 6 5.8% for PV-Cre/EGFP after 41 h, Fig.

3C). The scratch-wound area was significantly larger in PV-

KO ependymal-cell clusters as compared with their wild-type

counterparts starting at 6 h post-scratch (P 5 0.01), and the

difference increased over time (9 h post-scratch P 5 0.001,

from 12 h until 41 h post-scratch P < 0.001). This phenom-

enon was even more prominent when we examined the dis-

tance between wound edges over time: the median wound

edge distance was 85.2% 611.7% for PV-KO and 23.7% 6

11.6% for PV-Cre/EGFP after 41 h (Fig. 3D). The wound

edge distance in PV-KO ependymal-cell clusters was signifi-

cantly larger as prompt as 3 h post-scratch (P 5 0.02), and

similarly to the wound area, the difference increased over

time (at 6 h post-scratch P 5 0.0008, from 9 h post-scratch

until 41 h post-scratch P < 0.0001). Thus, we conclude that

in OHSCs a mechanically disrupted ependymal cell layer has

the capacity of re-establishing a continuous layer, and this

capacity is impaired in PV-deficient ependymal cells.

Next, we examined the motility of PV-positive ependy-

mal cells around the lesion based on their PV-driven EGFP

expression, and compared it to that of PV-KO-EGFP cells.

This strain cannot transcribe PV: 85% of the Pvalb-gene-

coding sequence is replaced with the phosphoglycerate-kinase

(PKG) neo-cassette (Schwaller et al., 1999); the activity of the

promoter is, in contrast, unaffected and drives the expression

of EGFP. Hence, using this murine strain, PV-deficient cells

can be visualized and followed-up. Generally, in PV-Cre/

EGFP slices, EGFP1 cells around the lesion showed a

remarkable motility and cell shape alteration in contrast to

the PV-deficient ones (Fig. 3F). We measured the absolute

motion of EGFP1 cells around the scratch from the start-

point of the lesion until 24 h later, and we found that the

ependymal cells expressing PV moved considerably more than

those lacking PV (Fig. 3E,F). PV-Cre/EGFP ependymal cells

around the lesion moved 41.3 mm 6 17 mm in 24 h, while

PV-deficient cells moved only 17.5 mm 6 12.3 mm (P <

0.00001). In comparison, the motion of EGFP1 cells of the

control, unscratched ependymal-cell clusters was around 12.2

mm 6 5.7 mm in PV-Cre/EGFP ependymal clusters and

10.48 mm 6 4.1 mm in the PV-KO-EGFP ones (Fig. 3E),

moderately higher in PV-expressing ependymal cells, although

not significantly (P 5 0.1). This suggests that PV-expressing

ependymal cells have an enhanced motility following the dis-

ruption of the continuous layers. PV-deficient ependymal

cells, in contrast, have a significantly more restricted motility.

Next, we addressed the question if the impairment seen

in the scratch-wound closing kinetics of the ependymal-cell

clusters of PV-deficient slices could be caused by a more

extensive degree of cell death following scratching compared

with their wild-type counterparts. We assessed the degree of

cell death by two independent approaches suggested by previ-

ous studies in organotypic slice culture systems, namely quan-

titation of lactate dehydrogenase (LDH) release into the

medium and propidium iodide (PI) uptake (Lossi et al.,

2009). We measured the baseline degree of cell death 1 h

prior to scratching in all the inserts and slices in both WT

and PV-KO (n 5 3, 10 OHSCs/well, total number of

scratched OHSCs 5 60 for each), then repeated measure-

ments 1 h, 8 h, 24 h, 48 h, 72 h and 1 week after scratching

and compared the values to unlesioned control (n 5 2, 10

OHSCs/well, total number of control OHSCs 5 40 for each

WT and PV-KO). The quantitative approach of LDH activity

measurement revealed significantly increased LDH efflux

(P < 0.05, Student’s t test) from scratched ependymal-clusters

in both WT and PV-KO at 1 h post-scratch (5.6 mU mL21

6 0.9 mU mL21 vs. 1.7 mU mL21 6 0.5 mU mL21 in

WT; 5.3 mU mL21 6 0.4 mU mL21 vs. 2.0 mU mL21 6

0.5 mU mL21 in PV-KO), 8 h post-scratch (7.0 mU mL21

6 0.8 mU mL21 vs. 3.2 mU mL21 6 0.1 mU mL21 in

WT; 7.5 mU mL21 6 1.0 mU mL21 vs. 2.2 mU mL21 6

0.5 mU mL21 in PV-KO), 24 h post-scratch (10.5 mU

mL21 6 1.1 mU mL21 vs. 3.8 mU mL21 6 0.3 mU mL21

in WT; 11.5 mU mL21 6 1.5 mU mL21 vs. 4.8 mU mL21

6 0.4 mU mL21 in PV-KO), 48 h post-scratch (11.9 mU

mL21 6 1.0 mU mL21 vs. 6.7 mU mL21 6 0.7 mU mL21

in WT; 10.7 mU mL21 6 1.3 mU mL21 vs. 4.0 mU mL21

6 0.4 mU mL21 in PV-KO) and 72 h post-scratch (15.5

mU mL21 6 2.0 mU mL21 vs. 8.9 mU mL21 6 1.2 mU

mL21 in WT; 17.0 mU mL21 6 1.9 mU mL21 vs. 9.0 mU

mL21 6 0.8 mU mL21 in PV-KO) when compared with

unlesioned control (Fig. 4A). After 1 week, LDH activity was

similar to the pre-scratch values from both scratched and con-

trol slices (2.2 mU mL21 6 0.9 mU mL21 in WT; 1.5 mU

mL21 6 0.6 mU mL21 in PV-KO). Next, we compared if

LDH activity differed between WT and PV-KO scratched sli-

ces after subtracting the background of the control slices’

activity. We found no significant difference in none of the

time-points of the measurements (Fig. 4B; pre-scratch 1.4

mU mL21 6 0.3 mU mL21 in WT vs. 2.5 mU mL21 6
0.5 mU mL21 in PV-KO, P 5 0.07; 1 h post-scratch 3.9

mU mL21 6 0.9 mU mL21 in WT vs. 3.3 mU mL21 6
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FIGURE 4: Mechanical lesion of ependymal-cell clusters in OHSCs induces cell death in ependymal cells adjacent to the lesion; the
degree of cell death measured by LDH release and PI uptake does not differ significantly between PV-KO and their wild-type counter-
parts. (A) LDH (lactate dehydrogenase) activity (in mU mL21) in the culture medium of scratched and control ependymal clusters of
C57BL/6 OHSCs was detected by a colorimetric assay at seven different time-points (1 h pre-scratch, 1 h, 8 h, 24 h, 48 h, 72 h, and 1
week post-scratch). LDH activity was significantly higher in the medium supernatant of scratched slices than in that of control slices at 1,
8, 24, 48, and 72 h following the lesion. The increase in LDH activity dropped to non-significant in the culture medium 1 week following
mechanical lesion. Error bars show SEM. (*: P < 0.05, **: P < 0.005, Student’s t test). (B) LDH activity (in mU mL21) in the culture medium
of scratched ependymal clusters of C57BL/6 and PV-KO OHSCs at different time-points following background subtraction (LDH activity
of the control slices) show increase in cell death in both WT and PV-KO following scratching as compared with the pre-scratch levels.
The level of LDH activity drops to pre-scratch levels at 1 week after scratching. There is no significant difference between LDH activity
measured in scratched PV-KO and WT slices in none of the time-points. (C) Time-lapse image sequence of propidium iodide (PI, red)
uptake merged with the brightfield images in WT ependymal-cell cluster before and 1 h, 8 h, 24 h, 48 h, 72 h, and 1 week following
scratching. (D) Time-lapse image sequence of propidium iodide (PI, red) uptake merged with the brightfield images in PV-KO ependy-
mal-cell cluster 1 h pre-scratch and 1 h, 8 h, 24 h, 48 h, 72 h, and 1 week following scratching.
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0.4 mU mL21 in PV-KO, P 5 0.55; 8 h post-scratch 3.8

mU mL21 6 0.8 mU mL21 in WT vs. 5.2 mU mL21 6
1.0 mU mL21 in PV-KO, P 5 0.27; 24 h post-scratch 6.7

mU mL21 6 1.1 mU mL21 in WT vs. 6.7 mU mL21 6

1.5 mU mL21 in PV-KO, P 5 0.97; 48 h post-scratch 5.2

mU mL21 6 1.0 mU mL21 in WT vs. 6.8 mU mL21 6
1.3 mU mL21 in PV-KO, P 5 0.34; 72 h post-scratch 6.5

mU mL21 6 2.0 mU mL21 in WT vs. 8.0 mU mL21 6
1.9 mU mL21 in PV-KO, P 5 0.61; 1 week post-scratch 2.2

mU mL21 6 0.9 mU mL21 in WT vs. 1.7 mU mL21 6

0.6 mU mL21 in PV-KO, P 5 0.63). We also confirmed

these results by visually observing propidium iodide uptake at

the same time-points as above in both WTand PV-KO scratched

slices (Fig. 4C,D). By the visualization of PI uptake in several

scratched slices, qualitatively we could observe large amount of

dead cells in the scratch and in its vicinity, whereas the spared

ependyma adjacent to the scratches showed only minimal PI

uptake in few single cell nuclei in both WTand PV-KO. A quan-

titative analysis, e.g. number of dead cells proved to be difficult

due to the excessive cell debris - emitting strong patch-like red

fluorescence—found in the scratch-wound (Fig. 4C,D), never-

theless, by carefully observing all the scratched WT and PV-KO

slices, there appeared to be abundant PI-uptake in the cell nuclei

in the cell debris of the scratch wounds, confirming the result of

the LDH activity quantitation.

Up-regulation of Parvalbumin in the Ependymal
Cells of OHSCs can be Inhibited by Blocking NF-RB
and Decreased by Antioxidant Treatment
The observation that the de novo expression of PV in ependymal

cells follows injury raises the question as to which factors are

involved in the induction process. In an experimental model of

acute inflammation induced by a peripheral injection of lipo-

polysaccharides, the transcriptome of the choroid plexus—a

double-layered fold of the pia mater that is covered with a sheet

of ependymal cells—manifested an early increase in the expres-

sion of chemo- and cytokines (IL-6, IL-1b, TNF-a, etc.), as well
as in that of the inflammatory regulator transcription factor NF-

RB (Marques et al., 2009). Because ependymal cells express cyto-

kine receptors on their basolateral membrane (Marques et al.,

2011), we wondered whether the expression of PV could be

induced by inflammatory cytokines or by their mediators.

To identify the nature of the soluble cytokines that were

present in OHSCs, aliquots of the supernatant medium were

withdrawn for analysis at defined intervals after the preparation

of the OHSCs from C57BL/6 mice. A cytokine-antibody array

was utilized for this purpose. The analysis revealed the culture

medium to contain a broad spectrum of cytokines. About 24 h

after the onset of culturing, IL-6 was expressed at the highest

level, with a remarkable presence of VCAM-1, G-CSF,

CXL16, and sTNFRI (Fig. 5A). Hence, during preparation

and culturing of OHSCs, intrinsic cells of the slices do indeed

secrete inflammatory cytokines, any of which could potentially

play a role in the induction of PV-expression.

NF-RB-signaling is involved in cellular responses to strong

stimuli, such as stress and inflammation. By regulating the expres-

sion of cytokines and growth factors, NF-RB-signaling controls

the survival of cells and the immune response (Ghosh et al.,

1998). We observed that blockage of NF-RB-signaling led to an

almost complete inhibition of PV-expression in the ependymal

cells of OHSCs by DIV5 (Fig. 5B). When exposing the dissection-

and culturing medium of OHSCs of PV-Cre/loxP-DsRed-loxP-

EGFP mice to inhibitors of the NF-RB-signaling, PV-driven

EGFP was present only in a few scattered cells in the region of the

ependymal-cell cluster, while most ependymal cells expressed

DsRed. In contrast, the control, untreated ependymal-cell clusters

displayed numerous cells that expressed PV-driven EGFP (Fig.

5B). This finding suggests that the de novo PV-synthesis in ependy-

mal cells is dependent on NF-RB-signaling. Inflammation via

NF-RB-signaling might result in the upregulation of the Pvalb
gene also in other epithelial systems, based on gene-expression data

collected from the GEO Profiles DataBase (NCBI). Pvalb was

upregulated in skin cells in an inflammatory skin phenotype

mouse model with keratinocyte-specific IjB kinase beta (IKKbeta)

overexpression (GEO Accession: GDS3766); likewise, in the pros-

tate epithelium in a mouse model for inflammatory signaling

based on expression of a constitutively active version of IjB kinase

2 (IKK2ca) (GEO Accession: GDS4119).

To ascertain whether the injury-induced expression of

PV in ependymal cells is mediated by an elevated level of oxi-

dative stress, OHSCs were exposed to either N-acetyl-cysteine

(NAC) or buthionine sulfoximine (BSO). NAC suppresses

the production of reactive oxygen species, whereas BSO

inhibits the activity of gamma-glutamylcysteine synthetase,

whereby the level of gluthatione is reduced and the degree of

oxidative stress thereby heightened. PV-immunoreactivity was

observed in ependymal cells by DIV7 in each case (Fig. 5C).

Next, we quantified the mean fluorescent intensity of the PV-

immunostaining to estimate the amount of this CaBP present

in the ependymal-cell clusters. The quantification revealed the

fluorescent intensity of the PV-immunostaining to be signifi-

cantly lower after NAC-treatment than that of the control,

untreated slices (Fig. 5D). This effect was dose-dependent:

the fluorescent intensity of the PV-immunostaining was lower

after exposing the slices to 500 mM NAC than when exposed

to 100 mM NAC. In contrast, exposure to BSO did not result

in a significant difference in the fluorescent intensity of the

PV-immunostaining as compared with the control slices (Fig.

5D). The findings indicate that exposure of the culture

medium to antioxidants decreases the injury-evoked induction

of PV-synthesis, whilst exposure to stronger oxidative stress

has no influence on it.
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FIGURE 5: Regulation of PV-expression in ependymal cells by inflammatory regulator NF-RB, oxidative stress and EGFR signaling. (A) A
cytokine antibody array was performed to reveal cytokines present in the medium supernatant 30 min, 2 h, and 24 h after the prepara-
tion of OHSCs of C57BL/6 mice. Some inflammatory cytokines exhibited a massive increase after 24 h, such as IL-6, GCSF, VCAM-1,
MIP-1g (marked by red rectangles). Other cytokines decreased in concentration, e.g. VEGF, TNF-alpha, CD30 (marked by blue rectan-
gles). (B) Live fluorescent images of ependymal-cell clusters (marked by dashed ellipses) in OHSC of a PV-Cre/EGFP mouse at DIV5
treated with the NF-RB inhibitor Act (100nM), as compared with untreated controls show that NF-RB inhibition results in decreased PV-
driven EGFP expression in almost all ependymal cells. Control ependymal cells, in contrast, show intense PV-promoter driven EGFP
expression. Cells not expressing PV are DsRed-positive. (C) Confocal laser micrographs of ependymal-cell clusters in OHSCs of a C57BL/
6 mouse fixed on DIV7 treated with modulators of oxidative stress and immunostained for PV. Slices were treated with the antioxidant
N-acetyl-cysteine (NAC) to reduce oxidative stress or with the GSH-synthesis inhibitor buthionine sulfoximine (BSO) to enhance oxidative
stress. (ROS: reactive oxygen species). (D) The mean fluorescent intensity of the PV-staining shows lower intensity values in ependymal-
cell clusters treated with NAC than in untreated control or following BSO treatment. E.) Live fluorescent images of ependymal-cell clus-
ters (marked by dashed ellipses) in OHSC of a PV-Cre/EGFP mouse at DIV5 treated with EGFR-inhibitor (50mM), as compared with
untreated controls show that in treated slices, PV-expression is restricted to some single cells, whereas the untreated control
ependymal-cell cluster expresses abundant PV-driven EGFP. Error bars show the standard deviation. (**P < 0.005; ***: P < 0.0005).
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Our experiments reveal the de novo expression of PV to

be related to the injury-induced secretion of inflammatory

mediators. The level of PV-production in ependymal cells is

inversely proportional to the degree of oxidative stress. Given

that PV-positive interneurons are highly susceptible to

oxidative-stress-induced damage (Cabungcal et al., 2006), this

is a surprising finding. After treatment with BSO, the num-

ber of PV-positive interneurons in OHSCs did indeed drop

significantly, whereas after NAC-treatment a slight increase in

this parameter was observed (data not shown). These findings

indicate that the expression of PV is regulated differently in

reactive ependymal cells and in PV-positive interneurons.

Up-regulation of Parvalbumin is Modulated by
EGFR-signaling: A Possible Role in Injury-Induced
Remodeling
Signaling via the epidermal growth factor receptor (EGFR) indu-

ces radial-glial phenotype in the ependymal cells (Gregg and

Weiss, 2003). It also plays a role in injury-induced tissue remod-

eling: wounding of epithelia triggers the activation of the EGFR,

which is implicated in the induction of cell motility (Block and

Klarlund, 2008). Acting on EGFR, TGF-a was shown to induce

a massive increase in the rate of proliferation of SVZ- and VZ-

cells after injury (Fallon et al. 2000; Gleason et al., 2008). Fol-

lowing spinal cord injury, EGFR is upregulated by glial progeni-

tors and an intrinsic EGFR activation is necessary for normal

glial scar formation (White et al., 2011). Furthermore, the

administration of EGF to mice that have been subjected to cere-

bral ischemia leads to a replenishment of PV-positive neurons in

the injured striatum (Teramoto et al., 2003).

We investigated the possibility that the de novo expres-

sion of PV in ependymal cells might depend upon EGFR-

signaling by exposing OHSCs of PV-Cre/loxP-DsRed-loxP-

EGFP mice to the EGFR inhibitor cyclopropanecarboxylic

acid-dianilinopyrimidine (50 lM) (Fig. 5F). The result was

similar to that observed after the inhibition of NF-RB-signal-

ing: PV-driven EGFP was absent from most ependymal cells

by DIV5, when compared with the untreated control. Indeed,

ependymal cells of the OHSCs exposed to EGFR-inhibitor

displayed DsRed, while most untreated ependymal cells

expressed EGFP (Fig. 5F). This suggests that PV-synthesis

was inactive in ependymal cells when EGFR-signaling was

counteracted. In the light of this finding, we hypothesize that

injury and the ensuing process of remodeling might activate

EGFR signaling, which in turn induces—directly or indi-

rectly—the expression of PV in ependymal cells.

The Lack of Parvalbumin in PV-Knock-Out Mice
Influences the Organization of Ependymal Cells in
OHSC
Adult wild-type and PV-KO mice have a similar, normal

ependymal phenotype both at the lateral wall of the anterior

lateral ventricle and at the lining of the hippocampus (Fig.

6A,B), suggesting that PV-deficiency does not influence the

normal development and the function of the ependymal cells

under physiological conditions.

Next, we investigated the degree to which the absence

of PV influences ependymal cell phenotype following an

injury. For this purpose, we used OHSCs of C57BL/6 and

PV-KO/EGFP mice.

To investigate the consequences of a lack of PV in epen-

dymal cells, the OHSCs of PV-KO/EGFP mice were main-

tained for several weeks, followed by fixation at different

time-points after the onset of culturing, and their morpholog-

ical features were compared with those of their wild-type

(WT) counterparts. After 1 week of culturing, the EGFP-

expressing cells that were derived from the PV-KO/EGFP

mice were less tightly packed than were their PV-expressing

wild-type counterparts (Fig. 7A). After 2 weeks, the EGFP-

immunostained ependymal cells were sparser, less well organ-

ized and more irregular in shape than were their PV-

expressing counterparts. After 3 and 4 weeks, respectively, the

difference between the ependymal clusters of PV-KO and

wild-type mice became progressively more pronounced: the

PV-KO/EGFP-positive cells were sparse and often made con-

tact with each other via cytoplasmic processes, not via their

cell bodies (Fig. 7A). Transmission electron microscopy

revealed additional morphological changes (Fig. 7B). At

DIV7, the contacting cell membranes of adjacent ependymal

cells in wild-type OHSCs were characterized by widespread

interdigitations, which were maintained until DIV31. In the

OHSCs of PV-KO/EGFP mice, the intercellular connections

were looser at DIV7, yawning gaps existed between neighbor-

ing cells and the interdigitations were less prominent. At

DIV31, interdigitations were seldom observed and the inter-

cellular contacts were characterized by smooth surface con-

tours. Our findings indicate that in tissue cultures, the

absence of parvalbumin has a profound influence on the mor-

phology of ependymal cells and on their organization,

revealed by the loosening of the intercellular connections.

This could be the consequence of an impaired adaptation to

the altered physiological conditions found ex vivo in the

absence of parvalbumin.

A Comparative Gene-microarray Analysis of PV-KO
Ependymal-cell Aggregates Reveals Major
Differences at the Gene Expression Level, Including
Genes Implicated in Cytoskeletal Remodeling and
in the Response to Hypoxia
To improve our understanding of the molecular mechanisms

that contribute to the fine-tuning of PV-expression, and to

identify the genes that are differentially regulated in the cas-

cade of events following injury, ependymal cells that were
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isolated from the DIV21-OHSCs of wild-type and PV-KO

mice were subjected to a comparative whole-transcriptome

analysis (Fig. 7C,D). Using a fold-change cut-off level of �2

at an adjusted P value of 0.05%, 576 genes were down-

regulated and 346 up-regulated in the ependymal cells of PV-

KO mice. That so many genes were differentially expressed in

the ependymal cells of the two strains of mice suggests that

the absence of PV has a profound influence on their basic

physiological activity. To elucidate the pathways and processes

that might be implicated in the response of PV-expressing

ependymal cells to injury, we concluded a GeneGo and Gene

Set Enrichment Analysis (GSEA) on the genes that were dif-

ferentially expressed in the ependymal cells of the two strains

of mice at a fold-change cut-off level of �1.5 and an adjusted

FIGURE 6: Ependymal cells of the lateral ventricle in the adult murine brain retain a healthy ultrastructure in both C57BL/6 and PV-KO
mice. (A and B) As shown by transmission (A) and scanning (B) electron micrographs, wild-type and PV-KO adult mice possess a normal-
appearing ependymal cover at the lateral wall of the anterior lateral ventricle (level of the caudatoputamen) and at the medial wall at
the level of the hippocampus.
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FIGURE 7: Ultrastructural changes in aged ependymal cell-clusters of PV-KO/EGFP OHSCs reveal loosening of the ependymal-cell organization
and a simultaneous disappearance of intercellular interdigitations in the absence of PV. (A) Confocal z-stack projections comparing PV-
immunohistochemistry in wild-type ependymal-cell clusters to EGFP-immunohistochemistry in PV-KO/EGFP ependymal-cell clusters in OHSCs from
DIV7 until DIV28. In wild-type mice, PV-immunohistochemistry reveals compact, dense organization of ependymal cells from DIV7 until DIV28 in
the ependymal-cell clusters. In PV-KO/EGFP ependymal-cell clusters, cells are less densely packed at DIV7, and lose contact over time. (B) Transmis-
sion electron micrographs of wild-type and PV-KO/EGFP ependymal cells of OHSCs at DIV7 and at DIV31, labeled with PV-, resp. EGFP-
antibodies, and revealed by DAB confirm these findings. Single DAB-stained cells were pseudocolored to better distinguish between cell borders.
Wild-type ependymal cells appear packed together with neighboring cells, and display intensive interdigitations of the lateral cell membranes at
the sites of intercellular junctions at DIV7, which can be observed at DIV31 as well. In comparison, DIV7 PV-KO/EGFP ependymal cells display wider
gaps in between neighboring cells and their intercellular surface appears smoother. At DIV31, PV-KO/EGFP ependymal cells are scattered and
have lost connections and interdigitations. (C andD) A genemicroarray study was performed to understand the differences at the gene expression
level between wild-type and PV-KO ependymal-cell aggregates of DIV21 OHSCs. (C) Out of the selected up-regulated genes, 77 are involved in
hypoxia-induced stress responses and cell cycle arrest, 13 in cell adhesion and cell junctions, 28 in extracellular matrix remodeling and cell-matrix
interactions, and 43 genes are mitochondria-associated. (D) Among the selected down-regulated genes in PV-KO extracts, 79 are involved in the
regulation of cytoskeleton remodeling, 24 in cell adhesion and cell junctions, 53 in cell division, and different phases of mitosis and cytokinesis.
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p value of 0.05%. GeneGO analysis revealed the differential

expression of numerous pathways and biological processes.

The pathways that were notably impacted included those that

are involved in the remodeling of the extracellular matrix

(ECM), in the remodeling of the cytoskeleton, in the regula-

tion of Rho/Rac/Cdc42 pathways involved in cell motility, in

cell adhesion and in cell-matrix interactions. In the ependy-

mal cells of the PV-KO mice, down-regulated genes included

those that are involved in the rearrangement of the cytoskele-

ton, in ephrin-signaling, in microtubule- and spindle-

assembly, in the initiation of mitosis and cell division, and in

the general immune response (e.g., phagocytosis- and

chemotaxis-related genes). Up-regulated genes included those

that are involved in the responses to hypoxia and oxidative

stress, the remodeling of the ECM, in cell–matrix interactions

and in glutathione metabolism. We postulated that the crucial

processes underlying the differences between the injured epen-

dymal cells of wild-type and PV-KO mice impacted cytos-

keletal remodeling. This process is necessary to enhance the

motility of the cells, which permits their re-adaptation to

changes in the microenvironment and to injury-induced

stress. In the ependymal cells of the PV-KO mice, a subset of

genes (such as Ank3, Rhob, Rhog, Pak1, Vav1, Wasf1, Arpc1a,

Arpc1b, Cdc42ep1, Rap1a) that is involved in the regulation

of cytoskeletal rearrangement was indeed down-regulated

(Table 2), thereby implying impairment in the regulation of

cell motility and cell shape. In contrast, 34 genes that are

involved in the responses of cells to hypoxia and oxidative

stress (such as Hmox1, Gadd45a, Lox, Nupr1, Gss, Gsr, Gsta3,
Gstm2, Cebpb, Fosl1) were up-regulated in PV-KO (Table 2).

However, 7 genes that are likewise involved in the response

to hypoxia were down-regulated, thereby indicating that alter-

native mechanisms may be operative at the absence of PV. A

number of other genes were also differentially expressed in

the ependymal cells of the two strains of mice. These

included those that are involved in cell adhesion and in the

regulation and assembly of cell junctions. A set of genes

encoding mitochondrial proteins and enzymes was up-

regulated in the ependymal cells of PV-KO mice. This find-

ing accords with existing data that point to an inverse correla-

tion between the PV-content and mitochondrial volume of

different cell types (Chen et al., 2006).

Using GSEA analysis at a cut-off level of false discovery

rate (FDR) of <0.05% and family wise error rate (FWER) of

<0.05%, seven gene sets were positively enriched in the epen-

dymal cells of the PV-KO mice; one was negatively enriched.

The positively enriched gene sets were those that are involved

in the response to hypoxia and in the response of cancer cells

to treatment with receptor tyrosine kinase (RTK)-inhibitors,

Ras-inhibitors and arsenic trioxide. These findings indicate

that in the ependymal cells of the PV-KO mice, the levels of

general stress, hypoxia and growth inhibition were increased.

The single gene set that was negatively enriched in the epen-

dymal cells of the PV-KO mice is implicated in the develop-

ment of oligodendrocytes. However, in the present study, we

did not investigate whether the development of oligodendro-

cytes and their myelinating capacity are related to the injury-

induced de novo expression of PV in ependymal cells.

Parvalbumin is Up-regulated in Ependymal Cells
After In vivo Injury of the Lateral Ventricular Wall
To ascertain whether the injury-induced up-regulation of PV

in the ependymal cells occurs also in vivo, the lateral ventricle
wall of adult wild-type and PV-KO/EGFP mice was lesioned

with a stab-wound (Fig. 8A,B). Seven days after lesioning the

animals were transcardially perfused and the brains were proc-

essed for immunohistochemistry. Seven days post-injury, the

ependymal layer on the injured side manifested PV-

immunoreactivity (Fig. 8C,E), whereas in that of the sham-

operated mice (not shown) and in that on the uninjured side

no immunoreactivity for PV was observed in the lateral ven-

tricle wall (Fig. 8D,E’). Six weeks following lesioning, PV-

immunoreactivity was still present in the ependymal layer

adjacent to the stab lesion (Fig. 8F), although at a more mod-

erate level than at 1-week-post-injury; whereas it was virtually

absent on the unlesioned side (Fig. 8F’). PV-immunostaining

of the ependymal layer occurred along the entire length of

the lesion, as was revealed by the inspection of 1-week-post-

injury consecutive coronal sections (Fig. 8G–G’’’). In PV-KO/

EGFP mice (in which the parvalbumin-promoter is active,

although no PV is produced), the ependymal layer manifested

intense immunoreactivity for EGFP 1-week-post-injury (Fig.

8H–H’’’, 8J). These findings suggest that the lesioning of the

lateral ventricle wall activates the Pvalb-promoter in the epen-

dymal cells. However, while in wild-type mice PV-

immunoreactive cells occurred both in the ependymal layer

and in the vicinity of the lesion (Fig. 8I), in the PV-KO/

EGFP mice EGFP-immunoreactivity was confined to cells of

the ependymal layer (Fig. 8J). Lesioned wild-type mice mani-

fested wound-closure and scar formation around the lesion,

while these were virtually absent from PV-KO/EGFP mice.

We also performed GFAP immunostaining to mark reactive

astrocytes around the injury and the VZ (Fig. 8I,J). We found

that numerous astrocytes were present around the lesion in

both PV-KO-EGFP and wild-type mice; however, a scar tissue

with massive GFAP staining was present only in the wild-type

(Fig. 8I). In addition, in the cells of the scar tissue that

reunited the wound rims, GFAP and PV were co-localized in

the same cells (inset, Fig 8I), suggesting that scar forming

astrocytes might also express the CaBP. We have observed

PV-immunopositive cells in the stab-wound region also 6-

weeks-post-injury (inset, Fig. 8F) just above the ependymal
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TABLE 2: Genes Differentially Expressed in WT and PV-KO Ependymal Cells in DIV21-OHSCs

ID Fold
change

adj.P.Val Gene
symbol

Gene description

Cytoskeletal rearrangement, regulation of cell shape and cell motility

10527430 21.83 0.0048919 Arpc1a actin related protein 2/3 complex, subunit 1A

10527441 21.57 0.028817 Arpc1b actin related protein 2/3 complex, subunit 1B

10363786 23.64 0.0006517 Ank3 ankyrin 3, epithelial

10530100 21.69 0.004705 Arap2 ArfGAP with RhoGAP domain, ankyrin repeat and PH
domain 2

10413771 21.77 0.0278853 Capn7 calpain 7

10545538 22.02 0.0025788 Ctnna2 catenin (cadherin associated protein), alpha 2

10425116 22.41 0.0023557 Cdc42ep1 CDC42 effector protein (Rho GTPase binding) 1

10465278 25.83 0.0001519 Cdc42ep2 CDC42 effector protein (Rho GTPase binding) 2

10568024 22.89 0.0003017 Coro1a coronin, actin binding protein 1A

10356020 26.95 6.51E-05 Dock10 dedicator of cytokinesis 10

10385118 22.40 0.008793 Dock2 dedicator of cyto-kinesis 2

10596583 21.69 0.0309273 Dock3 dedicator of cyto-kinesis 3

10395466 22.13 0.000965 Dock4 dedicator of cytokinesis 4

10462140 22.31 0.0004627 Dock8 dedicator of cytokinesis 8

10422436 21.97 0.0022849 Dock9 dedicator of cytokinesis 9

10421877 21.66 0.0311587 Diap3 diaphanous homolog 3 (Drosophila)

10497520 21.76 0.0025788 Ect2 ect2 oncogene

10403842 25.05 0.0001519 Elmo1 engulfment and cell motility 1, ced-12 homolog (C.
elegans)

10482795 212.02 5.84E-05 Ermn ermin, ERM-like protein

10527158 22.20 0.00327 Fscn1 fascin homolog 1, actin bundling protein (Strongylocentro-
tus purpuratus)

10474619 21.55 0.033766 Fmn1 formin 1

10381708 21.68 0.0131622 Fmnl1 formin-like 1

10472097 22.01 0.0009141 Fmnl2 formin-like 2

10432439 22.00 0.0239411 Fmnl3 formin-like 3

10397645 24.66 0.0012817 Gpr65 G-protein coupled receptor 65

10377215 21.88 0.011931 Gas7 growth arrest specific 7

10439514 22.81 0.0010624 Gap43 growth associated protein 43

10385248 22.37 0.0041239 Hmmr hyaluronan mediated motility receptor (RHAMM)

10443980 22.06 0.0030496 Myo1f myosin IF

10555118 22.35 0.0005103 Pak1 p21 protein (Cdc42/Rac)-activated kinase 1

10488033 22.63 0.0021231 Pak7 p21 protein (Cdc42/Rac)-activated kinase 7

10425852 21.92 0.0085373 Parvb parvin, beta

10425866 22.03 0.0015526 Parvg parvin, gamma

10507273 25.02 0.0025367 Pik3r3 phosphatidylinositol 3 kinase, regulatory subunit, polypep-
tide 3 (p55)
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TABLE 2: Continued

ID Fold
change

adj.P.Val Gene
symbol

Gene description

10344837 22.89 0.0020804 Prex2 phosphatidylinositol-3,4,5-trisphosphate-dependent Rac
exchange factor 2

10522503 22.56 0.001122 Pdgfra platelet derived growth factor receptor, alpha polypeptide

10384458 21.85 0.0201384 Plek pleckstrin

10558134 25.05 6.82E-05 Plekha1 pleckstrin homology domain containing, family A (phos-
phoinositide binding specific) member 1

10396800 24.60 0.0001686 Plekhh1 pleckstrin homology domain containing, family H (with
MyTH4 domain) member 1

10557177 22.76 0.0015186 Prkcb protein kinase C, beta

10469255 22.89 0.0002663 Prkcq protein kinase C, theta

10502419 21.62 0.00912 Rap1gds1 RAP1, GTP-GDP dissociation stimulator 1

10399360 21.83 0.009593 Rhob ras homolog gene family, member B

10566132 21.63 0.007394 Rhog ras homolog gene family, member G

10417065 21.62 0.0109287 Rap2a RAS related protein 2a

10563641 21.85 0.0093145 Rap1a RAS-related protein-1a

10381416 22.24 0.0128636 Rnd2 Rho family GTPase 2

10546010 22.04 0.0167092 Arhgap25 Rho GTPase activating protein 25

10351603 21.82 0.0172861 Arhgap30 Rho GTPase activating protein 30

10548892 21.76 0.0253338 Arhgdib Rho, GDP dissociation inhibitor (GDI) beta

10493789 21.67 0.0023357 S100a13 S100 calcium binding protein A13

10519747 21.64 0.0285887 Sema3e sema domain, immunoglobulin domain (Ig), short basic
domain, secreted, (semaphorin) 3E

10409240 22.57 0.0016994 Sema4d sema domain, immunoglobulin domain (Ig), transmem-
brane domain (TM) and short cytoplasmic domain, (sema-
phorin) 4D

10458843 22.29 0.0032633 Sema6a sema domain, transmembrane domain (TM), and cytoplas-
mic domain, (semaphorin) 6A

10602840 22.17 0.0063362 Sh3kbp1 SH3-domain kinase binding protein 1

10378833 23.07 0.0005775 Ssh2 slingshot homolog 2 (Drosophila)

10390430 22.00 0.0073853 Srcin1 SRC kinase signaling inhibitor 1

10459084 21.55 0.0168555 Synpo synaptopodin

10507347 21.80 0.031309 Tesk2 testis-specific kinase 2

10504817 22.28 0.0027627 Tgfbr1 transforming growth factor, beta receptor I

10355806 21.57 0.0437603 Tuba4a tubulin, alpha 4A

10408613 21.74 0.0023515 Tubb2b tubulin, beta 2B class IIB

10576332 27.73 0.0008025 Tubb3 tubulin, beta 3 class III

10452295 213.79 0.0007598 Tubb4a tubulin, beta 4A class IVA

10450605 21.55 0.0220591 Tubb5 tubulin, beta 5 class I

10446253 22.40 0.0030188 Vav1 vav 1 oncogene
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TABLE 2: Continued

ID Fold
change

adj.P.Val Gene
symbol

Gene description

10362717 22.82 0.00025 Wasf1 WAS protein family, member 1

10483698 22.16 0.0004667 Wipf1 WAS/WASL interacting protein family, member 1

10603440 21.74 0.0052575 Was Wiskott-Aldrich syndrome homolog (human)

Response to hypoxia and oxidative stress

10480734 23.25 0.0483629 Ptgds prostaglandin D2 synthase (brain)

10501199 22.76 0.003673 Gstm7 Glutathione S-transferase, mu 7

10385583 22.57 0.0015118 Ltc4s leukotriene C4 synthase

10545101 22.34 0.0021426 Hpgds hematopoietic prostaglandin D synthase

10515090 22.24 0.0050272 Cdkn2c cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)

10376201 22.06 0.0135463 Gpx3 glutathione peroxidase 3

10384725 22.01 0.0231887 Rel reticuloendotheliosis oncogene

10363000 1.53 0.0108136 Gpx4 glutathione peroxidase 4

10443463 1.53 0.0265879 Cdkn1a cyclin-dependent kinase inhibitor 1A (P21)

10545045 1.56 0.0157857 Fam13a family with sequence similarity 13, member A

10467921 1.57 0.0166023 Chuk conserved helix-loop-helix ubiquitous kinase

10492428 1.58 0.0049631 Tiparp TCDD-inducible poly(ADP-ribose) polymerase

10515007 1.65 0.0284022 Gpx7 glutathione peroxidase 7

10595148 1.67 0.0128636 Gsta2 glutathione S-transferase, alpha 2 (Yc2)

10520862 1.68 0.006082 Fosl2 fos-like antigen 2

10571274 1.69 0.0302501 Gsr glutathione reductase

10485466 1.69 0.0040562 Cat catalase

10345065 1.74 0.0262016 Gsta3 glutathione S-transferase, alpha 3

10382243 1.79 0.006033 Gna13 guanine nucleotide binding protein, alpha 13

10370013 1.85 0.003188 Gstt2 glutathione S-transferase, theta 2

10488879 1.92 0.0016807 Gss glutathione synthetase

10419198 1.94 0.0048617 Ero1l ERO1-like (S. cerevisiae)

10547641 1.97 0.0042575 Slc2a3 solute carrier family 2 (facilitated glucose transporter), mem-
ber 3

10540472 2.00 0.0236792 Bhlhe40 basic helix-loop-helix family, member e40

10365260 2.08 0.0110414 Txnrd1 thioredoxin reductase 1

10501222 2.17 0.0098926 Gstm2 glutathione S-transferase, mu 2

10495763 2.22 0.0010623 Gclm glutamate-cysteine ligase, modifier subunit

10478890 2.34 0.0018744 Cebpb CCAAT/enhancer binding protein (C/EBP), beta

10460585 2.38 0.0050272 Fosl1 fos-like antigen 1

10501235 2.41 0.0170212 Gstm4 glutathione S-transferase, mu 4

10545658 2.45 0.0031974 Wdr54 WD repeat domain 54
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layer. These findings could implicate that in vivo lesioning of

the brain parenchyma and lateral ventricle wall induces PV-

expression not only in ependymal cells but also in other glial

cell types adjacent to the injury that might participate in the

formation of a glial scar. In addition, the fact that 6 weeks

post-injury PV-expression was still present in the ependymal

layer adjacent to the lesion implicates that the upregulation of

PV in ependymal cells upon injury lasts for a relatively long

time after the injury. This suggests that the tissue repair and

healing, resp. reuniting of the ependymal and parenchymal

wound rims is a fairly long process and requires a long-

lasting remodeling of the cells taking part in this procedure.

To ascertain whether the injury-induced increase in the

number of PV-expressing cells in the wild-type animals and of

the EGFP-expressing ones in the PV-KO/EGFP mice was a

result of proliferation, the in vivo BrdU-based approach was

instrumented. Mice received cumulative BrdU-injections (24 h

and 3 h prior to sacrifice), and the number of BrdU1 cells

were counted in coronal brain sections. Although numerous

BrdU-positive nuclei were observed close to the lesion and to

the ependymal layer, most of the proliferating cells were

encountered at some distance from the latter. We thus con-

clude that the immunoreactivity for PV that was observed in

the ependymal cells of the lateral ventricle wall and in those

surrounding the lesion resulted from the de novo expression of

the CaBP rather than from cell proliferation. The numerical

density of BrdU-positive nuclei around the lesion was lower in

the PV-KO/EGFP mice than in their wild-type counterparts

(55.5 cells 6 13.5 in WT vs. 33.4 6 11.6 in PV-KO/EGFP

in the VZ lesion, P 5 0.00013, Student’s t test; 82.6 cells 6
17.3 in WT vs. 50.1 cells 616.0 in PV-KO/EGFP in the

lesion and surroundings, P 5 0.00002), whereas that of pro-

genitor cells in the SVZ was similar in each strain (43.0 cells

6 6.8 in WT vs. 43.0 cells 6 5.8 in PV-KO, P 5 0.98) (Fig.

8K). These findings indicate impairment of the PV-KO/EGFP

mice in the post-injury cell proliferation that is needed for the

formation of a glial scar. Taking together these results and our

previous observations that the remodeling and maintenance of

ependymal clusters is impaired in the OHSCs of the PV-KO

mice, we conclude that parvalbumin contributes to the reor-

ganization of ependymal cells following injury.

PV-deficient Mice Exhibit More Severe Ventricular
Enlargement Following Low-dose Intraventricular
Neuraminidase Injection
Based on the observation of others (Luo et al., 2008; Shook

et al., 2013) indicating that intraventricular injection of neur-

aminidase leads to ependymal denudation and ventriculome-

galy, we wondered whether PV also plays a role in non-

traumatic experimental paradigm. Neuraminidase cleaves gly-

cosidic linkages of adherens junctions from the surface of

ependymal cells, thereby resulting in denudation of the epen-

dymal layer (Grondona et al., 1996). High concentration of

neuraminidase (1 mL of 100–500 ng mL21) was shown to

induce the denudation of large ependymal areas and to result

in extensive ependymal loss and gliosis along the ventricles

TABLE 2: Continued

ID Fold
change

adj.P.Val Gene
symbol

Gene description

10480035 2.59 0.0015395 Pfkfb3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

10563338 2.91 0.0089732 Ppp1r15a protein phosphatase 1, regulatory (inhibitor) subunit 15A

10572897 3.17 0.0015395 Hmox1 heme oxygenase (decycling) 1

10451198 3.48 0.0005288 Vegfa vascular endothelial growth factor A

10556297 3.55 0.0097619 Adm adrenomedullin

10545130 3.82 0.0003107 Gadd45a growth arrest and DNA-damage-inducible 45 alpha

10458894 5.91 0.0115852 Lox lysyl oxidase

10568369 6.02 0.0001009 Cox6a2 cytochrome c oxidase, subunit VI a, polypeptide 2

10567995 8.32 0.0001009 Nupr1 nuclear protein 1

10450038 8.60 0.0001798 Angptl4 angiopoietin-like 4

A list of genes that were down-, respectively up-regulated in PV-KO ependymal-cell extracts of DIV21-OHSCs as compared to their wild-
type counterparts, as resulted in a whole-transcriptome analysis. Headers include the Affymetrix gene ID, the fold-change value (negative val-
ues meaning down-regulation in the PV-KO as compared to the wild-type, positive fold change values up-regulation, respectively), adjusted
P value, the gene symbol and gene description.
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FIGURE 8
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(Luo et al., 2008), whereas mild denudation by lower dose of

neuraminidase (1 mL of 10 ng mL21 or 10–50 mU mL21) is

comparable to the situation found in aged murine and

human brain (Shook et al., 2013), with moderate ventriculo-

megaly and ventricular gliosis. Very low dose of neuramini-

dase (1 mL of 1 ng mL21) was shown to cause no visible

ependymal loss (Luo et al., 2008). The degree of ventriculo-

megaly and ventricular gliosis following denudation therefore

correspond to the degree of ependymal cell loss. 1 mL neur-

aminidase of 15, 1.5, and 0.15 mUlL21 concentration was

injected into the lateral ventricles of young adult wild-type

(C57BL/6) and PV-KO mice to mimic ependymal denudation,

whereas sham animals received 1 ml sterile saline solution. Ani-
mals were perfused 4 days after a single intraventricular injec-

tion. We performed S100b-, GFAP-, and PV-immunostainings

to reveal the state of the ependymal layer and the degree of

potential ventricular gliosis. We found no increase in GFAP

staining around the ventricles in neuraminidase injected mice

compared with sham animals (data not shown), which is prob-

ably due to the short time allowed after the injection. We

observed ependymal cell loss that was in accordance to previous

findings (Luo et al., 2008). There were no significant differen-

ces in the intensities of S100b- and GFAP-staining in and

around the ependymal layer when we compared PV-KO and

wild-type animals of the same treatment group. We also meas-

ured the size of the ventricles to estimate the degree of ependy-

mal dysfunction caused by the loss of intact ependymal lining

(Fig. 8L,M). We found that the highest dose of neuraminidase

injection (15 mU) caused a similar ventricular enlargement in

both wild-type and PV-KO mice (Fig. 8L–N). However, lower

doses of neuraminidase (1.5 and 0.15 mU) caused a signifi-

cantly more severe ventriculomegaly in PV-KO mice than did

in their wild-type counterparts (Fig. 8L–N). Together, these

findings show that low doses of neuraminidase which were

described to cause subminimal damage to the ependymal layer,

in the absence of PV lead to serious consequences. However, by

PV-immunohistochemistry we failed to detect an up-regulation

of this CaBP in the ependymal layer following varying doses of

neuraminidase compared with the ependyma of sham-injected

animals (Fig. 8O). On the basis of these findings, we conclude

that in vivo enzymatic dissociation of ependymal cells by neuro-

aminidase does not trigger parvalbumin-expression.

FIGURE 8: Unilateral in vivo stereotactic injury of the hippocampus and lateral ventricle in adult wild-type and PV-KO/EGFP mice induces
PV-, resp. EGFP-expression adjacent to the lesion, whereas neuraminidase-triggered denudation does not induce it. (A) Schematic image
illustrates the lesion site from a dorsal view of the mouse brain. The stereotactic coordinates of the lesion were chosen to injure the lat-
eral ventricle wall at the level of the ventricular zone (VZ) of the hippocampus in a 1-mm-long parasagittal section from Bregma 21.0
mm to 22.0 mm. Seven days and 6 weeks post-injury mice were perfused and brains were cut at 30-lm-thick coronal sections. (B) PV
was revealed immunohistochemically and visualized with a digital slide scanner. The location of the stab lesion is indicated by a red line.
(C) Confocal z-stack projection image shows that on the injured side (inj.), the ependymal layer adjacent to the lesion shows PV-
immunoreactivity. (D) The ependymal layer of the non-injured side (non-inj.) is immunonegative for PV (confocal z-stack projection). (E–
E’) Confocal z-stack projections of 1-week-post-injury coronal sections of the injured and non-injured side reveal PV-immunoreactivity
(white arrows) in the ependymal layer around the lesion, whereas the non-injured ependymal layer manifests no or minimal PV-
immunostaining. Ependymal layer is marked by S100b, dashed line indicates the location of stab lesion. Inset shows PV-immunopositive
ependymal cells close to the stab lesion at high magnification. (F–F’) Confocal z-stack projections of 6-weeks-post-injury coronal sections
reveal PV-immunoreactivity in the ependymal layer (white arrows) in the injured side, whereas the non-injured ependymal layer remains
PV-immunonegative. Inset shows PV-positive ependymal cells in the ependymal layer (labeled by S100b) at high magnification. Single
PV1 cells can be found in the brain parenchyma at the site of the lesion just above the ependymal layer. (G–G”’) A rostrocaudal series
of 1-week-post-injury coronal sections visualized by confocal laser microscopy at the rostral level of the injury in wild-type (C57BL/6)
mice immunostained for BrdU and PV reveals upregulation of PV in ependymal cells adjacent to the lesion and in a subset of cells
around the injury (white arrows). Dashed line indicates the position of the lesion. The stab lesion (white star) seems partly repaired/
closed by a mass of numerous cells, most of which are PV-positive. The boxed region is shown with corresponding GFAP staining in (I).
(H–H”’.) One week following injury, PV-KO/EGFP ependymal cells acquire strong EGFP-expression adjacent to the lesion (white arrows),
as shown by confocal laser micrographs of a rostrocaudal series of coronal sections at the rostral level of the injury immunostained for
BrdU and EGFP. There is no sign of reunion of the disrupted ependymal wound rims and the lesion (white star) is unclosed. Boxed
region is shown with corresponding GFAP staining in (J). (I) GFAP immunostaining was performed to reveal reactive astrocytes around
the lesion. Astrocytes are present in the wild-type scar and around the ependymal layer, the inset shows at higher magnification that
some cells are co-labeled for GFAP and PV. (J) In the PV-KO-EGFP wound, numerous GFAP1 cells can be found around the ependymal
lesion, but there is no visible glial scar tissue. (K) The number of BrdU-positive cell nuclei was counted per 0.072 mm3 in 13 consecutive
coronal sections at the level of the injury in three regions: in the SVZ, in the lesion zone, and in the lesion with the surrounding paren-
chyma. Visibly, more dividing cells are present around the lesion in wild-type than in PV-KO-EGFP (P calculated by Student’s t test),
whereas the number of dividing cell nuclei remains similar in the SVZ further away from the lesion site. (L and M) Larger lateral ventricles
develop 4 days after varying doses of neuraminidase injection in both wild-type and PV-KO mice compared with saline-injected (sham)
animals. (N) The grade of enlargement seems similar after the injection of 15 mU neuraminidase; however, lower doses of the enzyme
(0.15 and 1.5 mU) resulted in a more explicit ventricular enlargement in PV-KO mice than in their wild-type counterparts. (O) The mean
fluorescent intensity/pixel of PV-immunostaining around the lateral ventricle in sham- and neuraminidase-injected wild-type mice is simi-
lar in all animals. Visibly, neuraminidase injection did not result in the up-regulation of the PV-immunostaining. Error bars show SEM.
(LV: lateral ventricle; **P < 0.005; ***P < 0.0005).
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Discussion

Manipulations that disrupt the integrity of the ependymal

layer, such as the preparation of OHSCs for in vitro mainte-

nance or the infliction of a stab-wound to the ventricular wall

in vivo, induce the rapid de novo expression of the EF-hand

calcium-binding protein parvalbumin in ependymal cells.

Scratches inflicted to ependymal-cell clusters in OHSCs result

in PV-up-regulation, increased ependymal-cell motility and

adhesion, followed by considerably better scratch repair ability

in wild-type compared with PV-KO mice. Blockage of the

inflammatory regulator transcription factor NF-RB inhibits

the synthesis of PV in ependymal cells, whilst exposure to

antioxidants diminishes it. Our findings suggest that injury

and injury-related repair mechanisms induce, either directly

or indirectly, the de novo expression of PV in ependymal cells,

increasing their motility and adhesion, and promoting re-

epithelialization of the scratch and of the wound.

The response of the central nervous system (CNS) to

injury is of a complex nature and involves the participation

of numerous soluble factors and cell types. Initially, the

blood-brain barrier is violated, as a consequence of which leu-

kocytes, macrophages and lymphocytes invade the immuno-

privileged compartment (Kawano et al., 2012). These cells

secrete cytokines and chemokines, which trigger the resident

populations of microglia, astrocytes, and oligodendrocyte pre-

cursors to lay down a glial scar around the lesion (Kawano

et al., 2012).

Only a few studies have addressed the impact on epen-

dymal cells of traumatic brain injury that directly compro-

mises the integrity of the eponymous layer. Post-stroke

ependymal cells acquire reactive-astrocyte-like phenotype,

express de novo GFAP and extend long cytoplasmic processes

(Young et al., 2013). Upon injury, ependymal cells also

exhibit a pronounced fate plasticity (Carlen et al., 2009;

Nomura et al., 2010). Nevertheless, ependymal cells, unlike

other epithelial layers, are considered non-regenerative as they

do not divide in the adult brain (Bruni, 1998; Luo et al.,

2008; Spassky et al., 2005). Intraventricular injection of neur-

aminidase results in ependymal denudation, ventricular gliosis

and irreversible ependymal loss followed by ventriculomegaly

(Luo et al., 2008).

Here, we introduced an experimental model that com-

bined traumatic parenchymal brain injury with mechanical

disruption of the ependymal layer. The de novo expression of

PV in ependymal cells was observed to facilitate the reclosure

of the lesion in vivo and the scratch-wound closure and adhe-

sion of ependymal cells in vitro. Consequently, we suspected

that the de novo expression of PV in ependymal cells might

play a role in injury-induced processes that favor tissue

remodeling, wound closure and eventually scar formation. A

comparative whole-transcriptome analysis of the reactive

ependymal-niche extracts of wild-type and PV-KO OHSCs

revealed that in the latter, the expression levels of genes that

are implicated in cytoskeletal remodeling, cell motility and

cell adhesion were decreased, whereas those that are impli-

cated in hypoxic damage were elevated. Hence, the absence of

PV might reduce mobility and adhesion and enhance the vul-

nerability of ependymal cells to injury-induced hypoxic dam-

age and compromise their capacity for tissue remodeling and

wound closure.

The stem-cell attributes of ependymal cells are still a

subject of debate (Chojnacki et al., 2009). It is believed that

lateral ventricle wall ependymal cells lack self-renewal poten-

tial, whereas spinal cord ependymal cells possess certain stem

cell properties; however, in vivo they generate progeny only

upon injury and not under physiological conditions (Meletis

et al., 2008; Pfenninger et al., 2011). In our own experiments

with OHSCs, co-localization of the PV-expressing ependymal

cells with the proliferation marker Ki67 was hardly ever

observed. Similarly in vivo, the infliction of a stab-wound did

not result in the labeling of PV-expressing ependymal cells

with BrdU. These findings indicate that the subpopulation of

injury-reactive, PV-expressing ependymal cells is post-mitotic.

Cells of the ependymal layer interdigitate via plasma-

lemmal adherens junctions (Del Bigio, 2010), and ankyrin-3

in the lateral membrane (Paez-Gonzalez et al., 2011), which

may play a role in the “sealing of the epithelium.” In the

OHSCs of PV-KO mice, the junctions and the interdigita-

tions of the ependymal cells were loosened. This phenom-

enon correlated with the observed down-regulation of a set of

cellular junction-related genes. These included not only the

ankyrin-3 encoding gene Ank3, but also adherens-junction-

specific genes, such as cadherins and protocadherins and the

tight-junction-specific ZO-1 protein-encoding gene Tjp1. We

also observed striking differences in the morphology of the

injury-reactive ependymal cells following in vivo lesioning:

the ependymal cells of the PV-KO mice remained in situ and

did not display a radial phenotype, whereas PV-expressing

ependymal cells of the wild-type mice protruded long cyto-

plasmic processes (Fig. 8I,J).

Because the main described function of PV is calcium-

buffering (Schwaller 2010), the differences in the phenotypic

and the migrating properties of the ependymal cells between

wild-type and PV-KO strains of mice suggest that their motil-

ity and cytoskeletal remodeling are regulated by an as yet

unidentified calcium-dependent process. This postulate

accords with the finding that several of the genes that are

implicated in the control of Cdc42/Rac1/Rho-signaling path-

way, which regulates the motility of cells and changes in their

shape (Bokoch, 2003; Pollard and Borisy, 2003), were down-

regulated in the PV-KO mice (e.g., Pak1, Vav1, Wasf1,

Arpc1a, Arpc1b, and Rap1a). In contrast to S100b, which acts
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as a Ca21-sensor and has a relatively low affinity for Ca21

under physiologic ionic conditions (Donato, 1999), PV is

classified as a slow-onset Ca21-buffer, which has a high bind-

ing affinity for the intracellular cation (Schwaller, 2010). By

the sequestration of calcium within subcellular compartments,

CaBPs facilitate the generation of [Ca21]i gradients (Schwal-

ler, 2010). The maintenance of these polarized gradients in

[Ca21]i is vital for many biological functions (Wahl et al.,

1992), including cell motility. The buffering capacity of PV

might also facilitate the “quenching” of excessive amounts of

calcium that flood cells during injury, mechanical stress, and

the release of cytokines.

Our observation that the up-regulation of parvalbumin

in ependymal cells contributes to their motility was antici-

pated by unrelated studies using other systems. In the fast-

twitch muscles of mice, the transient binding of PV to intra-

cellular calcium facilitates the rapid relaxation of the muscle

fibers. As a consequence, in the muscles of PV-KO mice, the

relaxation-time is prolonged (Schwaller et al., 1999), whereas

in PV-transgenic muscles it is shortened (Muntener et al.,

1995). A promoting effect of PV on cell motility has been

observed also in cultured WiDr-cells that were transfected

with PV-cDNA (Andressen et al., 1995). These cells display a

higher capacity to undergo amoeboid-like movements than

do their wild-type counterparts.

In neurons, PV plays a role not in their motility but in

the regulation of their electrophysiology (Caillard et al., 2000;

Collin et al., 2005; Muller et al., 2007; Vreugdenhil et al.,

2003). Under experimental and pathologic conditions, the

concentration of PV in neurons can be altered (Levitt et al.,

2004). For example, the administration of ketamine provokes a

loss of PV-immunoreactivity from GABA-ergic interneurons

and a decrease in their inhibitory potency by increasing the

level of the pro-inflammatory cytokine IL-6 in the brain, which

activates the superoxide-producing enzyme NADPH oxidase

(Behrens and Sejnowski, 2009; Powell et al., 2012). In murine

models, treatment regimes that restore the redox balance, such

as the administration of the antioxidant N-acetylcysteine, help
to correct some of these deficits (Cabungcal et al., 2006; Kulak

et al., 2013). As our own study has shown, ependymal cells

react to the same inflammatory cytokines (e.g., IL-6) in a man-

ner that differs basically from that of neurons, namely, by the

de novo synthesis of PV. Cell-type-specific differences in the

regulation of the Pvalb-promoter have not been reported, but

have been documented for other CaBPs. In nerve cells, the

calretinin-promoter contains a specific AP2-like element that

assures a neuron-specific pattern of gene-expression (Billing-

Marczak et al., 2002). In colon cancer cells, butyrate down-

regulates the expression of calretinin (Haner et al., 2010),

whereas in mesothelioma cells, none of these mechanisms

influence its expression (Haner et al., 2010).

A role in protecting cells against deleterious increases in

[Ca21]i (Schwaller et al., 2002) could underlie the de novo
expression of PV in ependymal cells. In various experimental

in vivo models, PV protected vulnerable neurons (Beers et al.,

2001; Friedman and Segal, 2010; Nitsch et al., 1989; Van

Den Bosch et al., 2002). In other instances, PV-

immunoreactivity did not prevent neuronal cell death (Dijk

and Kamphuis, 2004; Maetzler et al., 2004). Because PV

constitutes only one of the many components of the calcium

homeostasome (Berridge et al., 2003; Schwaller, 2012), its

protective role may be masked in experimental models in vivo
by the complexity of the physiological situation. Calretinin,

another member of the same EF-hand family of CaBPs, has

been shown to have a convincing protective effect on cells.

This CaBP is expressed in colonic cancer cells, and in reactive

as well as in neoplastic mesothelial cells. In both cell types,

calretinin promotes growth and survival, and its down-

regulation by the administration of antisense oligodeoxynu-

cleotides (Gander et al., 1996), or by treatment with

lentiviral-mediated shRNA (Blum and Schwaller, 2013),

respectively, leads to apoptotic cell death.

We have here shown that the PV-positive ependymal

cells of wild-type mice adapt better to the altered conditions

following mechanical injury than do the counterparts of PV-

KO ones, indicating that this CaBP benefits the ependymal

cells.

By showing that the calcium-binding protein parvalbu-

min plays an unsuspected role in the response of ependymal

cells, the findings of this study furnish a basis for improving

our understanding of the cascade of events that is triggered

by traumatic brain injury.
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