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Recent climate changes have led to an increase in the exposure of archaeological remains in frozen
environments due to the melting of glaciers and ice patches, and the thawing of permafrost. In some
cases, the discovery of glacial archaeological findings has occurred due to chance. In order to avoid the
risk of losing exceptional, often organic, cultural remains due to decomposition, systematic and pre-
dictive methods should be employed to locate areas of high glacial archaeological potential. Here, we
merged archaeological and glaciological methods to create a new type of archaeological prediction
model in the field of glacial archaeology. Locational analysis and glaciological modelling were used to
highlight current and future areas of archaeological potential in the Pennine Alps, located between
Switzerland and Italy. Future glacier area was calculated in 10 year increments until 2100. By 2090, 93% of
glacier area is expected to have disappeared. The results from the final model, GlaciArch, provide new
insights into future glacial archaeological prospection in the Pennine Alps by narrowing down a study

region of 4500 km? into several manageable square kilometre sites.

1. Introduction

Due to the alternation of various warm and cold periods, glacier
extents and ice volume storage have fluctuated in the entire Eu-
ropean Alps during the Holocene (10.5 ka to present). Compared to
the Last Glacial Maximum (LGM) (19—20 ka BP) and latest Pleis-
tocene, when large piedmont lobes of vast valley glaciers reached
the Alpine foreland (Clark et al., 2009; Ivy-Ochs et al., 2008), glacier
changes have been rather minor during the Holocene. The glaci-
erized area varied between the stage of the Little Ice Age (LIA)
maximum, around 1850, and a minimum which was significantly
smaller than the present day extents (Grosjean et al., 2007;
Holzhauser, 2007; Joerin et al., 2006, 2008).

Glacier-climate interactions have affected humans for millennia.
In the European Alps, glacier fluctuations directly influenced hu-
man interaction with Alpine areas (Benedict and Olson, 1978;
Wiegandt and Lugon, 2008). For example, as glaciers receded af-
ter the LGM, humans took advantage of the newly ice-free Alpine
biome which offered plenty of food and resources during the
Paleolithic period (Pacher, 2003; Tagliacozzo and Fiore, 2000). The
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present atmospheric warming has caused shrinkage of glaciers and
ice caps all over the world (IPCC, 2013). In consequence, melting ice
and snow has uncovered archaeological remains in Arctic and
Alpine environments (Andrews et al., 2012; Beattie et al., 2000;
Callanan, 2012, 2013; Dixon et al., 2005; Farbregd, 1972; Farnell
et al., 2004; Hafner, 2012; Hare et al, 2004, 2012; Lee, 2012;
Rogers et al., 2014; VanderHoek et al., 2007) which further attests
to the use of frozen regions on a global scale. These artefacts which
have melted out of ice patches and glaciers, and thawed out of
permafrost, have created a new sub-discipline of archaeology:
glacial archaeology. “Glacial archaeology” has also been referred to
as ice patch archaeology (c.f. Andrews and MacKay, 2012; Reckin,
2013) and frozen archaeology (Molyneaux and Reay, 2010).
Perhaps one of the most famous examples of a glacial archaeolog-
ical find is that of Otzi the Tyrolean Iceman who was accidentally
discovered by hikers in 1991 on the Italian/Austrian border, pro-
truding from an ice patch (Prinoth-Fornwagner and Niklaus, 1994;
Seidler et al., 1992). The uniqueness of Otzi and other glacial
archaeological discoveries is that they have often been preserved by
ice for thousands of years, thus protecting them and providing
scientists with unparalleled information about past cultures and
climates (Dixon et al., 2005; Reckin, 2013). There is urgency to
collect these delicate, often organic, glacial archaeological remains
before, or soon after, they melt out of the ice and become destroyed
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by decomposition (Andrews and MacKay, 2012; Dixon et al., 2005;
Molyneaux and Reay, 2010). As melting in high altitudes and lati-
tudes is not anticipated to halt in the near future (c.f. Radic et al.,
2014), more glacial archaeological finds can be expected and
there is a need to further develop predictive methods in this
research domain.

In this paper, archaeological and glaciological methods are
merged together to create a new type of predictive model to
determine areas of glacial archaeological potential. The results will
be used as a decision support tool for future prospection of
archaeological findings in high mountain environments. Our
approach, referred to as “GlaciArch” in the following, is based on
current ice thickness distribution, future evolution of glacierized
areas, and topographic characteristics of the terrain which could
have influenced past human accessibility. First, currently glaci-
erized or recently deglacierized high altitude mountain passes
located on the border of Switzerland and Italy are selected to be
used as sites on which to perform the locational analysis. Next, least
cost paths (LCPs) are calculated between valleys and respective
passes. Then, locational analysis is used to determine areas of
glacial archaeological potential based on the physical characteris-
tics of the terrain. After, the future evolution of glaciers is modelled
for the Pennine Alps using a glacier evolution model (Huss et al.,
2010a). Finally, the results of glacier modelling are combined
with the results of locational analysis to create GlaciArch, a pre-
dictive model which ultimately defines regions of highest

archaeological interest for now and the future. This paper high-
lights how the intersection of glaciological and archaeological
methods provides a new approach for looking at glacial archaeo-
logical prospection.

2. Study area and data
2.1. Study area

The Pennine Alps (centered at approximately 45°57'N, 7°32'E)
are located between the canton of Valais, Switzerland, and the
provinces of Aosta and Piedmont, Italy (Fig. 1). The whole region is
of particular glacial archaeological interest due to its large glaci-
erized area and rich cultural heritage. The Pennine Alps cover
approximately 4500 km? and reach altitudes above 4000 m a.s.l.
The main valleys to the north, south, and east of the Pennine Alps,
the Rhone valley (Switzerland), and the Aosta and Antigorio valleys
(Italy) respectively, are scattered with archaeological remains
dating from Mesolithic (9.5 ka to5.5 ka BC) to historic times (Curdy,
2007; Radmilli, 1963). Although most travellers reached these
valleys from lower altitudes, each valley could also be reached by
crossing the Pennine Alps between them. This relatively short
distance was often traversed for commercial purposes. Archaeo-
logical remains collected on the way to, and on top of, mountain
passes between Switzerland and Italy demonstrate the use of these
passes as trade and travel routes for thousands of years (Bezinge
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Fig. 1. Overview of study area. Glacierized areas are shaded in dark grey.
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and Curdy, 1994, 1995; Coolidge, 1912; Curdy, 2007; Curdy et al.,
2003; Harriss, 1970, 1971; Lehner and Julen, 1991; Rogers et al.,
2014). In fact, early Neolithic culture seems to have spread to
Valais via the high altitude passes of the Pennine Alps from the
south, possibly due to the grazing of small herds in the high pas-
tures in summer (Curdy et al., 2003; Curdy, 2007). Throughout
Prehistory and the Roman Period, there were indications of a strong
cultural relationship between Aosta and the Rhone valley; later, the
Aosta and Upper Rhone valleys were integrated as the unique
ecclesiastical province of Tarentasia for several centuries (Harriss,
1970; Curdy, 2010). The relatively few archaeological remains
found at high altitudes in this region should not be considered to be
a direct result of the use of these high altitude passes. In the past,
contrary to current beliefs, high altitude regions were used more
often than assumed, and proved to be more hospitable than they
seem to modern day people (Aldenderfer, 2006; Reckin, 2013;
Walsh et al., 2006).

2.2. Data

The high altitude pass names and locations used in the first step
of the locational analysis are derived from the 25 m resolution
SwissNames database provided by the Swiss Federal Office of
Topography (swisstopo) (Federal Office of Topography (2014))
which contains all names given on the 1:25,000 national topo-
graphic maps. The 1973 Swiss glacier inventory (Miiller et al., 1976)
was used to determine glacierized or recently deglacierized passes.
The Digital Elevation Model (DEM) used in both the Least Cost Path
Analysis (LCPA) and slope calculation was the global 30 m resolu-
tion Advanced Spaceborne Thermal Emission and Reflection Radi-
ometer Global Digital Elevation Model (ASTER GDEM) (version 2)
(NASA, 2012). Although more accurate DEMs exist, it was not
possible to obtain a consistent DEM for each side of the Pennine
Alps. The ASTER GDEM provides a consistent and sufficient data
accuracy for these regional scale calculations in this study.

For the Swiss glaciers, the new Swiss Glacier Inventory SGI2010
(Fischer et al., in press) was used. This layer was created by manual
digitization from high resolution (50 cm) aerial orthoimagery ac-
quired between 2008 and 2011. For the Italian glaciers, outlines
based on satellite imagery of 2003 were used (Paul et al., 2011).
Surface topography for each glacier was extracted by intersecting
glacier outlines with terrain elevation data. Glacier ice thickness
distribution and bedrock topography were calculated based on a
flux-gate approach and using the principles of ice flow dynamics
(Huss and Farinotti, 2012). Information on surface mass balance of a
large sample of glaciers in the Pennine Alps over the last decades is
available from a combination of direct field observations, geodetic
ice volume changes and distributed modelling (Huss, 2012). Sce-
narios for the future evolution of climatological variables are ob-
tained from Regional Climate Models (RCM) from the CH2014
project (CH2014-Impacts, 2014).

3. Background

In the Swiss Alps, glacial archaeological finds have been located
at four locations: two sites on the border of the cantons of Valais
and Bern in the Bernese Alps, the Lotschenpass (Bellwald, 1992;
Meyer, 1992) and Schnidejoch pass (Hafner, 2012); one site in
eastern Switzerland, the Porchabella glacier (Rageth, 1995); and in
Valais, located in the Pennine Alps, near the Theodulpass (Lehner
and Julen, 1991; Meyer, 1992). The oldest and most notable finds
were discovered between 2004 and 2011 at the Schnidejoch pass
from a melting ice patch which was formerly attached to the
Chilchli glacier on the north side of the pass. The ages of the finds
range from the Neolithic, Early Bronze Age, Iron Age, Roman, and

Medieval periods making this one of the most prolific glacial
archaeological sites in the Alps (Hafner, 2012). The abundance of
finds can be attributed to the location of the ice patch which is in a
small depression facing northeast where ice has accumulated over
centuries. The Pennine Alps' most prolific glacial archaeological site
to date has been that of the Theodulpass. The finds, which include
skeletal remains, leather clothing and shoe soles, weapons, and
coins from the “Mercenary of Theodul”, date back to the 16th
century (Lehner and Julen, 1991; Meyer, 1992). These items were
found between 1985 and 1990 along the margins of the Oberer
Theodul glacier on the Swiss side of the border. It is believed that
the Mercenary fell into a crevasse and was preserved for hundreds
of years until glacial dynamics and melting eventually released him
and his belongings.

3.1. Archaeological predictive modelling

In archaeology, the use of predictive modelling began in the
1980's and has since grown into a wide research field, mostly due to
an increase in the accessibility to Geographic Information Systems
(GIS) software and the ever-improving spatial resolution of data
(c.f. Ebert, 2004; Kvamme, 1999; McCoy and Ladefoged, 2009). In
most cases, archaeological predictive modelling is used to forecast
the location of archaeological sites based on the presence or
absence of defined criteria, in order to allocate information about
known patterns onto unknown places (Conolly and Lake, 2006;
Warren and Asch, 2003; Wheatley and Gillings, 2002). Inputs to
predictive models usually include sampled sites and have the main
goal of finding new sites which were used for human occupation
(Carleton et al., 2012; Carrer, 2013; Graves, 2011; Kohler and Parker,
1986). Put simplistically, predictive methods have been used to
determine the level of archaeological potential in a region and
provide decision-makers with a tool to justify why certain areas are
more archaeologically interesting than others (McCoy and
Ladefoged, 2009).

In glacial archaeology specifically, predictive methods have been
used in relatively few instances but show promising results
(Andrews et al., 2012; Dixon et al., 2005). For example, in Alaska,
Dixon et al. (2005) were the first to use predictive modelling for
glacial archaeological purposes by using a weighted combination of
cultural, biological, and geological input layers to successfully
determine areas of high glacial archaeological potential. Similarly,
Andrews et al. (2012) used remotely sensed data and other weighted
input layers to determine areas of glacial archaeological potential in
northern Canada. Both previous studies were conducted at various
ice patch sites. This study, which focuses on the potential of locating
glacial archaeological remains on or near glaciers, differs from pre-
vious ones based on the distinctive environments. Ice characteristics
and glacier dynamics can strongly affect the potential of locating
glacial archaeological remains, and thus should be researched ac-
cording to local conditions. For example, glaciers composed of thick
ice or located on steep slopes move relatively quickly and would
destroy anything entrained within it in a matter of a few hundred
years based on the principles of ice dynamics (Benn and Evans, 2010;
Dixon et al.,, 2005; Hafner, 2012). The margins of slower-moving
glaciers could prove to be a better environment for finding glacial
archaeological remains, with the ideal environment being sur-
rounded by ice with little or no movement such as ice patches (like
the Schnidejoch site) or slow-moving small glaciers located on
relatively flat terrains (like the Theodul site).

3.2. Least cost path analysis

LCPA is one type of archaeological prediction method used in
GIS to calculate the “optimal” path across a landscape based on one
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or more predefined input criteria (Anderson and Gillam, 2000; Bell
and Lock, 2000; Egeland et al., 2010; Gorenflo and Gale, 1990;
Howey, 2007; Madry and Rakos, 1996; Rogers et al., 2014;
Verhagen and Jeneson, 2012). It allows archaeologists to gain a
better understanding about movement patterns in prehistoric or
historic terrains (Llobera et al., 2011; Murrieta-Flores, 2010, 2012;
White and Surface-Evans, 2012). It is based on the principal that
humans will take the easiest path from one location to another if
there are no other social or cultural forces directing them other-
wise. The concept is not unique to archaeology and was developed
firstly in psychology and has since been used in various research
fields (Zipf, 1949).

3.3. Locational analysis

Locational analysis, also referred to as archaeological location
modelling (ALM) or site predictive modelling, is a predictive
method which calculates archaeological potential based on multi-
ple weighted inputs, often including known archaeological site
locations (Andrews et al., 2012; Carleton et al., 2012; Carrer, 2013;
Dixon et al., 2005; Egeland et al., 2010). Like the term predictive
modelling, locational analysis has various meanings and a defini-
tion which has developed over time (Kvamme, 1999; McCoy and
Ladefoged, 2009). Therefore, we define locational analysis using
McCoy and Ladefoged's (2009) description whereby the potential of
undiscovered sites will be determined by calculating zones of
future prospection without spatially analysing known site loca-
tions. This method is often used in vast areas from which archae-
ological remains are sparse, possibly due to a lack of prospection.

3.4. Glacier retreat modelling

The atmospheric warming observed during the last decades has
caused a considerable reduction in area and mass of glaciers and ice
caps all around the globe (Zemp et al., 2009). As an immediate
response, changes in the climatic forcing acting on glaciers lead to
changes in the surface mass balance, that is, to changes in the
quantity of snow and ice added to or melted from the glacier. The
effects of the observed glacier changes are numerous and apply to a
broad range of spatio-temporal scales, from global sea level rise
(Gardner et al., 2013) to regional impacts on runoff in major river
catchments (Kaser et al., 2010), to local consequences for landscape
evolution, hydropower production, natural hazards and tourism
(Cannone et al., 2008; Farinotti et al., 2012; Fischer et al., 2011).
Consequently, the projection of future glacier evolution has gained
increasing attention in glaciology.

In recent years, various glacier modelling approaches have been
developed. For individual glaciers, they range from simple 2D
flowline models (Oerlemans et al., 1998; Van de Wal and Wild,
2001) to complex 3D coupled mass-balance ice-flow models
(Jouvet et al., 2011; Schneeberger et al., 2003). To calculate glacier
response at the regional scale, simpler approaches neglecting
transient changes and the effect of ice dynamics were used (Paul
et al., 2007; Schaefli et al., 2005). More advanced models driven
by distributed surface mass balance input and employing a
parameterization of glacier ice flow have also been applied both at
the single-glacier scale and to the entire European Alps (Huss,
2012; Huss et al., 2010a; Salzmann et al., 2012).

4. Methods

GlaciArch is composed of various steps which culminate in the
creation of a predictive model which gauges the glacial archaeo-
logical potential of the Pennine Alps. The respective steps are
presented in the next sections.

4.1. High altitude pass selection and LCPs

The first step was to determine which high altitude passes on
the Swiss/Italian border were glacierized in 1973. This coincides
with the notion that recently deglacierized passes have a higher
glacial archaeological potential and should be prospected first
based on the fragility of glacial archaeological remains and arte-
facts. The 1973 glacier inventory (Miiller et al., 1976) was chosen
because it covers an ideal time frame as archaeological items
exposed over the last 40 years might have a better chance to persist
compared to 160 years if using the glacier inventory from orthoi-
magery prior to the SGI2010 (Fischer et al., 2014). The passes were
chosen using the selection tools in ArcGIS 10.1. First, the select by
attributes tool was used to query all mountain passes which could
be crossed by either foot or by road from the SwissNames database
for the canton of Valais, resulting in the selection of 670 records.
Next, the select by location tool was used to query those passes
which were glacierized in 1973 from the currently selected records,
to highlight the ones that were recently deglacierized, or still
currently glacierized, leaving 111 passes. From those 111 passes, the
ones on and near the border between Switzerland and Italy were
selected as it is known that some of the high altitude passes in this
study region have been used for thousands of years. This resulted in
the final extraction of 19 border passes which were glacierized in
1973 from which to calculate LCPs (Table 1, Fig. 2a).

LCPs were calculated using the method described by Rogers
et al. (2014) from each of the 19 passes to their nearest respective
main valleys (Rhone, Aosta, or Antigorio) (Fig. 2b). This method
used Tobler's (1993) hiking algorithm to calculate walking times
based on slope and prehistoric landcover as inputs (Bell and Lock,
2000; Gorenflo and Gale, 1990; Rogers et al., 2014; Tobler, 1993;
Verhagen and Jeneson, 2012; Whitley and Hicks, 2003). The path
distance and cost distance tools in ArcGIS, which calculate the
accumulative cost across the terrain from a starting location and
the shortest path from a destination back to starting location,
respectively, were used for the calculations.

4.2. Locational analysis

In this part of the analysis, multiple criteria were used to locate
areas of high archaeological potential by analysing where people
were able to travel based on the topographic characteristics of the
terrain by measuring the distance from LCPs and the slope of the

Table 1
Names and locations of high altitude passes on the border between Switzerland and
Italy which were glacierized in 1973.

Number Name Latitude (N) Longitude (E) Altitude (m)

1 Petit Col Ferret 45° 53'58"  7°4'9" 2490
2 Col d'’Amiante 45° 55' 6" 7°18'9" 3319
3 Col de la Balme 45° 54' 7" 7°22' 27" 3321
4 Col du Petit Mont Collon 45° 57" 42" 7° 29" 11" 3292
5 Col Collon 45° 57" 41" 7° 30" 51" 3087
6 Col des Bouquetins 45°59' 13"  7°33'36" 3357
7 Col de la Téte Blanche 45° 59' 33" 7° 34" 53" 3579
8 Tiefmattenjoch 45° 58'22" 7°35'13" 3543
9 Breuiljoch 45° 58' 18" 7° 40' 18" 3313
10 Theodulpass 45° 56'38" 7°42'35 3301
11 Passo di Ventina Nord 45° 56" 4" 7° 42" 39" 3450
12 Breithornpass (south) 46° 14'36" 8° 5" 12" 3368
13 Zwillingsjoch 45° 55'36"  7° 47" 24" 3845
14 Felikjoch 45° 55' 5" 7° 48" 11" 4066
15 Lisjoch 45° 55" 18 7° 51" 12" 4169
16 Neues Weisstor 45° 59'20" 7° 54" 4" 3509
17 Seewjinenliicke 45° 59' 53" 7° 57' 22" 3095
18 Tossenjoch 46° 7' 31" 8° 3" 22" 2923
19 Breithornpass (east) 45° 55' 56"  7° 44' 34" 3845
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Fig. 2. Visualization of the locational analysis processing steps: (a) calculation of least cost paths with pass number corresponding to Table 1, (b) calculation of buffers around each
path, (c) weighted slope values derived from DEM, (d) weighted glacier thickness layer, (e) selected close-up of slope multiplied by thickness, and (f) the final weighted locational

analysis layer with pass numbers (see Table 1).

terrain, and where archaeological remains might be located based
on glacial characteristics and ice thickness. The input layers are
described in the following paragraphs.

Buffers were constructed around each path in 100, 250, 500,
750, and 1000 m intervals on each side of the path to represent the
notion that archaeological potential decreases with distance from
the paths. The zones within the 100 m buffers were assumed to
have the highest archaeological potential and weighted with the
value of 5, while the zones located within the 1 km buffer were
assumed to have to lowest potential and weighted with the value of
1 (Table 2). The values in between are listed in Table 2.

The 1000 m buffers calculated above were used to define the
study area surrounding the paths from which to calculate slope
values. The extract by mask tool was used to isolate the study area

for the DEM and the slope tool was used to calculate the steepness
of the terrain (Fig. 2c). The slope values were calculated and
weighted based on the potential of finding archaeological remains.
Slopes greater than 40° were given a value of 1, thus very low

Table 2
Weight values for the layers used in the locational analysis.

Weights Distance from LCPs (m) Slope (°) Ice thickness (m)
5 0—-100 0-10 0-25

4 100-250 10-20 25-50

3 250—-500 20-30 50-75

2 500—750 30—40 75—100

1 750—1000 >40 >100
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archaeological potential, as they are difficult to climb and would
probably have been avoided. Furthermore, at steep slopes archae-
ological remains are more likely to be washed out by erosion.
Slopes between 0 and 10° were determined to be the easiest to
walk across and thus were given the highest potential value of 5.
Slopes between 10 and 40° were assigned with a respective linearly
increasing potential value for 10° classes (Table 2).

Next, the glacier ice thickness layer was weighted from low to
high archaeological potential. The ice thickness range between
0 and 25 m was assigned a weight of 5 as those are the areas with
the highest potential now and in future years because they will
likely be the first to become ice-free (Table 2). Even more impor-
tantly, archeological remains are only likely to be preserved below
relatively thin ice. Thicker ice tends to flow faster and is generally
more destructive in terms of bedrock erosion. The classes with
25—-50 m, 50—75 m, and 75—100 m were weighted with 4, 3, and 2,
respectively (Fig. 2d).

The weighted layers for distance from LCPs, slope, and thickness
were multiplied together to obtain one layer containing all possible
value combinations. The results ranged from 2 to 125 in 29 different
classes (Fig. 2e). As a final step in the locational analysis, these classes
were combined into five final potential categories using the Natural
Breaks classification scheme which arranges classes into “natural”
objectively selected categories (Fig. 2f) (Jenks and Caspall, 1971).

4.3. Glaciological modelling

Future changes in glacier coverage over the entire Pennine Alps
were assessed by a combination of different glaciological models at
high spatial resolution. First, the current glacier ice thickness dis-
tribution was derived using the glacier outlines from Fischer et al.
(2014) for Switzerland and from Paul et al. (2011) for Italy based
on the approach by Huss and Farinotti (2012). Next, surface mass
balance and 3D glacier geometry change were modelled transiently
for 50 Swiss glaciers from 2010 to 2100 based on a detailed glacier
model (Huss et al., 2010a). The model runs at daily resolution on a
25 m grid and takes into account snow accumulation distribution,
the influence of radiation on ice melting, and calculated glacier
retreat based on a mass-conservation approach. Model calibration
and validation for the 50 investigated glaciers was achieved with a
variety of field data covering the entire 20th century (Huss et al.,
2010b). For calculating future glacier change, we chose to use one
single regional climate scenario for simplicity although the pro-
jected evolution of meteorological variables is subject considerable
uncertainties. Seasonal changes in air temperature and precipita-
tion as projected by the Eidgendssische Technische Hochschule
Ziirich (ETHZ, Swiss Federal Institute of Technology) RCM were
used as inputs into the model. This climate model was driven by the
A1B CO;-emission scenario (Nakicenovic, 2000). Until 2100, a mean
annual air temperature rise of +4.7 °C relative to 1980—2009 is
expected for the study region and precipitation is found to increase
in winter but to decrease in summer (CH2014-Impacts, 2014).
Finally, we extrapolated annual mass balance from the 50 glaciers
to every glacier in the Pennine Alps (Huss, 2012). Thus, for each
glacier, a glacier-specific transient annual series of the glacier mass
budget was obtained which was used to drive the glacier retreat
model (Huss et al., 2010a). From the transient model runs, we
extracted glacier ice coverage for 10-year time steps between 2020
and 2100. These glacier masks were overlaid onto the results of the
locational analysis.

4.4. GlaciArch

In this step, past (1850 and 1973), current (2010), and selected
future (2030, 2060, and 2090) glacier extents were overlaid onto

locational analysis results to create the GlaciArch predictive model.
The current archaeological potential of a region was assessed
differently than that of the future potential. Current archaeological
potential is considered to exist in the regions that have been
deglacierized since 1973; that is, between the 1973 and 2010 ex-
tents. Those are the general areas where archaeological remains
could be currently located based on the principles of glacier dy-
namics. Future archaeological potential is ultimately gauged by
comparing the modelled glacier extents for 2030, 2060, and 2090,
to the results obtained by the locational analysis.

5. Results and discussion
5.1. Locational analysis

The locational analysis results defined regions which were gla-
cierized, or recently deglacierized, located near LCPs, in areas with
less than 40° slope, and where ice thickness is at a minimum. The
consideration of currently glacierized or recently deglacierized
passes is important when dealing with glacial archaeological re-
mains, as previously suggested. The calculation of LCPs enabled a
better understanding about how people might have travelled from
one location to another based on the principles of walking across
different landscapes. Although prehistoric and historic landscapes
are often uncertain, paleoecological research gives a good general
understanding about past landscapes (Berthel et al., 2012; Tinner
and Theurillat, 2003; Wick and Tinner, 1997). The final product of
the locational analysis displays the overlapping areas of the
weighted distance from LCPs, slope, and ice thickness layers in the
range of 5 (high potential) to 1 (low potential) for the region
(Fig. 3a). The results of locational analysis alone reduced a region of
over 4500 km? to a 114 km? area of interest, 8.16 km? of which is
considered as high potential (Table 3). Similar to the work con-
ducted by Dixon et al. (2005) and Andrews et al. (2012), locational
analysis provided a means to define small, manageable regions for
glacial archaeological prospection. The areas are more finely
delimited in the final GlaciArch model (Section 5.3).

5.2. Glaciological modelling

Future glacier extents for 10-year increments between 2020 and
2100 in Switzerland and in Italy were calculated (shown for 2030,
2060, and 2090 in Fig. 3b). This regional scale modelling method
provided a high resolution projection of future glacier extents. The
total area of glaciers in 2010 in the Pennine Alps was 446 km? and
calculated to decrease in future years. For example, a reduction of
37%—280 km? in 2030, 80% to 91 km? in 2060, and 93% to 30 km? in
2090 was modelled based on the climate scenario used. In this
study we did not assess the impact of different assumptions on
future climate evolution and other glaciological model un-
certainties on the results. However, Addor et al. (in press) showed
that the CO,-emission storyline until 2100 only had a small effect
on calculated total glacier area.

5.3. GlaciArch

The results of the GlaciArch model show current and future
areas of archaeological potential spread over the Pennine Alps re-
gion (see supplementary maps covering the entire region). As
mentioned in Section 5.2, the locational analysis results provided a
broadly defined research area. The addition of glaciological
modelling results allows the delineations to be further defined. For
example, between 2010 and 2030, the total area of interest is
30.1 km? and the high potential region is 3.24 km?, compared to the
decreased areas between 2060 and 2090 with 13.7 km? and
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Fig. 3. Results from (a) locational analysis and (b) glaciological modelling from the whole study area. The Swiss Glacier Inventory for 2010 is shown along with the modelled glacier
extents for 2010 on the Italian side of the border. The projected glacier extents for 2030, 2060, and 2090 are shown for both sides of the border of the Pennine Alps. The boundaries

for Figs. 1 and 2 are shown in red. Boundaries S1-S5 refer to additional maps not discussed in the text which can be found in the supplementary data section. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

0.58 km?, for area of interest and high potential, respectively (see
Table 3 for all values).

Taking a closer look at the results, the area surrounding the
Mont Collon (Fig. 4) is an area of interest due to its archaeological
significance in the surrounding regions, although no glacial
archaeological finds have been retrieved from that site to date
(Fig. 4). In 1948, a Neolithic tool made of flint was located on the
Plans de Bertol, which is located on the way to the Col Collon, which
leads archaeologists to believe that it was a pass which was used by
humans for thousands of years (Bezinge and Curdy, 1994, 1995;
Sauter, 1950) (Fig. 4). Currently, the model indicates that there is

high glacial archaeological potential on the margins of the Haut
Glacier d'Arolla and the Glacier du Mont Collon, as well as the area
between the Petit Mont Collon and the northern section of the
Glacier d'Otemma, just south of the Col de Charmontagne (Fig. 4).
For the future, the results from GlaciArch show that between 2010
and 2030, there will be high potential areas on the margins of the
tongue of the Glacier du Mont Collon, as well as the Haut Glacier
d’Arolla. Between 2030 and 2060, the Col Collon (5) is expected to
become an area of high archaeological potential as well as some
regions surrounding the Petit Mont Collon. Sections in the middle
of the Glacier du Mont Collon and to the north of the southern
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Table 3

Locational analysis areas calculated for 2010 and the time periods between
2010—-2030, 2030—2060, and 2060—2090. The high glacial archaeological potential
(value 5) areas are also calculated for each time period.

Year(s) Total area (km?) High potential (km?)
2010 114 8.16
2010—-2030 30.1 3.24
2030—-2060 40.5 2.31
2060—2090 13.7 0.58

section of the Glacier d'Otemma also show high potential. Ac-
cording to the results, it appears that by 2060, the Haut Glacier
d'Arolla will have almost completely disappeared. By 2090, very
little ice will remain, however, the section to the north of the Col du
Petit Mont Collon (4) could be of interest at that time.

Already briefly discussed in Section 3, the area surrounding the
Theodulpass will now be revisited. The high altitude passes of in-
terest near the Theodulpass resulting from this analysis are the
Breuiljoch (9), Theodulpass (10), Passo di Ventina Nord (11), and the
Breithornpass (12) (Fig. 5). From 2010 to 2030 there are regions of
high archaeological potential on the extents of the Furgg, Oberer
Theodul, and Valtournanche glaciers, as well as on the Theodulpass
and Passo de Ventina Nord. Between 2030 and 2060, the east side of
the Oberer Theodul glacier becomes a predominant area of interest,
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Fig. 4. GlaciArch results around the Mont Collon which includes the Col de Petit Mont
Collon (4) and the Col Collon (5). The Glacier du Mont Collon, Glacier d'Otemma, and
Haut glacier d'Arolla are labelled as well as locations mentioned in the text: Petit Mont
Collon, Col de Charmontagne, and Plans de Bertol. LCP refers to least cost path.

while the Furgg glacier has decreased archaeological potential. The
area south of the Passo de Ventina also shows high potential during
that time period. From 2060 to 2090 The Furgg and Oberer Theodul
glaciers are predicted to almost completely disappear therefore
their glacial archaeological potential decreases significantly.

The performance of this model has yet to be tested in the field,
however the results seem to correspond well to glaciological
principles and the few glacial archaeological finds already located
in the region, for example at the Oberer Theodul site (Figs. 4 and 5).
In theory, high archaeological potential is expected near the glacier
margins as those are the areas with the thinnest ice, while areas of
low potential should occur mid-glacier where the ice is thickest. An
example of this can be seen in Fig. 4 at the Haut Glacier d'Arolla;
high potential exists on the extents of the glacier tongue and po-
tential decreases as inward movement onto the glacier continues.
One problem with this model is that it is difficult to convey
inherently dynamic movement on a static map. In fact, potential
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Fig. 5. GlaciArch results around the Theodulhorn. Passes listed are the Breuiljoch (9),
Theodulpass (10), and the Passo di Ventina Nord (11). The Furgg glacier, and Oberer
and Unterer Theodul glaciers are labelled. LCP refers to least cost path.
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maps should be calculated for each year to obtain a greater un-
derstanding about the true and temporally varying archaeological
potential of the region, however 2D mapping contraints do not
permit dynamic visualisation of this type of results. An interactive
interface would be the best way to visualize the end results.

6. Conclusion

In this paper, the new integrated model GlaciArch was used to
identify areas of current and future archaeological interest and
potential in the Pennine Alps. The model highlights areas which
correspond to the retrieval of archaeological remains based on
glaciological principles and the topographic properties of the
terrain. Thus, the GlaciArch results can be used as a decision sup-
port tool for the selection of glacial archaeological prospection
sites. The definition of small regions of high glacial archaeological
potential means less time, effort, and money spent in the field or on
flight reconnaissance missions. By combining archaeological and
glaciological methods for the first time, a new perspective has been
given to the field of glacial archaeology. The integration of loca-
tional analysis and regional scale glacier modelling proved to be
beneficial for narrowing down a large, often inaccessible, and
remote study region to identify zones of archaeological interest
based on glaciological characteristics and human accessibility. The
glacier modelling results forecast a 93% loss in area by 2090. With
these alarming melting rates, immediate focus should be given to
high archaeological potential areas in hopes to locate and recover
possibly irreplaceable, culturally significant items. In order to pro-
tect and conserve these exceptional and rare relics, further multi-
disciplinary predictive methods should be developed and
employed in sensitive areas such as the Pennine Alps.
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