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Appendix from R. P. Rohr and J. Bascompte, “Components of
Phylogenetic Signal in Antagonistic and Mutualistic Networks”
(Am. Nat., vol. 184, no. 5, p. 556)

Mathematical Derivation of the Matching-Centrality Model (Eq. [1])

A theoretical framework similar to our model (eq. [1]) describing how interaction strength in food webs depends on
species traits was first introduced by Rossberg et al. (2010). Here, we provide a conceptually similar model but with two
main differences. First, our model works for the probability of existence of trophic/mutualistic links between species pairs
as opposed to the strength of the interaction. Second, instead of considering the general framework of a quadratic form,
we directly applied the singular valued decomposition on the matrix containing the logit of linking probabilities.

Our derivation works as follows. Let Pij be the matrix containing the linking probabilities between pairs of species, that
is, Pij is the probability that there is a trophic/mutualsitic link between species i and j. Now, we consider the logit of all
these linking probabilities and define the matrix M by . In general, the matrix M isM p logit(P ) p log (P /(1 � P ))�ij ij ij ij

a rectangular matrix of size , where S1 is the number of prey/plants species and S2 the number of predator/animalsS # S1 2

species. Now, instead of using the general framework of Rossberg et al. (2010, eq. [3]), we apply directly the singular
value decomposition (SVD) on matrix M. The SVD (see Watkins 2010) is the factorization of M into a product of three
matrices, , whereM p VDF

1d � f �1⎛ ⎞ ⎛ ⎞F F F 2⎛ ⎞ d � f �1 2 S 2…V p v v v , D p , F p . (A1)⎜ ⎟ 5 _⎜ ⎟ ⎜ ⎟F F F⎝ ⎠ Sd � f �⎝ ⎠ ⎝ ⎠S

The matrix D is a diagonal matrix made of nonnegative numbers , called the singular value of M; V is a matrixd , … , d1 S

of orthogonal column vectors ( ); and F is a matrix of orthogonal row vectors ). Here,1 S 1 Sv , … , v (f , … , f S p
. Note that SVD is unique, that is, the singular values are unique up to a common scaling factor, and themin (S , S )1 2

vectors are also unique up to their orientation and length in the space.
Expanding this matrix product, we obtain the following expression:

1 1 1 2 2 2 S S S…M p v d f � v d f � � v d f . (A2)

Note that we use the following nonstandard convention for the products between two vectors: v1d1f1 is a matrix of size
, with the element ij given by . Now, the next step resides in decomposing each singular vector in its1 1 1S # S v d f1 2 i j

components parallel and perpendicular to the unitary vector (1), that is,

i i i i i i˜ ˆ˜ ˆv p v � v and f p f � f . (A3)\ \ \ \
⊥1 k1 ⊥1 k1

With this decomposition, the matrix M is then given by

1 1 1 2 2 2 S S S˜ ˜ ˜…˜ ˜ ˜M p v d f � v d f � � v d f …

1 1 1 2 2 2 S S S˜ ˜ ˜…ˆ ˆ ˆ� v d f � v d f � � v d f … (A4)
1 1 1 2 2 2 S S Sˆ ˆ ˆ…˜ ˜ ˜� v d f � v d f � � v d f …

1 1 1 2 2 2 S S Sˆ ˆ ˆ…ˆ ˆ ˆ� v d f � v d f � � v d f .

The last degree of freedom that we have is the length of the vectors. To ensure that the elements of the vectors andi i˜ṽ f
are on the same scale, we impose , .i 1/2 i 1/2˜˜FFvFF p S FFf FF p S1 2
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By writing and in the form and , we can simplify the expression:i i i i i iˆ ˆˆ ˆv f v p j 1 f p j 1v f

1 1 1 2 2 2 S S S˜ ˜ ˜…˜ ˜ ˜M p v d f � v d f � � v d f …

1 1 1 2 2 2 S S S˜ ˜ ˜…� 1 (j d f � j d f � � j d f ) …v v v\
∗˜pf (A5)

1 1 1 2 2 2 S S S…˜ ˜ ˜� (v d j � v d j � � v d j )1 …f f f\
∗˜pv

1 1 1 1 2 2 1 S S…� 1(j d j � j d j � � j d j )1 .v f v f v f\
pm

Now, we restrict the first row of equation (A5) to the term with the largest value for di (which by reordering and without
loss of generality is d1). We obtain the following approximation:

1 1 1 * *˜ ˜˜ ˜M ≈ v d f � v 1 � 1f � m, (A6)

which at the component levels reads

1 1 1 * *˜ ˜˜ ˜M ≈ v d f � v � f � m. (A7)ij i j i j

By rewriting the first term of the right side, we obtain our final equation,

1 1 1d d d2 2 21 1 * 1 * 1˜ ˜ ˜˜ ˜ ˜M ≈ � v � f � v � v � f � f � m, (A8)( ) ( ) ( )ij i j i i j j2 2 2

which is equivalent to our equation [1], with the following correspondences: , , ,1 1 1 * *˜˜ ˜l p d /2 v p v f p f d v p v �i i i i 1 i i

, and .1 1 2 * * 1 1 2˜ ˜˜d /2(v ) d f p f � d /2(f )i 2 i i i

Finally, we need to scale and constrain the vectors and . It would be possible to add the same quantity to all* *v f
components of vector , simultaneously subtract the same quantity to all components of vector , and let equation (A8)* *v f
be invariant. This is a major issue when estimating these values with a Monte Carlo Markov chain. However, this does
not change the phylogenetic signal. Thus, for practical reasons, we set and . As previously, we scale these* *v ⊥ 1 f ⊥ 1
two vectors such that and . In this way, their components are on the same scale, and d1 and d2

* 1/2 * 1/2FFv FF p S FFf FF p S1 2

can be compared.

Table A1. Difference in mean phylogenetic strength across network component

Food webs
Mutualistic
networks

Pollinator
networks

Seed-disperser
networks

Mean
difference P

Mean
difference P

Mean
difference P

Mean
difference P

Matching (predator/animals) vs. matching (prey/plant) �.167 .061 .057 .036 .077 .033 .028 .514
Matching (predator/animals) vs. centrality (predator/animals) .026 .741 .121 !.001 .129 !.001 .108 .005
Matching (predator/animals) vs. centrality (prey/plant) .024 .754 .111 !.001 .122 !.001 .094 .055
Matching (prey/plant) vs. centrality (predator/animals) .194 .006 .063 .005 .052 .033 .080 .075
Matching (prey/plant) vs. centrality (prey/plant) .192 .005 .054 .040 .046 .085 .066 .219
Centrality (predator/animals) vs. centrality (prey/plant) �.002 .968 �.010 .653 �.007 .696 �.014 .770

Note: For each network type, the difference in mean phylogenetic strength between all pairs of network component is provided. P values were estimated using a t-
test. P values !.05 are indicated in boldface type; P values from .05 to .1 are indicated in italic type.
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Table A2. Difference in mean phylogenetic strength across network type

Matching Centrality

Predators/animals Prey/plants Predators/animals Prey/plants

Mean
difference P

Mean
difference P

Mean
difference P

Mean
difference P

Food webs vs. mutualistic �.001 .993 .224 .001 .094 .036 .086 .036
Food webs vs. pollinator �.015 .843 .229 .001 .088 .046 .083 .037
Food webs vs. frugivore .021 .776 .216 .002 .103 .039 .091 .092
Mutualistic vs. pollinator �.014 .675 .005 .862 �.006 .683 �.003 .895
Mutualistic vs. frugivore .022 .499 �.008 .846 .009 .755 .005 .918
Pollinator vs. frugivore .036 .342 �.013 .757 .015 .594 .008 .860

Note: For each network component, the difference in mean phylogenetic strength between all pairs of network type is provided.
P values were estimated using a t-test. P values !.05 are indicated in boldface type; P values from .05 to .1 are indicated in italic
type.
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