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We argue that, because of quantum entanglement, the local physics of strongly correlated materials at
zero temperature is described in a very good approximation by a simple generalized Gibbs distribution,
which depends on a relatively small number of local quantum thermodynamical potentials. We demonstrate
that our statement is exact in certain limits and present numerical calculations of the iron compounds FeSe
and FeTe and of the elemental cerium by employing the Gutzwiller approximation that strongly support
our theory in general.
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Strongly correlated materials display an extremely rich
variety of phenomena, such as Mott localization and high-
Tc superconductivity, which do not exist in conventional
materials. The key element at the basis of the unconven-
tional physics exhibited by strongly correlated materials
is that the Coulomb interaction “localizes” part of the
electrons, which retain part of their atomic character,
making it impossible to describe these systems within a
single-particle picture and opening up the possibility of an
entirely different class of phenomena.
A fundamental tool for understanding the physics of

strongly correlated materials is the so-called “reduced
density matrix,” which is obtained from the exact density
matrix of the solid by tracing over all degrees of freedom
except for those of the correlated local orbitals of interest
(e.g., the d electrons of a transition-metal compound). In
fact, this object encodes the whole local physics of the
corresponding electronic degrees of freedom. For instance,
it enables us to define the average populations, the mixed-
valence character [1,2], and the entanglement entropy [3,4]
of the correlated orbitals, which are fundamental concepts
in modern condensed matter theory.
The scope of this work is to understand how the reduced

density matrix of the correlated electrons is affected by the
quantum environment in a solid at zero temperature. Note
that,while this is a fundamental problemof great interest, the
answer is definitively nontrivial, as the size of the reduced
density matrix grows exponentially with the number of
correlated orbitals, and the interaction between the local
correlated orbitals and their environment is generally very
strong and depends both on the chemical composition and
on the arrangement of the atoms within the solid.
Let us reformulate the problem from a general perspec-

tive, without confining explicitly the discussion to corre-
lated electron systems. We consider a generic “large”

isolated system U (the lattice) and represent its
Hamiltonian as

ĤU ¼ ĤS þ ĤB þ ĤSB; ð1Þ
where ĤS is the Hamiltonian of a subsystem S (a subset of
local atomic orbitals), ĤB represents the Hamiltonian of its
environment B, and ĤSB represents the interaction between
S and B. Finally, we assume that U is in the ground state
jΨE0

U i of ĤU , and we consider the corresponding reduced
density matrix

ρ̂S ¼ TrBjΨE0

U ihΨE0

U j: ð2Þ
How does ρ̂S depend on the coupling between S and its
environment?
In this Letter we argue that, because of quantum

entanglement, ρ̂S exhibits thermodynamical properties
pertinent to statistical averages. More precisely, we argue
that, due to the property of jΨE0

U i to be quantum entangled,
ρ̂S has, approximately, a simple generalized Gibbs form,
which depends only on a few local thermodynamical
parameters.
Before exposing our theory it is useful to discuss briefly

an important recent related result: the canonical-typicality
theorem [5,6]. This theorem states that, given a system
represented as in Eq. (1)—with a very small hybridization
ĤSB—the reduced density matrix ρ̂S of any “typical”
jΨE

Ui ∈ U ½E;EþdE�, where U ½E;EþdE� is the Hilbert subspace

generated by the eigenstates of ĤU within the energy
window ½E;Eþ dE�, is

ρ̂S ∝ e−ĤS=TS ; ð3Þ
where the temperature TS is determined by the average
energy ES ≡ Tr½ρ̂SĤS�. Note that the Gibbs form of ρ̂S
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arises as an individual property of the typical jΨE
Ui—a pure

state—without calling in cause the construction of an
ensemble. The key concept underlying this important
theorem is quantum entanglement. A simple way to make
this interpretation clear is that Eq. (3) is characterized by
the condition

S½ρ̂S� ¼ maxfS½ρ̂�jρ̂ ∈ ΩS; Tr½ρ̂ĤS� ¼ ESg; ð4Þ
where S½ρ̂� ¼ −Tr½ρ̂ log ρ̂� is the entanglement entropy of S
and ΩS is the set of all of the local (in S) density matrices.
Since the entanglement entropy is a measure of the
quantum entanglement between S and B, this characteri-
zation of ρ̂S shall be regarded as a consequence of the
individual property of the typical jΨE

Ui ∈ U ½E;EþdE� to be
highly entangled [7–10].
Let us now drop the assumption that the interaction

between S and B is small (which is certainly not the case
in materials) and focus on our questions concerning the
reduced density matrix ρ̂S of the ground state jΨE0

U i of U;
see Eq. (2) and text below. The key message of this work
is that, even in this case, a proper generalization of Eq. (3)
holds—albeit only approximately.
In order to demonstrate our statement, let us consider

the density matrix ρ̂ða1;…; anÞ characterized by the
condition

S½ρ̂ða1;…; anÞ� ¼ maxfS½ρ̂�jTr½ρ̂Âi� ¼ ai ∀ ig: ð5Þ
It is known that the solution ρ̂ða1;…; anÞ of Eq. (5) has, if it
is nondegenerate, the generalized Gibbs form [11–13]

ρ̂ðλ1;…; λnÞ ∝ e−
P

n
i¼1

λiÂi ≡ e−F̂ S : ð6Þ
From now on we refer to Eq. (6) as the principle of
maximum entanglement entropy (PMEE) relative to the set
of observables Â ¼ fÂ1;…; Âng and to the constraints in
Eq. (5) as the corresponding testable information.
A possible way to quantify the goodness of a given

PMEE is the following quantity:

Δ½fÂ1;…; Âng� ¼ min
λ1;…;λn

D½ρ̂ðλ1;…; λnÞ; ρ̂S�; ð7Þ

where ρ̂S is the actual reduced density matrix of the system
and

D½ρ̂1; ρ̂2�≡ Trðjρ̂1 − ρ̂2jÞ=2 ∈ ½0; 1� ð8Þ
is a standard trace distance that represents the maximal
difference between ρ̂1 and ρ̂2 in the probability of obtaining
any measurement outcome [14].
In summary, we have proposed a systematic method to

construct and verify the goodness of a generalized Gibbs
ansatz for the reduced density matrix ρ̂S of a generic
system. The key step is the identification of a subset of local

observables Â≡ fÂ1;…; Âng, whose expectation values
are expected—e.g., on the basis of physical considerations
—to be directly controlled by the system-environment
interaction. Note that Δ½Â�≡ 0 in the limit in which Â
coincides with the set of all of the local observables. In
fact, any density matrix is uniquely defined by all of
the expectation values of the observables within its
Hilbert space.
As we are going to show, the PMEE is a very useful

theoretical tool, as a subset Â containing only a “few”
observables is often sufficient to have Δ½Â�≃ 0. In other
words, it is generally possible to define a series of
observables Âi such that the corresponding series of trace
distances

Δn ≡ Δ½fÂ1;…; Âng� ð9Þ

converges “rapidly” to zero as a function of n, regardless
of the details of the environment B and its coupling
with S.
We point out that the PMEE [see Eq. (6)] has a twofold

interpretation: (i) the only “relevant” testable information
of ρ̂S consists in the expectation values ai of the observ-
ables Âi ∈ Â; (ii) the S degrees of freedom are essentially
in a Gibbs state, but they experience the effective inter-
action encoded in a “renormalized” local Hamiltonian F̂ S

that is generally different from the original ĤS. This
twofold interpretation reflects the Legendre duality
between the expectation values ai and the corresponding
generalized chemical potentials λi.
Strongly correlated electron systems.—From now on we

restrict our attention to many-body correlated electron
systems in their ground state. More precisely, we consider
a generic multiband Hubbard model (HM)

ĤU ¼
X

i≠j

Xν

a;b¼1

ϵabij c
†
iacjb þ

X

i

Ĥloc
i ½fc†icg; fcicg�; ð10Þ

where i and j are “site” labels and a; b; c ¼ 1;…; ν label
both the spin σ and the orbital m. The Hamiltonian ĤU can
be separated as in Eq. (1), with ĤS corresponding to the
i-local operator Ĥloc

i —which, in general, can include both a
quadratic term Ĥϵ

i and a quartic term Ĥint
i (representing the

on-site Coulomb interaction).
In order to define a PMEE for the S reduced density

matrix, we need to understand which local observables
have to be included in Â [see Eq. (6) and text below] to
describe approximately the local physics of the system.
Because of the coupling between the environment and

the local space, the expectation value of ĤS with respect to
ρ̂S is controlled by their reciprocal interaction. This implies
that ĤS has to be included in Â. On the other hand, since
ĤSB is not generally small, there are at least two additional
key physical mechanisms that our PMEE shall take into
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account. (I) Because of the hybridization effect, also the
individual local orbital populations are controlled by
the coupling with the environment. (II) We expect that
the effective local interaction F̂ S experienced by the local
degrees of freedom is renormalized. Furthermore, we
expect that F̂ S is not isotropic but is invariant only under
the point group of the system.
From the above heuristic arguments, we conclude that Â

should include at least all of the quadratic and quartic
operators compatible with the symmetry of the system.
According to our scheme, the corresponding PMEE is
ρ̂fitS ∝ e−F̂ S [see Eq. (6)], where F̂ S is the most general
linear combination of quadratic and quartic operators.
Note that ρ̂fitS is an extremely “special” density matrix, as
the number of parameters that determine it grows only
quartically with ν [see Eq. (10)] rather than exponentially.
Finally, we point out that the PMEE ρ̂fitS is exact not only
in the so-called “atomic limit” ĤSB → 0, but also for any
quadratic ĤU [15]. In fact, Wick’s theorem ensures that
the expectation value of any local observable depends only
on the “Wick’s contractions” hΨE0

U jc†SacSbjΨE0

U i, that can be
reproduced exactly by a proper quadratic F̂ S.
For later convenience, we define the following series of

PMEE for the local reduced density matrix ρ̂S of a generic
HM: (i) Δ1, corresponding to Â1 ≡ fĤloc; N̂g, where Ĥloc

is the on-site Hamiltonian and N̂ is the number operator of
the S electrons; (ii) Δ2, corresponding to Â2 containing
Ĥloc and all of the quadratic operators commuting with the
point group of the system; and (iii)Δ3, corresponding to Â3

containing all of the quadratic and the quartic operators that
commute with the point group of the system. As a
reference, it is also useful to define the trace distance Δ0

between ρ̂S and the maximally entangled state, which is the
local density matrix proportional to the identity—that
corresponds to the PMEE for an empty set of observables,
Â0 ≡ fg.
Numerical benchmarks.—In order to benchmark our

theory and demonstrate its usefulness for the study of
materials, here we consider, as a first example, the reduced
local density matrix ρ̂d of a realistic HM representing the
iron compound FeSe. Additional benchmark calculations
of FeTe and of the elemental cerium are discussed in the
Supplemental Material [16].
We construct the HM of FeSe by adopting the same band

structure ϵ [see Eq. (10)] used in Ref. [17], which was
generated by using density functional theory with the
generalized gradient approximation for the exchange-
correlation potential, according to the Perdew-Burke-
Ernzerhof recipe implemented in QUANTUM ESPRESSO

[18] and by applying WANNIER90 [19] to compute the
maximally localizedWannier orbitals. Finally, we make use
of the Slater parametrization of the on-site interaction Ĥint.
Since the HM cannot be solved exactly, we solve it

approximately within the Gutzwiller approximation (GA)
[20], which is a very reliable approximation for the ground
state of correlated metals. In particular, we employ the
numerical implementation developed in Refs. [21–24].
In the first panel of Fig. 1, the quasiparticle renormal-

ization weights are shown as a function of the interaction
strength U, keeping the ratio J=U fixed at 0.224 and
1=γ ¼ 0.25; see Ref. [25]. As discussed in Ref. [17], at
U ≃ 2 eV the system undergoes a clear crossover from a
normal metallic phase (Z≃ 1) toward a bad-metallic phase
(Z ≪ 1)—the so-called Janus phase [26]. Our purpose is to
analyze the local reduced density matrix ρ̂d of the Fe d
electrons and to verify the goodness of the PMEE for our
FeSe HM, both in the normal-metal regime and in the
Janus phase.
In the second panel of Fig. 1 is shown the evolution of

the PMEE trace distances Δ0, Δ1, Δ2, and Δ3. The
corresponding series Δn [see Eq. (9)] is shown explicitly
in the inset for three values of U as a function of the
respective number νn of fitting parameters required.
Remarkably, Δn converges very rapidly to 0 for all U’s;
see Eq. (9). In fact, although the number of independent
parameters of ρ̂d is 2516, the Δ3 PMEE, which is defined
by only 53 free parameters, is sufficient to obtain a very
accurate fit for every U considered—as indicated by the
trace distance Δ3 ≪ 1.
In order to get an even better idea of how accurate our

PMEE fits are, we show also the histogram of the local
configuration probabilities of the eigenstates of Ĥloc:

FIG. 1 (color online). Upper panel: quasiparticle renormaliza-
tion weights of FeSe. The normal-metal phase (small U) and the
Janus phase (large U) are indicatively separated by a vertical
shaded line. Lower panel: PMEE trace distances Δn for the
reduced density matrix ρd of FeSe. The series shown in the insets
correspond to U ¼ 0.5 eV, U ¼ 2 eV, and U ¼ 4 eV. All the
calculations are performed at fixed J=U ¼ 0.224.
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PE ≡ Tr½ρ̂dP̂E�=dE; ð11Þ

where P̂E is the orthonormal projector over the E eigen-
space of Ĥloc and dE is its degeneracy. In Fig. 2, the
computed GA configuration probabilities are shown for
three values of U in comparison with the local configura-
tion probabilities evaluated by using the PMEE density
matrices corresponding to the trace distances Δ2 and Δ3.
These data confirm the goodness of our PMEE. In fact, the
structure of the computed local configuration probabilities,
which is extremely complex, is captured in detail by the Δ3

PMEE, and this agreement is verified for all U’s, even
though the system undergoes a clear crossover between two
electronically distinct phases at U ≃ 2.
In the Supplemental Material [16], we discuss also first

principles calculations of FeTe and of the elemental cerium,
which further support our theory. Furthermore, we show
that both (i) the crossover between the normal-metal and
the Janus phase in the iron chalcogenides and (ii) the γ-α
isostructural transition of cerium [4] can be neatly under-
stood in terms of the behavior of the PMEE local
thermodynamical parameters.
Note that the concept of a generalized Gibbs ansatz has

been previously introduced also in the context of systems
out of equilibrium [27–31] and interpreted in terms of a
principle of maximum entropy subject to given constraints
[32]. On the other hand, it must be noted that what we have
proposed here is not a principle of maximum entropy but a
principle of maximum entanglement entropy (i.e., the
entropy of a given subsystem). We point out that, although
the formal definitions of entanglement entropy and entropy
are mathematically similar, the behavior and the physical

meaning of these two quantities are completely different.
For example, as previously pointed out, although the
systems considered in this work were assumed to be at
zero temperature (and consequently with zero entropy),
their entanglement entropy was finite because of the
quantum entanglement.
Conclusions.—We have shown that the local physics of

strongly correlated materials at zero temperature is
described by a simple universal generalized Gibbs distri-
bution. This statement is deeply significant, as the inter-
action between the subsystem (a given atom) and its
environment (all of the other atoms) is definitively non-
negligible in real materials. Our finding provides a very
powerful theoretical viewpoint on strongly correlated
electron systems. In fact, as shown explicitly by our
calculations, the simple exponential form of the reduced
density matrix enables us to understand in terms of a
few local thermodynamical parameters the behavior of
many important physical quantities, such as all of the
many-body local configuration probabilities of the corre-
lated electrons—whose number is extremely large, in
general, as it grows exponentially with the number of
correlated orbitals. Our finding might open up the pos-
sibility to engineer compounds with desired physical local
properties by directly controlling the local thermodynam-
ical parameters, e.g., through proper structure modifica-
tions. Furthermore, it might represent a new paradigm for
numerical methods involving the reduced density matrix in
the computational procedure (such as the GA). Finally,
since our theory is based only on the concept of quantum
entanglement, it might be applicable not only to materials
science, but also to other fields such as quantum thermo-
dynamics [33] and out-of-equilibrium quantum systems.
For instance, the principle of maximum entanglement
entropy might constitute a bridge between the concepts
of “spreading of entanglement” [34] and “thermalization”
in nonintegrable systems.

We thank Sheldon Goldstein, Xiaoyu Deng, Luca
de’ Medici, Giovanni Morchio, Michele Fabrizio, Cai-
Zhuang Wang, and Kai-Ming Ho for useful discussions.
N. L. and G. K. were supported by NSF Grant No. DMR-
1308141. The collaboration was supported by the U.S.
Department of Energy through the Computational
Materials and Chemical Sciences Network CMSCN.
Research at Ames Laboratory is supported by the U.S.
Department of Energy, Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering. Ames
Laboratory is operated for the U.S. Department of Energy
by Iowa State University under Contract No. DE-AC02-
07CH11358. H. U. R. S. acknowledges the support of the
Mathematics-Physics Platform (MP2) at the University of
Gothenburg. Simulations were performed on resources
provided by the Swedish National Infrastructure for
Computing (SNIC) at Chalmers Centre for Computational
Science and Engineering (C3SE) (Project No. 01-11-297).

FIG. 2 (color online). Local configuration probabilities PE

of the eigenstates of Ĥloc of FeSe, in the sectors N ¼ 5; 6; 7,
for U ¼ 0.5 eV, U ¼ 2 eV, and U ¼ 4 eV at fixed
J=U ¼ 0.224. The GA configuration probabilities (red line)
are shown in comparison with the local configuration probabil-
ities evaluated by using the PMEE density matrices correspond-
ing to the distances Δ2 and Δ3. Within each N sector, the
configuration probabilities PE are sorted in ascending order of
energy E≡ hψEjĤlocjψEi, where jψEi are the eigenstates of Ĥloc.
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