
 Principles and Fundamentals of Optical Imaging 

           Frank     Scheffold    

    Abstract 

   In this chapter I will give a brief general introduction to optical imaging and then discuss in more detail 
some of the methods specifi cally used for imaging cortical dynamics today. Absorption and fl uorescence 
microscopy can be used to form direct, diffraction-limited images but standard methods are often only 
applicable to superfi cial layers of cortical tissue. Two-photon microscopy takes an intermediate role since 
the illumination pathway is diffraction-limited but the detection pathway is not. Losses in the illumination 
path can be compensated using higher laser power. Since the detection pathway does not require image 
formation, the method can substantially increase the imaging depth. Understanding the role of scattering 
is important in this case since non-descanned detection can substantially enhance the imaging perfor-
mance. Finally, I will discuss some of the most widely used imaging methods that all rely on diffuse scat-
tering such as diffuse optical tomography, laser speckle imaging, and intrinsic optical imaging. These 
purely scattering-based methods offer a much higher imaging depth, although at a substantially reduced 
spatial resolution.  

  Key words     Optical imaging  ,   Fluorescence microscopy  ,   Scattering  ,   Diffuse optical tomography  ,   Laser 
Speckle Imaging  

1      Introduction 

 Modern optical imaging relies on a number of optical phenomena 
that provide access to spatial and temporal information about the 
object under study. Sample-specifi c information can be extracted 
not only from the intensity or phase but also from the analysis of 
photon statistics, fl uorescence lifetime, polarization, and so on [ 1 ]. 
Here I will give a brief general introduction to optical imaging and 
then discuss in more detail some of the methods specifi cally used 
for imaging dynamics of cerebral cortex today. Imaging cortical 
dynamics often mandates the use of specifi c  indicators, requires 
deep tissue penetration or high temporal resolution. Methods 
prominently discussed in this volume are two-photon microscopy, 
absorption spectroscopy, and laser speckle imaging. Although 
these methods are based on different principles, they all are inti-
mately related to (multiple) light scattering and absorption, topics 
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that often are not treated in classical optical imaging books and 
reviews and therefore are highlighted here. 

 I will fi rst discuss the main mechanism of light–matter interac-
tions in biological tissue, namely scattering, absorption, and fl uo-
rescent light emission. In the next step, I address the fundamentals 
of image formation for some selected methods and discuss their 
advantages and limitations.  

2    Imaging and Microscopy Principles 

 An image in traditional light microscopy is formed by absorption 
or scattering of light waves. In essence the microscope records the 
transmission shadow of a section of the sample that is in focus. The 
depth of fi eld  Z  denotes the thickness of a z-section around the focal 
plane for which object points are imaged with acceptable sharpness. 
Light beams scattered or absorbed at a given lateral ( x–y ) position, 
within this section  Z , are removed and therefore this  x–y  point 
appears dark in the image plane. Light beams unaffected by the sam-
ple lead to a bright background. The difference between dark and 
bright areas, or low and high light amplitudes, is called “contrast.” 

 Absorption is a molecular process where the photon energy is 
converted via radiative and non-radiative pathways in the molecule 
(see below). Refractive index variations  n ( x,y,z ) in the sample can 
lead to scattering or phase changes or both. Phase contrast origi-
nates from differences in the optical light path, defi ned as  s  =  x  c . 
Here  x  is the geometrical path,  c  =  c  0 / n  the speed of light and  c  0  
denotes the vacuum speed of light. Roughly speaking one can say 
that refractive index variations on length scales comparable to the 
wavelength  λ , here approximately 500 nm, lead to scattering while 
variations on much larger length scales mainly lead to phase shifts. 
Phase shifts can be converted to amplitude changes using the so- 
called phase plates in phase contrast microscopy. Applications are 
mainly found for unstained biological sections that are weakly scat-
tering objects. For details, please refer to the standard textbooks. 

 For all these cases, image formation can be treated with Abbe’s 
classical coherence theory for image formation: The lateral resolu-
tion is set by the effective numerical aperture (NA) of the objective 
and the condenser to  ρ  min  = 0.61  λ /NA and the depth of fi eld is 
 Z  =  n λ /NA 2  [ 2 ]. In addition to the lateral resolution limit set by 
the diffraction of light the utility of classical microscopy for bio-
medical imaging is severely limited by other factors. In particular 
the lack of specifi city, the limited axial resolution and the poor 
penetration depth in optically dense media have led to the develop-
ment of a large number of new methods based on other principles 
of contrast formation [ 1 ]. 

 Fluorescence microscopy is nowadays the method of choice in 
many imaging applications. The interaction of light with fl uorescent 
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molecules offers several advantages. Firstly the molecules can be 
attached to specifi c sites and act as specifi c indicators for biological 
function. Since each molecule emits light at wavelengths within a 
certain spectral window, it is possible to separate several different 
fl uorescent markers in a single experiment. As a matter of fact, 
biological specimen often display limited intrinsic amplitude or 
phase contrast, thus fl uorescence microscopy often provide images 
of unrivalled quality. 

 Although a source of contrast for thin samples, absorption and 
scattering usually impose severe limitations on the penetration 
depth when imaging thick specimen. If the absorbed light is not 
reemitted (e.g., via fl uorescence), the energy relaxes via vibrational 
pathways and the photons are lost. In the case of scattering how-
ever, the light is merely redirected. Although this precludes classic 
image formation in a microscope, it still allows to reconstruct lower 
resolution images based on diffuse propagation of scattered pho-
tons [ 3 ]. Collection of scattered photons is also an important issue 
in the detection pathway of two-photon microscopy [ 4 ]. In cases 
where the scattering has an inelastic or Doppler-contribution due 
to microscopic internal motion, additional information is encoded 
in the propagating light fi elds that carry information, for example, 
about blood fl ow in tissue [ 5 ]. In the following I describe in more 
detail the main principles of image formation for a number of cases 
that are of importance for cortical imaging. 

  Light energy can be “absorbed” by matter and subsequently 
released via radiative and non-radiative pathways. The latter pro-
cess transforms the entire energy of an incident photon to thermal 
energy. Absorption without emission can provide amplitude con-
trast in image formation but it can also severely limit the penetra-
tion depth of optical imaging methods. Radiative decays result in 
the emission of photons via fl uorescence or phosphorescence. In 
complex molecules both radiative and non-radiative processes 
occur sequentially or concurrently. As a consequence, for single 
photon absorption, the emitted photon possesses a lower energy 
(or has a red-shifted wavelength) compared to the absorbed pho-
ton. The situation can be described using the so-called Jablonski 
diagrams depicting the energy states of a molecule and its relax-
ation pathways (Fig.  1 ) [ 6 ].

   In contrast to a single atom, the electronic states of a complex 
molecule have many associated vibrational energy levels. In prac-
tice a molecule is excited from one of these thermally excited vibra-
tional levels of a singlet ground state  S  0  to an exited single state  S  1  
or  S  2  by absorbing a photon. The molecular absorption spectrum 
is rather broad, typically tens of nanometers. The excited molecule 
can relax to the ground state via different pathways. Non-radiative 
transitions are described via dashed lines whereas solid line arrows 
describe radiative pathways (Fig.  1 ). “Fluorescence” is the process 

2.1  Absorption 
and Fluorescence
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of fast emission of a photon via a direct relaxation from a low 
energy vibrational state of  S  1  to  S  0 , which typically takes place on 
the nanosecond scale. The exact lifetime of the excited state of a 
fl uorescent molecule depends on its immediate environment and 
thus carries relevant morphological and often also functional infor-
mation. An image of these properties is constructed by point- 
scanning in the frame the fl uorescence lifetime imaging microscopy 
(FLIM   ) approach [ 7 ]. If the molecule fi rst undergoes a spin con-
version, it can end up in a “forbidden” triplet state  T  1 . A subse-
quent radiative decay is slow and the photon energy is emitted over 
time scales of a millisecond or more, a process known as “phos-
phorescence.” For imaging purposes, mostly fl uorescence is 
employed whereas the other processes merely lead to a reduced 
quantum effi ciency and increased background. In some cases, 
however, these other processes can carry specifi c information. 
Fluorescence can be suppressed by resonant energy transfer 
(FRET), provided the molecules are suffi ciently close to each 
other [ 8 ]. The effi ciency of this process scales with the sixth power 
of the distance and the signal (or the absence of the signal) thus 
carries information about the location of the molecules at the 
nanoscale. Equally  phosphorescence can be quenched, for example, 
by the presence of oxygen [ 6 ,  9 ,  10 ]. 

  Fig. 1    Jablonski diagram. Schematic representation of the energy levels of an 
electron in a fl uorescent molecule (typical relaxation time scales in  brackets ). 
The molecule can be excited by 1p or 2p absorption to a higher electronic state 
 S  2  or  S  1 . Several radiative and non-radiative pathways eventually lead to a col-
lapse to the ground state  S  0 . The term “fl uorescence emission” denotes the fast 
radiative decay from the lowest vibrational level of  S  1  to an excited ground state 
 S  0  level ( green arrow ).       
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 Standard fl uorescence microscopy is based on the absorption 
of one high energy photon, some non-radiative losses and the 
subsequent emission of a lower energy photon: for example, blue 
excitation light is turned into green emission light (Fig.  1 ). In con-
trast, in two-photon microscopy a pair of photons is absorbed 
simultaneously and the fl uorescent molecule emits a single higher 
energy photon: for example, near infrared (NIR) light is turned 
into green light (Fig.  1 ). In the latter case the fl uorophores nor-
mally do not absorb single low energy NIR-photons and thus two- 
photon excited fl uorescence is the only allowed process.  

  The scattering of light refers to the elastic or quasi-elastic interaction 
of light with matter where the exchange of energy is minimal. In the 
latter case, for all cases of practical interest, the frequency shift Δ ν  
due to scattering from moving objects is very small (much smaller 
than the line-width of a single frequency laser of typically 5–10 MHz), 
which means that the scattering process itself does not alter the 
properties of the scattered light. Scattering occurs due to variations 
in the refractive index of the medium on length scales of the wave-
length of light. The incident wave induces oscillating dipoles in the 
medium that can reemit part of the light energy in some direction. 
Both scattering and absorption perturb the light propagation such 
that for a given path of light  z  the stream of photons is attenuated 
according to Lambert–Beers law  I ( z ) =  I  0  exp(− A ) =  I  0  exp(− μ  z ). The 
scattering and absorption strengths are characterized by the param-
eters  μ  s  and  μ  a , respectively (see Box  1 ). 

2.2  Scattering and 
Multiple Scattering

   Box 1 Scattering Effi ciency 

    The effi ciency of scattering is directly related to the polarizability α of the 
scattering object [ 11 ]. In the weak scattering limit [4 πR  ( n / n  0 −1) ≪  λ ],  α  
is proportional to the refractive index contrast ( n / n  0 −1). Here  n  denotes 
the refractive index of the object and  n  0  of the background medium and  λ  
is the wavelength of light. For small objects of size  R,  one fi nds  α  ∝  R  3  
( R  <  λ /2 π ) and for larger particles α∝  R  2  ( R  >  λ /2 π ). The total scattering 
cross section is proportional to  α  2 . Both the infl uence of absorption and 
scattering are usually measured in terms of the parameters  μ  a  and  μ  s  with the 
latter being directly proportional to  α  2  and the number density of scatterers. 
The parameter  μ  s  = 1/ l  s  is equal to the inverse of the mean free path  l  s  
defi ned as the distance a wave can travel on average before being scattered. 
In other words the unscattered or “ballistic” light intensity decreases expo-
nentially  I  =  I  0 exp[− z / l  s ] as a function of the penetration depth  z  (Lambert–
Beer law). Objects of size comparable or larger than the wavelength of light, 
such as cells and other tissue structures, scatter preferentially in forward 
direction. A measure of this effect is the scattering anisotropy parameter 
defi ned as the average of the cosine of the scattering angle  g  = <cos Θ >. For 
objects much smaller than the wavelength  g  ⋍ 0 whereas for biological tissue 
and blood, it is typically of the order  g  = 0.9. Diffuse propagation of light is 
characterized by the parameter  μ  t  = 1/ l  t  that takes account of the scattering 
anisotropy via a renormalized path length  l  t  =  l  s  1/(1− g ). 
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 Scattering in biological tissue is either due to refractive index 
variations in the tissue or due to scattering from blood cells. 
Scattering from blood can play an important role, for example, for 
in vivo two-photon imaging, given the high vascularization of the 
brain cortex [ 12 ]. Figure  2  shows the scattering properties of 
whole blood for light in the visible (VIS) and NIR region. For blue 
and green light, absorption and scattering are of similar strength 
while in the red and NIR region absorption decreases to a level 
where it becomes negligible for most applications. Scattering, 
however, remains strong in this wavelength range and limits the 
penetration depth of light in many optical imaging methods. As 
can be seen from Fig.  2  the scattering coeffi cient μ s  for whole blood 
never drops below 200 mm −1  and thus mean free path l s  never 
exceeds a value of 5 μm. Therefore whole blood is almost impen-
etrable for microscopy methods. The blood content in tissue varies 
substantially but is typically of the order of 2–5 %. At the same time 
refractive index variations in (cortical) tissue also provide scattering 
contrast. As a consequence, regular tissue, such as brain grey mat-
ter, for example, has a scattering mean free path of about 
 100–200 μm in vivo and negligible absorption in the NIR [ 4 ,  14 ] 
(see also Chapter   3     in this volume).

3           Single-Photon Microscopy 

 There are two distinct ways of obtaining an image from a fl uores-
cently labeled specimen upon single-photon excitation: (a) wide 
fi eld detection and (b) laser scanning combined with confocal 
detection. Wide-fi eld fl uorescence microscopy essentially works 
the same way as standard microscopy. The only difference is the 

  Fig. 2    Optical properties of blood. Scattering coeffi cient μ s  and absorption 
 coeffi cient  μ  a  of oxygenated ( red ) and deoxygenated ( blue ) whole blood, both 
adapted from Faber et al. [ 13 ].       
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wavelength-selective illumination and detection pathways. The 
main advantages are reduced background, increased contrast, and 
the possibility to specifi cally label (multiple) sites of interest in the 
specimen. The sectioning capabilities are, however, severely com-
promised by the contribution of out-of-focus fl uorescence excita-
tion if the entire sample is illuminated. The latter also leads to 
blurring of the image and increased background. Numerical 
 reallocation of out-of-focus light by recording a series of focal 
planes is known as “deconvolution.” It allows 3D reconstruction 
and can improve the focal plane image sharpness [ 1 ]. Selective 
Plane Illumination Microscopy (SPIM) is an interesting new wide-
fi eld imaging approach with improved sectioning capabilities. The 
method is based on creating a sheet of light, which coincides with 
the focal plane of the objective. With this approach, fl uorescence is 
excited only on the plane of measurement, and by moving the 
object through this excitation plane it is possible to recover 3D 
information with microscopic resolution [ 15 ,  16 ]. 

 The most popular approach to achieve 3D high-resolution 
microscopy is confocal laser scanning microscopy. In CLSM 
 out-of- focus light is reduced by physical mechanism: First, the 
sample is illuminated with a focused laser beam that is scanned 
across the specimen. Second, out-of-focus emitted light is rejected 
by placing a small aperture (the “pinhole”) in the image plane of 
the focal spot. The light that passes the pinhole is then recorded 
using an electronic detector. A 2D or 3D image is obtained by 
scanning the sample or the beam [ 2 ]. Confocal microscopy allows 
3D microscopy at the Abbe resolution limit for multicolor-labeled 
samples and is thus widely used in biomedical imaging. The pene-
tration depth in tissue is however limited in scattering samples 
since a sharp image of the focal plane must be formed on the detec-
tion aperture (Fig.  3 ).

4       Two-Photon Microscopy 

 Two-photon laser scanning microscopy also uses a raster- scanning 
approach and an objective lens to focus the incident light [ 4 ,  12 , 
 17 ,  18 ]. Firstly it is necessary to provide a high enough light inten-
sity to achieve a decent transition probability for two- photon 
absorption. In practice this can only be achieved using pulsed lasers 
with pulse durations in the sub-picosecond range and an average 
power ranging from tens of mW to several hundreds of mW for in 
vivo applications. Provided two-photon excitation can be achieved, 
the method offers some particular advantages. The two-photon 
absorption probability scales with the light-intensity square and 
thus the region where absorption takes place is strongly confi ned 
to the focal spot of the focused laser beam. Both axially and later-
ally the probability decays sharply. All fl uorescent light emitted can 
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therefore be attributed to absorption at the position of the 
 illumination focus. Rejection of out-of-focus light is not required 
and even scattered light can be collected when constructing an 
image (Fig.  3 ). Overall the setup is largely simplifi ed since for the 
detection pathway a maximum amount of the emitted light is col-
lected. This approach is often called non-descanned detection 
since, in contrast to confocal microscopy, the reverse pathway does 
not require the formation of an image of the focal spot. Another 
important advantage, in particular for biomedical imaging, is the 
fact that the incident light can be from the NIR region of the spec-
trum while the emitted light is typically in the VIS range. Both 
NIR illumination and non-descanned detection strongly increase 
imaging depth of two-photon microscopy compared to confocal 
microscopy [ 4 ]. Figure  3  summarizes the detection pathways of 
single- and two-photon excited fl uorescence microscopy.  

5    Diffuse Light Imaging 

 Imaging using microscopy requires a well-defi ned optical path 
from illumination to detection. If scattering or absorption is strong, 
this imposes severe limitations. For in vivo microscopy on small 
animals or humans, access is commonly restricted to the refl ection 

  Fig. 3    Laser scanning optical microscopy based on one-photon ( left ) and two-photon ( right ) excitation. In both 
cases scattering reduces the incident power reaching the focal spot. While in one-photon microscopy this 
leads to background fl uorescence, in two-photon microscopy scattered incident light is invisible. In one-pho-
ton microscopy (CLSM) illumination and detection pathways are equivalent. Scattered light cannot be imaged 
sharply on the confocal aperture and is thus lost when forming an image. In two-photon microscopy all emitted 
photons can be used to construct the image.       
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measurements, limiting the optical penetration depth to 0.5–1 mm 
even for best case of two-photon microscopy. 

 It is however still possible to obtain low-resolution images by 
monitoring scattered light only. The propagation of light in the 
multiple scattering regime can be described as a random walk of 
photons with a step length of  l  t  =  l  s  1/(1− g ). For suffi ciently large 
number of steps, light propagation is diffusive with a diffusion 
coeffi cient  D  =  cl  t /3 [ 19 ]. Diffusely refl ected light penetrates the 
sample up to a depth of a few  l  t  and when leaving the sample 
spreads out over an area of roughly 10( l  t ) 2  [ 20 ,  21 ]. In turn, light 
detected at a given point ( x , y ) on the surface might originate from 
any position within the same surface area around this point. The 
length  l  t  therefore sets a lower bound for the spatial resolution of 
diffuse refl ectance imaging techniques such as optical intrinsic or 
laser speckle imaging. Imaging contrast can be generated by 
absorption, fl uorescence, and local motion in the sample (Box  2 ). 
In the presence of heterogeneities on length scales comparable or 
larger than l t , knowledge about the effective path length is needed 
as discussed in more detail below. Such knowledge is however 
often diffi cult to obtain experimentally. For small animals, this lim-
itation can be overcome using tomography techniques (both for 
absorption [ 22 ] and fl uorescence [ 23 ]). The situation is much 
more involved for larger animals and humans when only refl ection 
measurements can be performed. The mathematical description of 
diffuse light propagation is fairly complicated. A brief primer is 
given in Box  2 . 

    Box 2 Diffuse Light Propagation: Scattering, Absorption of Light, 
and Correlation 

 Contrast in diffuse light imaging can be generated by spatial heterogeneities 
with respect to scattering ( μ  t ), absorption ( μ  a  > 0), and internal motion  f ( τ ). 
All four phenomena can be treated within the same light diffusion formal-
ism [ 3 ,  24 ,  25 ] and the position-dependent sample properties are character-
ized by the expression 3 μ  t  μ  a  +  f ( τ ). Stimulated emission can be treated as 
negative absorption ( μ  a  <0) while fl uorescence can also be included in a 
slightly expanded approach by taking account for the difference in the 
absorption and emission wavelengths. In the presence of locally increased 
absorption or fl uorescence the mean intensity of light transmitted or 
refl ected from the sample displays spatial variations that can be detected. 
The function  f ( τ ) is a measure of the time-dependent microscopic motion, 
with  f (0) = 0 [ 26 ]. Formally it can be considered as an absorption coeffi cient 
for the “correlation” of optical fi elds. Motion gradually destroys the perfect 
phase correlation of multiply scattered optical fi elds. For coherent laser 
light, in the presence of internal motion, light fi elds fl uctuate and  f ( τ ) 
increases as a function of time  τ . The associated loss of correlation can be 
probed by studying the optical speckle pattern [ 27 ,  28 ]. 
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 Diffuse light imaging can be implemented in a number of 
 different ways as will be described in the following sections [ 3 ,  29 ].    

6     Optical Imaging of Intrinsic Signals 

 Optical imaging of intrinsic signals (OIS) determines the absorp-
tion of refl ected light, such as the exposed brain cortex, for one or 
more often several characteristic wavelengths ([ 30 ,  31 ]). Due to its 
simplicity, it has been widely applied in an attempt to determine the 
cortical concentration of oxy- and deoxy-hemoglobin (oxy- Hb, 
deoxy-Hb) during cortical activation [ 32 ,  33 ]. Using light in the 
NIR range, optical imaging can also be applied in humans to non-
invasively monitor hemoglobin oxygenation [ 33 ,  34 ]. 

 A major complication of the OIS technique is the fact that the 
interpretation of recorded data is not straightforward at all. Since 
the light propagation in VIS and NIR spectral regions is domi-
nated by the process of multiple scattering, the actual path length 
within the absorbing tissue, required for quantifi cation, cannot be 
easily found (see also Box  3 ). The situation is illustrated in Figs.  2  
and  4 . Figure  2  displays the blood absorption and scattering prop-
erties for the relevant spectral region. Figure  4  illustrates that the 
light path can be substantially longer than the penetration depth  z , 
which means that the meandering photons have a higher probabil-
ity of getting absorbed. The situation is further complicated by the 
fact that the relevant distance travelled within a region of activity 
(absorption changes or motion) might be much smaller than the 
total path length [ 37 ].

   The main problem with the differential path length approach 
is that experimental access [ 38 ] and modeling of DP( λ ) in refl ec-
tion from a heterogeneous medium is very complicated and to date 
the interpretation of intrinsic optical imaging data remains 
controversial.    

   Box 3 The Differential Path Length 

 Quantifi cation in optical intrinsic imaging (OIS) relies on the concept of 
the so-called wavelength- dependent  differential path length  DP( λ ). It is 
defi ned such that for the case of absorption the attenuation coeffi cient is 
 A ( λ ) = DP( λ )  μ  a  with  A ( λ ) = −ln[ I / I  0 ]. In other words, DP( λ ) is the mean 
path length travelled in a corresponding homogeneous medium with an 
absorption coeffi cient  μ  a  (Lambert–Beer law). In an actual experiment, it is 
almost impossible to measure absolute values of  A ( λ ) and therefore the 
analysis is usually restricted to relative changes of the attenuation coeffi -
cient: ∂ A ( λ )/∂ μ  a  = DP( λ ) or  Δμ  a  =  ΔA ( λ )DP( λ ) − 1 , where only small changes 
of μ a  are considered such that DP( λ ) remains unchanged. The knowledge 
of DP( λ ) therefore would allow to relate absorption changes to changes in 
concentration of the absorbing substance since Δ μ  a  ∝ concentration. 
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7     Laser Speckle Imaging 

 Laser speckle imaging is a related approach that uses coherent laser 
light and measures the “absorption of correlation” [ 5 ,  27 ,  39 – 42 ] 
in the process of multiple scattering. It provides a measure for the 
local dynamic properties in a scattering medium. The underlying 
principle of LSI is equivalent to the one exploited in laser Doppler 
fl owmetry, a method widely used in biomedical functional imaging 
of blood fl ow [ 5 ]. A moving object inside the tissue, such as a red 
blood cell, leads to a Doppler shift of the frequency of scattered 
light. Rather than analyzing Doppler frequency shifts LSI looks at 
temporal fl uctuations of the scattered light in order to map dynam-
ics. In LSI a digital camera records the surface intensity pattern of 
light refl ected from the tissue. In the absence of movement (or for 
very short exposure time), there is no detectable fl uctuation and the 
typical granular interference pattern, called speckle, has the same 
properties in the entire fi eld of view. The spatially resolved speckle 
properties evolve in the presence of movement and thus can be a 
sensitive probe of blood fl ow dynamics. The strength and limita-
tions of LSI are similar to the ones found in OIS. This is not surpris-
ing since both methods are founded on exactly the same physical 
principles (absorption and scattering of diffusely refl ected light). 
The LSI measurement is rather easy to implement and the data 
acquisition is straightforward. Quantifi cation, however, faces the 
same problems as OIS since knowledge about the exact path lengths 
is diffi cult to obtain from a single wide-fi eld experiment. Moreover, 
the penetration depth is limited to the mm-range due to the wide-fi eld 

  Fig. 4    Diffuse scattering of light in refl ection. The incident wave is dispersed and 
scattered along a path of a certain contour length. The scattered wave leaves the 
sample at a distance ρ x , y  ≤ 3l t . The propagating waves reach a typical depth  z  of 
about half this distance [ 35 ,  36 ]. If only a section of the light path crosses a region 
of interest ( blue shaded circle ), the effective path length inside this region needs 
to be considered only. Modeling the latter is diffi cult if the sample is accessed only 
from a single perspective. The problem can however be overcoming using optical 
tomography based on a numerical analysis of the signal obtained from a number 
of different source/detector pairs placed around the object [ 24 ].       
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illumination usually applied. Additional complications, specifi c to 
LSI and not present in OIS, are the limited signal to noise ratio and 
the sensitivity of the method to vibrations and body movements, for 
example, due to breathing and heartbeat [ 43 ].  

8    Diffuse Optical Tomography 

 In contrast to the planar imaging methods discussed in the previ-
ous sections, diffuse optical tomography (DOT) attempts to recon-
struct 3D images by acquiring multiple images from different 
perspectives or by using a set of point sources and detectors. The 
tomographic scheme consists in solving a number of equations for 
the unknown spatial distribution of scattering properties. It has 
been implemented for absorption, fl uorescence, and speckle- 
decorrelation [ 3 ,  5 ,  24 ]. Elaborate theoretical frameworks have 
been developed since the early 1990 [ 44 ]. Due to the additional 
information available, a numerical reconstruction is possible within 
some approximation (such as the diffusion equation for light prop-
agation) without any prior knowledge about the medium. For 
small animals, NIR light is able to penetrate the whole body and 
thus diffuse transmission measurements can be performed for most 
possible combinations of source and detector position. Using fl uo-
rescence markers, the signal to noise ratio can be substantially 
improved. The existence of parameter-free theoretical model 
moreover allows quantifi cation of the signal, for example, to extract 
the fl uorophore density [ 24 ]. 

 DOT type approaches have been applied to humans and neo-
nates since the early 1990s [ 45 ]. Due to the limited penetration 
depth of NIR light transmission measurements are precluded and 
thus an optical topography approach is usually applied. It consists of 
placing an array of sources and detectors around the skull. With a 
spacing of typically 3 cm this provides a penetration depth of roughly 
1.5 cm. Based on tomographic reconstruction methods, a map of 
the absorption parameter can be obtained. Since blood is a strong 
absorber (Fig.  2 ), this approach allows mapping of the hemody-
namic response in the brain cortex with mm resolution [ 36 ,  46 ].  

9    Summary and Conclusions 

 The aim of this introductory chapter was to highlight some of the 
main physical and optical mechanism that make up the foundation 
of modern neuroimaging methods. Naturally, the limited space 
available only allows touching the very surface of this broad fi eld. 
My modest goal was to remind the reader of some basic principle of 
image formation. I then focused on the important role of scattering 
in many modern imaging applications. As I have shown for the case 
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of diffuse light general concepts exist that can be applied to a variety 
of imaging techniques. The complexity of applying these concepts 
to light propagation in a complicated heterogeneous medium such 
as living tissue, however, remains a  challenging task until today.     
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