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Link prediction and spurious link detection in complex networks have attracted increasing attention 
from both physical and computer science communities, due to their wide applications in many real 
systems. Related previous works mainly focus on monopartite networks while these problems in 
bipartite networks are not yet systematically addressed. Containing two different kinds of nodes, bipartite 
networks are essentially different from monopartite networks, especially in node similarity calculation: 
the similarity between nodes of different kinds (called inter-similarity) is not well defined. In this letter, 
we employ the local diffusion processes to measure the inter-similarity in bipartite networks. We find 
that the inter-similarity is asymmetric if the diffusion is applied in different directions. Accordingly, we 
propose a bi-directional hybrid diffusion method which is shown to achieve higher accuracy than the 
existing diffusion methods in identifying missing and spurious links in bipartite networks.

Link prediction and spurious link detection problems are long-
standing challenges in network study [1]. They have applications 
in many fields such as chemistry, biology, sociology and computer 
science. In many biological networks, such as food webs, protein–
protein interaction networks and metabolic networks, whether a 
link between two nodes exists must be demonstrated by field or 
laboratorial experiments, which is usually very costly [2]. In addi-
tion, the data in constructing biological and social networks may 
contain inaccurate information, resulting in spurious links [3]. Cor-
recting the network connections can be very expensive if it is done
by laboratorial experiments. To solve this problem, many network-
based methods have been developed and they are shown to have 
high accuracy in identifying missing and spurious links [4].

So far, most related works focus on monopartite networks in 
which only one type of nodes exists [5]. However, many sys-
tems coupled by two different building blocks should be mod-
eled by bipartite networks. For example, the e-commercial systems 
consisting of online users and items [6], the scientific collabo-
ration system consisting of authors and papers [7], family name 
inheritance system consisting of babies and names [8] are natu-
rally described by such networks. The link prediction and spuri-
ous link detection problems are not yet well addressed in bipar-
tite networks. One close problem is the so-called “network-based 
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recommendation” in which network structure information is used 
to generate recommendation list to online users [9–11]. This field 
aims at predicting the future links for each individual. However, 
which links will most likely to emerge at system level still remains 
unknown.

Compared to the link prediction, the spurious link detection is 
more difficult. Though many link prediction methods are claimed 
to be applicable to spurious link detection, they may lead to se-
rious distortion of networks’ structural and dynamical properties, 
as shown in Ref. [12]. Therefore, there is not yet a well-accepted 
method for this task. The spurious link detection in bipartite net-
work is even newer and less touched, to the best of our knowledge. 
One closely related topic is the design of the reputation system in 
online user–object rating networks through which the malicious 
spammers can be identified [13].

Most link prediction and spurious link detection are based on 
calculating the similarity between nodes [14]. Most similarity mea-
sures in monopartite networks can be easily applied to calcu-
late the intra-similarity (i.e. the similarity between nodes of the 
same kind) in bipartite networks. However, the inter-similarity (i.e. 
the similarity between nodes of different kinds) in bipartite net-
works is not yet well-defined [15,16]. In this letter, we employ a 
well-known hybrid diffusion process from recommender system to 
calculate inter-similarities in bipartite networks. The hybrid diffu-
sion process was originally designed to be initialized from only 
one type of nodes [17]. Interestingly, we find that the obtained 
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inter-similarity will be entirely different if the direction of the dif-
fusion process is reversed. A similar phenomenon has been found 
when coarse graining bipartite networks [18]. We therefore de-
sign a bi-directional hybrid diffusion method and find that it can 
achieve a much higher accuracy than the existing diffusion meth-
ods. We investigate the bi-direction hybrid diffusion in many dif-
ferent conditions and it is shown that the diffusion information 
from both directions are equally important in all the considered 
conditions.

1. Method

A bipartite network consists of two different types of nodes. 
Without loss of any generality, here we use the online commercial 
system as an example. In such systems, the two kinds of nodes 
are respectively users and items. The bipartite network with N
users and M objects can be represented by an adjacency matrix A, 
where the element aiα equals 1 if user i has collected item α, and 
0 otherwise. (In this letter, item nodes will be labeled by Greek 
letters and user nodes will be identified by Latin letters.)

We first briefly introduce the hybrid diffusion method in 
Ref. [17]. The hybrid diffusion method is a combination of two 
independent algorithms called Mass diffusion (MD for short) [19]
and Heat conduction (HC for short) [20]. For a user node i, the MD 
algorithm starts by assigning one unit of resource to each item 
collected by i, and redistributes the resource through the user–
item network. We denote by the vector fi the initial resources on 
items, where the α-th component f iα is the resource possessed 
by object α. The three-step diffusion aims at estimating the inter-
similarity between i and α, namely the likelihood of existing a link 
between these two nodes. In the first step, the resource reaches 
the objects selected by the target user. In the second step, the re-
source reaches the users who selected the same objects as the tar-
get user, and these users are usually refereed as relevant users. In 
the final step, the resource reaches the objects selected by the rel-
evant users. These objects are more likely to be selected by the tar-
get user in the future. In real networks there can be many objects 
that reached by the diffusion but they are not with the same like-
lihood to be selected by the target user, the amount of resource on 
the object is the estimation of the likelihood. The inter-similarity 
between user i and items is obtained by setting the elements in fi

to be f iα = aiα , and redistributing them by f̃i = W fi , where

Wαβ = 1

kβ

N∑
j=1

a jαa jβ

k j
, (1)

is the diffusion matrix, with kβ = ∑N
l=1 alβ and k j = ∑M

γ =1 a jγ

denoting the degree of object β and user j respectively [19]. Phys-
ically, the diffusion is equivalent to a three-step random walk 
starting with ki units of resources on the target user i.

The HC algorithm works similarly to the MD algorithm, but in-
stead follows a conductive process represented by

Wαβ = 1

kα

N∑
j=1

a jαa jβ

k j
. (2)

Physically, the recommendation scores can be interpreted as the 
temperature of an item, which is the average temperature of its 
nearest neighborhood, i.e. its connected users. The higher the tem-
perature of an item, the higher its similarity to the target user 
node [20]. The MD and HC methods are illustrated in Fig. 1(a).

The hybrid algorithm of MD and HC was proposed in [17], with 
the diffusion matrix given by

Wαβ = 1

k1−λ
α kλ

β

N∑
j=1

a jαa jβ

k j
, (3)

Fig. 1. (Color online.) The illustration of the (a) user-based and (b) item-based dif-
fusion processes. The blue number next to a node is the resource the node received 
in the mass diffusion process. The red number is the resource the node received in 
the heat conduction process. The final resource on nodes can be used to estimate 
the inter-similarity between them and the target node.

where the parameter λ adjusts the relative weight between the 
two algorithms. When λ increases from 0 to 1, the hybrid algo-
rithm changes gradually from HC to MD. By tuning the parame-
ter λ, the inter-similarity between user nodes and item nodes will 
be more accurately measured.

The above diffusion methods are defined to be only initialized 
from the user side, while the diffusion from the item side is always 
ignored. Here, we consider the hybrid diffusion from the item side. 
We first set the initial resource in the user side as f α

i = aiα and 
redistribute it in the bipartite network via

Wij = 1

k1−λ
i kλ

j

M∑
β=1

a jαa jβ

kβ

. (4)

Again, the hybrid algorithm is HC when λ = 0 and MD when λ = 1. 
This process is illustrated in Fig. 1(b).

In this letter, we denoted the diffusion initialized from the 
user side as user-based hybrid diffusion and the obtained similar-
ity matrix as ̃ fUHD. The diffusion initialized from the item side is 
denoted as the item-based hybrid diffusion and the similarity ma-
trix is written as ̃ fIHD. One can immediately see from Fig. 1 that 
f̃ UHD
iα �= f̃ IHD

αi . To make use of the information of diffusion from 
both directions, we design a bi-direction hybrid diffusion (BHD for 
short) method in which the final inter-similarity matrix is calcu-
lated as

f̃ BHD
iα = θ

f̃ UHD
iα∑

j

∑
β f̃ UHD

jβ

+ (1 − θ)
f̃ IHD
αi∑

j

∑
β f̃ IHD

jβ

, (5)

where θ is a tunable parameter which controls the weight between 
the user-based diffusion and item-based diffusion.

2. Data and metric

2.1. Data

To test the performance of the BHD method, we make use of 
two benchmark data sets: RYM and Econophys. The RYM data was 
obtained by downloading publicly available data from the music 
ratings Web site RateYourMusic.com. In RYM, users can rate the mu-
sic from 1 to 10 (i.e., the worst to the best). We consider only the 
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rating higher than 5 as a link here. We use a random subset of this 
data with 986 users, 1197 items and 26 681 links [17]. The Econo-
phys data consists of a set of papers in the field of econophysics 
that were published between April 1995 and September 2010 in 
78 scientific journals and an e-print server (i.e. arXiv.org) [21]. The 
network has 1608 distinct authors, 1204 papers and 19 061 links. 
In these two networks, link prediction is to predict future ratings 
or citations. Both networks may also have spurious links since peo-
ple may give ratings or cite papers carelessly or some malicious 
behavior exists. Therefore, it is naturally to test our method in 
these bipartite networks.

In the link prediction problem, each data is randomly divided 
into two parts: the training set contains 90% of the links (ET ) and 
the remaining 10% of links constitutes the probe set (E P ). The al-
gorithm will run on ET while E P will be used to estimate the 
prediction accuracy. In the spurious link detection problem, the 
original data is called true network. 10% spurious links (E S ) are 
randomly added to the true network, which generate the observed 
network (EO ). Algorithms will be run on EO , and E S will be used 
to evaluate the detection accuracy.

2.2. Metric

In order to evaluate the accuracy of different algorithms, we 
adopt the ranking score (RS) index [22]. In the link prediction prob-
lem, RS measures whether the links in the probe set have highest 
rank among all nonexisting links. For each link iα in the probe set, 
its inter-similarity rank is denoted as Riα among all L nonexisting 
links. Then RS can be calculated as

RS = 1

|E P |
∑

iα∈E P

Riα

L
. (6)

According to the definition, a well-performed link prediction algo-
rithm should have a small RS.

Likewise, we use the rank of spurious link to evaluate the accu-
racy of algorithms in the spurious link detection problem. For each 
link iα in the spurious link set, its rank based on inter-similarity 
(̃f) is denoted as Riα among all L observed links. A good algorithm 
will rank the spurious links behind the true links, thus these spuri-
ous links are supposed to have large rank. In order to be consistent 
with the ranking score in link prediction problem, we calculate RS
as

RS = 1 − 1

|E S |
∑
iα∈E S

Riα

L
. (7)

In this way, it is still the smaller RS the better.

3. Results

We first investigate the performance of the BHD method under 
different parameters λ and θ . The heatmaps of RS in link pre-
diction and spurious link detection are shown in Fig. 2. In each 
panel, we use the dashed line to mark the region where the BHD 
method outperforms the original hybrid method (with optimal λ
when θ = 1) in RS. One can see that in both data sets, the region 
is large. Moreover, the region mainly locates in the region with 
0 < θ < 1, which indicates that a well-performed algorithm should 
combine the diffusion information initialized from both user and 
item sides. When applied to link prediction (see Fig. 2(a) and (b)), 
the BHD method will outperform the hybrid method by 8.2% in 
RYM and 15.0% in Econophys. In the case of spurious link detec-
tion, the BHD method can achieve 22.1% higher RS than the hybrid 
method in RYM and 14.4% higher RS in Econophys. The results im-
ply that the BHD has bigger advantage in spurious link detection.

Fig. 2. (Color online.) Ranking score RS of the BHD method in the parameter space 
(θ , λ) in link prediction for (a) RYM and (b) Econophys. RS of the BHD method in 
the parameter space (θ , λ) in spurious link detection for (c) RYM and (d) Econophys. 
In each panel, the dashed line marks the region where RS is better than the best RS
value achievable given θ = 1.

Fig. 3. (Color online.) (a) RS vs λ and (b) RS vs θ in link prediction. (c) RS vs λ and 
(d) RS vs θ in spurious link detection. The network in this figure is RYM. Note that 
the y-axis in this figure is in log scale.

In order to better understand the results in Fig. 2, we pick sev-
eral θ and plot RS as a function of λ in Fig. 3(a), (c). One can 
see that there is an optimal RS∗ when tuning λ, which is consis-
tent with the results in [17]. We can also see that the optimal RS∗
when θ < 1 can be smaller than RS∗ when θ = 1, which confirms 
that the BHD can outperform the original hybrid method (where 
only user-based diffusion is considered). For completeness, we also 
show RS as a function of θ for several λ in Fig. 3(b), (d). Clearly, 
there is also an optimal RS∗ when tuning θ . The optimal param-
eter θ is around 0.5, which indicates that the information from 
user-based diffusion and item-based diffusion are equally impor-
tant. The optimal parameters for link prediction are θ∗ = 0.5 and 
λ∗ = 0.25. For spurious link detection, the optimal parameters are 
θ∗ = 0.5 and λ∗ = 0.3. The results in Fig. 3 are based on RYM data, 
we remark here that the results based on Econophys data are sim-
ilar.

In link prediction, it is generally difficult to predict the miss-
ing link of the nodes with small degree. This is known as the 
“cold-start” problem [23]. In [17], it has already been shown that 
the item cold-start problem can be well addressed in the hy-
brid method by tuning the parameter λ. More specifically, the 
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Fig. 4. (Color online.) (a) RSuser
k≤10 vs θ and (b) RSitem

k≤10 vs θ in link prediction. 
(c) RSuser

k≥100 vs θ and (d) RSitem
k≥100 vs θ in spurious link detection. The network in 

this figure is RYM.

prediction accuracy for small degree items can be largely improved 
when λ < 1. However, the user cold-start problem (i.e., predicting 
links for small degree users) cannot be solved by tuning λ. Actu-
ally, addressing the user cold-start is also of great importance from 
the commercial point of view. In real online systems, web sites 
are competing for users. In order to attract more users, web sites 
should provide new/inactive users with more accurate recommen-
dations, which means that they have to more accurately predict 
the future links for small degree users. The cold-start problems 
have their counterparts in spurious link detection. Different from 
the link prediction case, the spurious links connecting to the large 
degree nodes are usually more difficult to detect. Therefore, it is 
important to improve the detection accuracy of spurious links for 
the nodes with large degree.

We argue here that the user cold-start problem can be solved 
by the BHD method. In order to show this, we pick all the users 
with degree smaller than 10 and calculate the average ranking 
score of all their links in the probe set as RSuser

k≤10. For complete-
ness, we also calculate the average ranking score of the probe 
set links connecting to the items with degree smaller than 10 as 
RSitem

k≤10. In this way, we can study RSuser
k≤10 and RSitem

k≤10 as a func-

tion of θ for different λ in Fig. 4(a), (b). One can see that when 
θ = 1 (i.e. the original hybrid algorithm), RSitem

k≤10 can be indeed re-

duced by tuning λ. However, RSuser
k≤10 will be significantly enlarged, 

which indicates that the user cold-start problem becomes even 
more serious. On the other hand, this problem cannot be well ad-
dressed also when θ = 0 (RSuser

k≤10 is small but RSitem
k≤10 is too large). 

In BHD method where θ is around 0.5, one can see that both 
RSuser

k≤10 and RSitem
k≤10 can be improved by tuning λ. In the spurious 

link detection, we mainly consider the spurious links connecting 
to the nodes with degree larger than 100 in Fig. 4(c) and (d) (i.e.,
we focus on RSuser

k≥100 and RSitem
k≥100). Similarly to the link predic-

tion case, both RSuser
k≥100 and RSitem

k≥100 can be improved when θ is 
around 0.5.

We further investigate the effects of data sparsity on the perfor-
mance of the BHD method. In link prediction, we select a fraction 
1 − p (p ranging from 0.1 to 0.7 with interval 0.1) links from 
the whole data set as the training set; the fraction p of the links 
form the probe set. Clearly, a higher p indicates a sparser known 
network (i.e., less available information). We report the minimum 
RS∗ of both the BHD method and the hybrid method in Fig. 5(a) 
and (b). Note that RS∗ of BHD is obtained by the double seek in 

Fig. 5. (Color online.) The optimal ranking score RS∗ of BHD and hybrid methods 
vs p in link prediction for (a) RYM and (b) Econophys. The optimal ranking score 
RS∗ of BHD and hybrid methods vs p in spurious link detection for (c) RYM and (d) 
Econophys. The insets are the optimal θ and λ in BHD method as a function of p. 
The error bars are obtained based on 10 independent realizations. Some error bars 
are invisible since they are smaller than the size of the markers.

the parameter space (θ , λ). Obviously, the BHD method has a lower 
RS∗ than the hybrid method in both data sets. The advantage of 
the BHD method becomes smaller when p is large. This is because 
the available information in this case is very limited, all algorithms 
will have low detecting accuracy and their performance becomes 
almost the same. In spurious link detection, we add a fraction p of 
spurious links to the real network to create the observed network. 
The higher p is, the more difficult for the algorithms to detect spu-
rious links. RS∗ against p is shown in Fig. 5(c) and (d). In RYM, 
RS∗ increases with p. However, the BHD method can still have a 
lower RS∗ than the hybrid method under different p in both data 
sets. In Econophys data, the RS∗ decreases with p. This is because 
the Econophys network is very sparse, a small number of spuri-
ous links will increase the connectivity and improve the accuracy 
of the spurious link detection. However, note that RS∗ becomes 
worse when p is too large (e.g. RS∗ = 0.1365 when p = 5). This 
phenomenon is very similar to a recent finding where the link pre-
diction is improved by adding some virtual links [23].

The insets in Fig. 5 show the optimal θ in the BHD method. One 
can see that θ∗ is rather stable around 0.5 in different p, which 
indicates that both user-based diffusion and item-based diffusion 
are useful under different conditions. In the insets of Fig. 5, the 
optimal λ in the BHD method is reported as well. One can see from 
Fig. 5(a), (b) that λ∗ approaches 1 as the training set gets sparse, 
which is consistent with a recent finding [24]. This phenomenon 
is due to the fact that mass diffusion (λ = 1) works better than 
the heat conduction (λ = 0) in sparse data. In Fig. 5(c), (d), the 
λ∗ is rather stable under different p, indicating that the optimal 
parameters are not sensitive to the fraction of spurious links in 
the networks.

4. Conclusion

Link prediction and spurious link detection in complex net-
works have been intensively studied recently. Most of related 
works are focused on monopartite networks. In this letter, we in-
vestigate the problem of missing and spurious link identification 
in bipartite networks. We propose a bi-directional hybrid diffu-
sion method in which inter-similarity between nodes is estimated 
by the diffusion resource and the diffusion initialized from both 
types of nodes is considered. We find that this method can achieve 
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higher accuracy than the existing methods in identifying missing 
and spurious links in bipartite networks. Moreover, our method is 
very effective in solving the cold-start problems in information fil-
tering.

In the literature, there are other important examples of spuri-
ous link detection approaches for bipartite networks (e.g. stochas-
tic block model [25]), which, however, designed for networks with 
ratings. Moreover, the method is based on global algorithms that 
can be prohibitive to use for large-scale systems. Instead, our 
method would be easily applicable for large networks since it is 
based on local diffusion. We also remark that developing the spuri-
ous link detection approaches has many applications. For instance, 
a related method has been applied to predict future conflicts be-
tween team-members in social network [26].

Many real networks such as online social networks are mod-
eled by directed networks [27]. So far, the link prediction in di-
rected network is still a challenge [28–30]. It is already pointed 
out that the directed networks are similar to bipartite networks 
and in some cases the problems in directed networks can be 
mapped to bipartite networks [31]. Therefore, we believe that the 
bi-directional hybrid diffusion method in this letter can be easily 
extended to directed networks, and we expect our method to have 
high accuracy as well in directed networks. Moreover, by consider-
ing link senders as user-like nodes and link receivers as objects-
like ones, some link prediction methods for directed networks 
could be extended to bipartite networks [28–30]. However, such 
an adaptation may lead to the prediction of some self-loops. A sys-
tematic study of adapting methods between directed and bipartite 
networks will be an important subject for future investigation.
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