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Abstract 
 
The cuticle provides a physical barrier against water loss and protects against 

irradiation, xenobiotics and pathogens. Components of the cuticle are perceived by 
invading fungi and activate developmental processes during pathogenesis. In addition, 
cuticle alterations of various types induce a syndrome of reactions that often results in 
resistance to necrotrophs. This article reviews the current knowledge on the role of the 
cuticle in relation to the perception of pathogens and activation of defenses. 
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1. Introduction 

 
The cuticle is a barrier coating the outer surface of epidermal cells of organs of the 

aerial parts of the plants. It protects against water loss, various abiotic and biotic stress. 
The structure and properties of the cuticle has received increased attention in the past 
years and a number of detailed reviews have been published (Martin, 1963;  Goodwin 
and Jenks, 2005; Kolattukudy (1985); Muller and Riederer, 2005; Reina-Pinto and 
Yephremov, 2009a; Schreiber, 2010; Domínguez et al., 2011a; Domínguez et al., 2011b; 
Nawrath et al., 2013; Yeats and Rose, 2013). The cuticle is structurally diverse among 
species but exhibits the organization of a composite material consisting in cutin, a 
polyester that is partly covered and interspersed with waxes (epicuticular and 
intracuticular waxes). The epicuticular waxes and the cuticle with intracuticular waxes 
are referred to as the cuticle proper. The cuticle proper lies above a so-called cuticular 
layer made of cutin and polysaccharides that is closely associated with the cell wall of the 
underlying epidermis cell.  The cutin polymer is typically made of esterified ω- and mid-
chain hydroxy and epoxy C16 and C18 fatty acids and some glycerol (Heredia, 2003). 
This polymer can be cleaved by esterases and yield various cutin monomers.  The 
cuticular wax, is a complex mixture of very long-chain fatty acids (C20 to C40) and their 
derivatives that include alkanes, aldehydes, primary and secondary alcohols, ketones, and 
esters. Depending on the species, secondary metabolites, such as flavonoids and 
triterpenoids are also found among the wax components (Samuels et al., 2008). An 
increasing number of genes involved in the biosynthesis of the cuticle have been 
identified mainly in A. thaliana and help to understand its biosynthesis (Pollard et al., 
2008; Kunst and Samuels, 2009; Beisson et al., 2012; Bernard and Joubès, 2013; Lee and 
Suh, 2013). The overall picture of cutin synthesis whereby precursors are assembled in 
the cell and exported to the cell wall can now be completed but many details still remain 
unanswered; for example, the nature of the exported cutin or wax precursors, the process 
of extracellular assembly or the elements involved general control of this complex 
developmental process. Highlights of the advances in this area comprise the identification 
of an ABC transporter ABCG32/PEC1 involved in cuticle assembly (Bessire et al., 
2011), the description of several classes of transcription factors involved in cutin and wax 
biosynthesis (Javelle et al., 2010; Seo et al., 2011; Nadakuduti et al., 2012) or post-
transcriptional regulation of cuticle biosynthesis by the zinc-finger protein SERRATE 
(Voisin et al., 2009). The involvement of protein monoubiquitination in the regulation of 
cuticle biosynthesis was recently documented as several genes of cutin and wax 
biosynthetic pathway were found to be targets for histone H2B monoubiquitination 
(Ménard et al., 2014). 

 
Here we will focus on the function of the plant cuticle in relation to the interaction 

with leaf pathogens. 
 

2.  The cuticle as a source of signals 
 
A number of recent reviews have been published that describe various aspects of 
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the biological functions of the cuticle in relation to their physical and biochemical 
properties (Muller and Riederer, 2005; Reina-Pinto and Yephremov, 2009a). The focus of 
this chapter will be dedicated to the hypothesis that the cuticle might constitute a 
potential source of signals for the pathogens or for the plant itself.  
 

2.1. Perception of cuticle components by fungi  
 
Cutin hydrolysates were shown early on to induce the activity of an extracellular 

cutinase in Fusarium solani pv pisi. Fractionation of the cutin hydrolysates established 
that the ω−hydroxy fatty acid fraction contained most of the activity. The optimal length 
of the aliphatic chain is 16 carbons, the activity mostly depends on a hydroxyl group at 
the ω carbon whereas the presence of the carboxyl group had no significant effect (Lin 
and Kolattukudy, 1978). Chemically synthesized cuticle monomers also activate fungal 
development (Ahmed et al., 2003). Kolattukudy (1985) proposed that cuticle-degrading 
pathogens sense plant surfaces by cutin monomers that activate fungal cutinolytic 
activity. Cutin monomers are initially generated by basal cutinase activity in fungal 
spores landing on plant surfaces. Sensing of cutin monomers would then induce high 
levels of cutinase required for penetration. The induction of cutinase in F. oxysporum 
results from a transcriptional activation (Woloshuk and Kolattukudy, 1986). Furthermore, 
a transcription factor CTF1 was identified that binds to a G-rich palindromic binding site 
of the cutinase promoter (Kamper et al., 1994). Cuticular components can also induce 
other aspects of fungal developmental. For example, cutin monomers induce the 
germination and appressorium in the rice blast fungus Magnaporthe grisea (Gilbert et al., 
1996); and appressorial tube formation in Erysiphe graminis (Francis et al., 1996). Cutin 
monomers also induce a protein kinase, LIPK (lipid-induced protein kinase) in 
Colletotrichum trifolii, the causal agent of alfalfa anthracnose. LIPK is essential for 
triggering infection structure formation in the fungus (Dickman et al., 2003). Besides 
cutin monomers, surface waxes also activate development processes in fungi. For 
instance, surface waxes of avocado, including terpenoid components, induce germination 
and appressorium formation in Colletotrichum gloeosporioides, a pathogen of avocado, 
while waxes from other plants were not effective (Kolattukudy et al., 1995; Podila et al., 
1993). Chloroform extracts of wax from wheat leaf surfaces induce appressorium in 
Puccinia graminis f.sp. tritici (Reisige et al., 2006). Appressorium formation in the rice 
pathogen Magnaporthe grisea is induced by leaf wax of rice or other plants or synthetic 
n-C22 fatty acid, fatty alcohol or alkane (Hegde and Kolattukudy, 1997). Recently, it was 
shown that the pre-penetration processes of the powdery mildew fungus Blumeria 
graminis f. sp. hordei are stimulated by very-long-chain aldehydes that are wax 
constituents of the cuticle (Hansjakob et al., 2010, 2011; Ringelmann et al., 2009). For 
example, during the formation of the primary germ tube in B. graminis f.sp. hordei, very-
long-chain aldehydes (typical components of surface waxes) can stimulate the migration 
of the nucleus inside the conidia towards the site of primary germ tube emergence 
(Hansjakob et al., 2012).  
Taken together, these observations document the perception of cuticular components by 
fungi. In the next section, we will show that the plant itself can also detect and react to 
components of the cuticle.  
 



 4 

 
 

2.2. The cuticle and the perception of its products by the plant 
 

The action of fungal cutinase and related enzymes during the early stages of fungal 
contact with plant surfaces prepares the infection site both for adhesion and penetration 
(Deising et al., 1992; Nielsen et al., 2000). Cuticle breakdown products constitute 
potential signals perceived by the plant that are among the first elicitors to be generated 
during infection. While it is difficult to determine the nature and concentration of cutin 
monomers at the infection court, the hypothesis that such monomers could be perceived 
by the plant was tested in barley and rice treated by ectopic treatments with synthetic 
analogs (Schweizer et al., 1994; 1996b). Two monomers of the C18 family were effective 
in protecting barley against Erysiphe graminis and rice against Magnaporthe grisea, most 
likely by acting on the plant since these molecules have no direct fungicidal effect. 
Treatment of suspension–cultured potato cells with cutin monomers induces medium 
alkalinization, production of ethylene (ET) and accumulation of defense-related genes 
(Schweizer et al., 1996a). The most active compound was n,16-hydroxypalmitic acid (n = 
8, 9 or 10), a predominant component of the potato cuticle. When etiolated cucumber 
hypocotyls are gently abraded, cutin monomers from hydrolysates of cucumber, apple, 
and tomato cutin induce the production of H2O2 (Fauth et al., 1998). The gentle abrasion 
was proposed to reproduce the action of cutinase released by a potential pathogen 
allowing the plant to perceive and respond to cutin monomers that can readily diffuse 
through the permeabilized cuticle. A surprising observation of action of cutinase was 
made by the addition of purified cutinase from Venturia inaequalis or from Fusarium 
solani directly to spores of Rhizoctonia solani prior to inoculation of bean leaves. A 
decrease in symptoms was observed in inoculation droplets containing spores together 
with cutinase compared to spores with water. The effect of cutinase depends on its 
lipolytic esterase activity.  Pathogenesis-related (PR) protein genes were not associated 
with cutinase-induced resistance responses of bean leaves in response to cutinase action 
(Parker and Koller, 1998). This intriguing observation was pursued further by directly 
expressing a fungal cutinase gene in the cell wall of plants. To this purpose, a cutinase 
gene from Fusarium solani pv pisi was expressed in A. thaliana under the control of the 
CaMV35S promoter and targeted to the cell wall (Sieber et al., 2000). A normal layer of 
wax, but a partly absent cuticle, characterizes cutinase-expressing plants that exhibit 
enhanced permeability to solutes. A subsequent study provided a detailed assessment to 
the reaction towards pathogens (Chassot et al., 2007). No difference was observed 
between cutinase-expressing plants (so-called CUTE plants) and wild types after 
infection with the biotrophs Erysiphe cichoracearum, Hyaloperonospora parasitica and 
Phytophthora brassicae or the non-host Blumeria graminis. Importantly, CUTE plants 
displayed almost complete immunity towards the necrotrophic fungus Botrytis cinerea. 
The protection requires the enzymatic activity of the protein, since transformants with a 
cutinase gene mutated in the active site of the enzyme are not protected. Ectopic 
application of Fusarium cutinase to A. thaliana leaves also protects against B. cinerea 
and is not the result of a direct action of the cutinase on B. cinerea, in agreement with the 
overexpression experiments (Chassot et al., 2007). Expression of the lipase A gene of B. 
cinerea also provides full protection, confirming the importance of the cutinolytic activity 
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for protection (Chassot et al., 2007). To some extent this is reminiscent of the 
experiments of Parker and Köller where active cutinase mixed to spores of Rhizoctonia 
solani led to protection in bean leaves (Parker and Koller, 1998). There was no 
correlation between the expression of marker genes for the salicylic acid (SA), ET or 
jasmonic acid (JA) pathways and expression of the cutinase gene of F. solani in A. 
thaliana mutants of the SA (pad4, sid2), ET (etr1, ein2, pad2) and of the JA (jar1) 
pathways clearly show fully independence of cutinase-induced protection on SA, ET and 
JA. A number of genes identified from microarray experiments showed an earlier and 
stronger expression after inoculation with B. cinerea of CUTE plants compared to wild 
types. Fifteen genes were selected and overexpressed in A. thaliana and 8 of these 
provided increased tolerance to B. cinerea. These genes included members of the lipid 
transfer protein (LTP), the peroxidase (PO) and the protein inhibitor (PI) gene families. 
Members of the LTPs, PER and PIs could each contribute in part to the observed 
resistance induced by B. cinerea in CUTE plants (see discussion in Chassot et al., 2007;  
2008). Resistance in CUTE plants was also proposed to result from the rapid diffusion of 
a potential fungitoxic metabolite through the permeable cuticular layer into the 
inoculation droplet. A fungitoxic activity was observed in the inoculation droplets of B. 
cinerea spore suspension placed on CUTE but not on wild type plants (Chassot et al., 
2007) but the chemical nature of the leaf diffusate has not yet been characterized. 

A number of studies have reported on A.thaliana mutants impaired in various 
aspects of the biosynthesis of the cuticle or that have otherwise an increase in cuticular 
permeability. An intriguing observation is that several but not all cuticle mutants have an 
altered permeability and an increased resistance to B. cinerea (Table 1).  

 

Mutant	
   Plant	
   Function	
  of	
  wild	
  type	
  gene	
  
product	
  

Properties	
   	
  
Resistance	
  

to	
  
B.	
  cinerea	
  

Cuticle	
  
permeability	
  

Fungitoxic	
  
diffusate	
  

	
  

lcr	
  -­‐	
  lacerata	
  
	
  

A.t.	
   CYP86AB	
  catalyzes	
  w-­‐
hydroxylation	
  of	
  fatty	
  acids	
  
ranging	
  from	
  C12	
  to	
  C18:1	
  

+	
   +	
   nt	
   Wellesen	
  et	
  al.,	
  2001;	
  
Bessire	
  et	
  al.,	
  2007	
  

hth	
  –	
  hothead;	
  allelic	
  
to	
  adhesion	
  of	
  calyx	
  
edges	
  (ace)	
  

A.t.	
   Protein	
  with	
  sequence	
  
similarity	
  to	
  long-­‐chain	
  FA	
  w-­‐
alcohol	
  dehydrogenases	
  

+/-­‐	
   +/-­‐	
   nt	
   Lolle	
  et	
  al.,	
  1998;	
  
Kurdyukov	
  et	
  al.,	
  2006a;	
  
Bessire	
  et	
  al.,	
  2007	
  

bdg	
  –	
  bodyguard	
   A.t.	
   Member	
  of	
  the	
  a/b-­‐hydrolase	
  
fold	
  protein	
  superfamily	
  

+	
   +	
   +	
   Kurdyukov	
  et	
  al.,	
  2006b;	
  
Chassot	
  et	
  al.,	
  2007	
  

lacs2.3	
  -­‐	
  long-­‐chain	
  
acyl-­‐CoA	
  synthetase	
  

A.t.	
   Long-­‐chain	
  acyl-­‐CoA	
  
synthetase	
  

+	
   +	
   +	
   Bessire	
  et	
  al.,	
  2007	
  

sma4	
  -­‐	
  symptoms	
  to	
  
multiple	
  avr	
  
genotypes4	
  

A.t.	
   Long-­‐chain	
  acyl-­‐CoA	
  
synthetase2	
  

+	
   +	
   +	
   Tang	
  et	
  al.,	
  2007	
  

fdh	
  -­‐	
  fiddlehead	
   A.t.	
   Likely	
  to	
  be	
  involved	
  in	
  the	
  
synthesis	
  of	
  long	
  chain	
  fatty	
  
acids	
  

+	
   nt	
   nt	
   (Yephremov	
  et	
  al.,	
  
1999;Pruitt	
  et	
  al.,	
  
2000;Voisin	
  et	
  al.,	
  2009)	
  

pec1	
  -­‐	
  permeable	
  
cuticle1	
  	
  

A.t.	
   ATP	
  binding	
  cassette	
  32	
  
(ABCG32)	
  transporter	
  

+	
   +	
   +	
   Bessire	
  et	
  al.,	
  2011	
  

myb96	
  -­‐	
  	
  
myeloblastosis	
  
transcription	
  factor	
  96	
  

A.t.	
   ABA-­‐responsive	
  R2R3	
  type	
  
transcription	
  factor	
  

+	
   +	
   nt	
   Seo	
  et	
  al.,	
  2011;	
  
Benikhlef	
  et	
  al.,	
  2013	
  

sitiens	
   S.l.	
   Abscisic	
  aldehyde	
  oxidase	
   +	
   +	
   nt	
   Curvers	
  et	
  al.,	
  2010	
  
aba2	
  –	
  ABA	
  
biosynthesis	
  

A.t.	
   Short-­‐chain	
  alcohol	
  
dehydrogenase	
  

+	
   +	
   nt	
   Cheng	
  et	
  al.,	
  2002;	
  
L'Haridon	
  et	
  al.,	
  2011	
  

aba3	
  –	
  ABA	
  
biosynthesis	
  

A.t.	
   MoCo	
  sulfurase	
   +	
   +	
   nt	
   Bittner	
  et	
  al.,	
  2001;	
  
Xiong	
  et	
  al.,	
  2001;	
  
L'Haridon	
  et	
  al.,	
  2011	
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Table 1. Mutants displaying alterations in the cuticle structure or in permeability. A.t.: A. 
thaliana; S.l.: Solanum lycopersicum; nt: not tested. 

 
The lcr (lacerata) mutant is impaired in a gene coding for a cytochrome P450 

monooxygenase involved in the formation of ω-hydroxy fatty acids in yeast and could be 
involved in cutin biosynthesis (Wellesen et al., 2001). Reduced levels of the major 
constituents of cuticular polyesters and cutin were observed in the hth (allelic to ace/hth - 
adhesion of calyx edges / hothead) mutant that is characterized by a deficient fatty acid 
ω-alcohol dehydrogenase activity (Kurdyukov et al., 2006a). Increased accumulation of 
cell-wall-bound lipids and epicuticular waxes occurs in bdg (bodyguard) mutants 
compared to WT plants (Kurdyukov et al., 2006b). The cuticle of lacs2 (long-chain acyl-
CoA synthetase) (Schnurr et al., 2004) an identical mutant as bre1 (Botrytis resistant) 
(Bessire et al., 2007) is thinner than that of WT plants and contains reduced amounts of 
dicarboxylic acid monomers in the cutin polyester. The sma4 (symptoms to multiple avr 
genotypes4) is allelic to lacs2 (Tang et al., 2007). The fdh (fiddlehead) is mutated in a 
gene encoding a protein involved in the synthesis of long-chain lipids (Pruitt et al., 2000; 
Voisin et al., 2009; Yephremov et al., 1999). The pec1 (permeable cuticle 1) is 
characterized by a knockout of ATP BINDING CASSETTEG32 (ABCG32), an ABC 
transporter localized at the plasma membrane of epidermal cells; available evidence 
suggests that ABCG32 exports cutin precursors for the synthesis of the cuticular layer in 
the epidermal cell (Bessire et al., 2011). Abscisic acid (ABA) deficiency causes an 
increase cuticular permeability and resistance to B. cinerea  as observed in the sitiens as 
well as the abi2 and abi3 mutants of tomato and A. thaliana respectively (Curvers et al., 
2010; L'Haridon et al., 2011). An enhanced cuticular permeability and resistance to B. 
cinerea was also observed in the myb96-1 (MYB96-deficient) mutant characterized by 
downregulated ABA-dependent wax biosynthetic genes (Seo et al., 2011). In tomato, 
overexpression of SlSHINE3, a transcription factor expressed predominantly in the 
epidermis, leads to leaves with increased permeability, an increase in cutin monomer 
content and resistance to B. cinerea and Xanthomonas campestris  pv. vesicatoria 
(Buxdorf et al., 2014).  An increase in resistance to B. cinerea was observed when cutin 
monomers extracted from WT- and SlSHINE3-overexpressing leaves are applied to 
tomato leaves. Details on the amounts and quality of the cutin monomers or on their 
mode of action (direct versus indirect) that could explain this result are not known. In the 
same article, the authors show that only cutin monomers of SlSHINE3-overexpressing 
leaves induced the expression of defense genes in tomato (Buxdorf et al., 2014). But, not 
all mutants affected in the cuticle structure show an enhanced resistance to necrotrophic 
pathogens. The cer1 mutant of A. thaliana is affected in an enzyme predicted to be 
involved in alkane biosynthesis (Bourdenx et al., 2011). CER1 shows the same 
expression pattern and localization as other enzymes expressed in the epidermis of aerial 
organs. Overexpression of CER1 results in plants with a reduced permeability associated 
with an improved resistance to water deficient soils. Such plants showed a increased 
susceptibility to   Pseudomonas syringae pv tomato and to the necrotrophic Sclerotinia 
sclerotiorum. The gl1 mutation affects cuticle formation, but is still susceptible to B. 
cinerea (Benikhlef et al., 2013; Xia et al., 2010). The rst1 (RESURRECTION1) mutant 
exhibits enhanced susceptibility to the biotrophic fungal pathogen Erysiphe 
cichoracearum but enhanced resistance to the necrotrophic fungal pathogens B. cinerea 
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and Alternaria brassicicola. RST1 is plasma membrane protein and is possibly involved 
in suppressing the biosynthesis of cuticle lipids; the increased levels of cutin monomers 
and cuticular waxes in rst1 suggest this. Despite this, rst1shows a clear departure from 
the behavior of other mutants since the permeability of the cuticle is normal (Mang et al., 
2009). Another intriguing observation was made with A.thaliana acp4 mutants defective 
in acyl carrier protein (ACP) 4. The acp4 mutants were tested in the context of systemic 
acquired resistance (SAR); they are able to generate a mobile SAR signal from lower 
leaves inoculated with bacteria but unable to perceive it in the upper leaf. The acp4 also 
display cuticular defects with reduced levels of fatty acids, alkanes and primary alcohols 
compared to WT plants associated with ultrastructural changes and an increased cuticular 
permeability (Xia et al., 2009). When wild type Col-0 plants were abraded to remove the 
cuticle in the upper leaves, SAR was also compromised. It was concluded that an intact 
cuticle is required for the onset of SAR. It remains difficult to explain how defects in the 
cuticle impart SAR. Abraded plants are not perfect mimics for the cuticle-defective acp4 
mutants and possibly other compensatory mechanisms might take place differently in 
both types of plants. It remains now to be shown how an intact cuticular layer can 
influence SAR. Soft mechanical stress (SMS) applied to leaves was shown to increase 
resistance to B. cinerea and lead to the production of ROS (Benikhlef et al., 2013). SMS 
resembles the delicate mechanical abrasion of the cuticle used by Xia et al. (2009) and it 
would now be interesting to know if abraded plants show increased resistance to B. 
cinerea.  

Considering the mutants listed in Table 1, modifications in cuticular structure 
associated with enhanced permeability are correlated with enhanced resistance to B. 
cinerea. In addition to resistance, many of these mutants spontaneously accumulate ROS. 
For instance, the cuticular mutants bdg and lacs2 constitutively produce a green 
fluorescence upon staining with 5-(and 6)-carboxy-29,79-dichloro dihydrofluorescein 
diacetate (DCF-DA) a fluorescent probe for ROS (L'Haridon et al., 2011;Benikhlef et al., 
2013). Treatment of wild type leaf surfaces with fungal cutinase also results in ROS 
accumulation (L'Haridon et al., 2011). ROS has a multifaceted mode of action and can 
reach toxic levels acting directly as an antimicrobial or participate in various steps during 
the activation of defense responses such as modification of the cell wall, signal 
transduction pathways, programmed cell death or post-translational regulation (De Tullio, 
2010; Mittler et al., 2011; Torres, 2010). At this point, it is not well known why ROS are 
made in bdg and lacs2 or in cutinase-treated leaves. Presumably, cutin monomers or 
other compounds accumulating in developmental mutants of the cuticle might be 
perceived by the plant and result in the production of ROS. A possible early event 
preceding ROS accumulation might be a Ca++ burst as was shown after wounding or soft 
mechanical stress (Beneloujaephajri et al., 2013; Benikhlef et al., 2013). ROS are 
produced earlier and in higher amounts after inoculation with B. cinerea in the aba2 and 
aba3 mutants of ABA biosynthesis as well as in the wax biosynthesis mutant myb96-1 
and these plants were also shown to have an increased cuticular permeability (L'Haridon 
et al., 2011).  All these examples offer the interesting possibility to find out how ROS are 
produced in relation to the cuticular properties.  

CUTE, lcr, hth, bdg, lacs2/bre1, sma4 and pec1 displayed increased resistance to B. 
cinerea and the presence of a fungitoxic activity in leaf diffusates that correlated with an 
increased permeability of the cuticle (Bessire et al., 2007, 2010; Chassot et al., 2007). 
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Thus, the presence of a fungitoxic activity appears to be mostly associated with an 
increase in cuticular permeability. The question now arises on the nature of the fungitoxic 
compound present in the leaf diffusates. At this point, it is tacitly assumed that in all 
cases the same compound is involved; a chemical characterization will eventually clarify 
this point. Another intriguing possibility is that phylloplane microbes might contribute 
directly or indirectly to this activity. For instance, the presence of distinct patterns of 
microbial communities was observed on the surface of different A. thaliana eceriferum 
wax mutants (cer1, cer6, cer9, cer16) compared to the corresponding wild type ecotype 
Ler (Reisberg et al., 2013). This interesting observation shows that plant cuticular wax 
composition can affect the community composition of phyllosphere bacteria. Likely, it is 
possible that other changes in the composition of the plant surface might also affect 
bacterial communities. The extent to which such microbes contribute to the fungitoxic 
activities in leaf diffusates or even to fungal resistance is not known.  

The pleiotropic syndrome exhibited in the cuticular mutants such as altered cuticle 
structure and deposition, altered chemical composition in cuticular lipids, organ fusions, 
changes in and cell and organ shape or resistance to pathogens suggest that plants adapt 
to the cuticular defects by compensatory mechanisms. To investigate such an adaptive 
compensatory mechanism a meta-analyses tool (MASTA; MicroArray overlap Search 
Tool and Analysis) was developed and used for an in-silico analysis of gene expression 
profiles in hundreds of datasets (Voisin et al., 2009). This led to the identification of the 
SERRATE (SE) gene, which encodes a nuclear protein of RNA–processing multi-protein 
complexes, making it likely that small-RNA signaling is involved in the cuticular defect 
syndrome. The importance of the SE gene was confirmed with double mutants such as 
lcr-se and bdg-se that suppress the abnormal cuticle syndrome and resistance to B. 
cinerea. These results support the hypothesis that various cuticular defects might induce a 
common signaling pathway that depends on the SE gene (Voisin et al., 2009).  It will now 
be interesting to see if this type of analysis can be further used to identify aspects more 
specific to the fungal resistance response.  

The evidence provided by the effect of ectopic treatments with cutin monomers, 
overexpression of cutinase, ectopic treatments with cutinase and various cuticular 
mutants with increased permeability lead several scenarios that might explain the 
resistance of plants in relation to defective cuticles (Chassot et al., 2008). A permeable 
cuticle could involve a faster perception of putative products of the cuticle released upon 
the action of the cutinase.  In addition, cuticle monomers might be over-produced in 
cuticular mutants from an incomplete cuticle polymer synthesis. The perception of such 
monomers would generate intracellular signals and trigger multifactorial defenses. The 
induced defenses might involve the production/release of ROS, antimicrobial proteins 
and of antifungal metabolites. A permeable cuticle might also allow a faster passage of 
potential elicitors from B. cinerea or its inoculation medium through the epidermis wall 
into the cells where they might trigger a faster and more intensive defense reaction. The 
surprising potential for defense against B. cinerea unveiled in CUTE plants and in the 
various cuticle mutants warrants further research to understand the molecular basis of this 
phenomenon (Fig. 1).   
A puzzling question concerns the full susceptibility of A. thaliana to B. cinerea. This is 
intriguing, since B. cinerea releases cutinase and lipase during the penetration of leaves 
(Comménil et al., 1998) yet no resistance is visible. In contrast, our own experiments 
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showed that when cutinase or lipase is applied on the surface of A. thaliana leaves 
resistance and ROS are induced (Chassot et al., 2007; L'Haridon et al., 2011). Possibly, 
the timing or the quantity of enzymes produced by the fungus in planta is sufficient for 
penetration but not for inducing resistance. Alternatively, B. cinerea, like other 
pathogens, might suppress induced defense responses in the plant. One possible 
suppressor could be oxalic acid, a know pathogenicity factor of B. cinerea (Germeier et 
al., 1994; Pezet et al., 2004) and suppressor of ROS (Cessna et al., 2000). Several 
experimental lines support this hypothesis. For instance, biocontrol bacteria selected for 
their ability to metabolize oxalate can protect A. thaliana against B. cinerea (Schoonbeek 
et al., 2007). Also, transgenic plants overexpressing a fungal oxalate decarboxylase show 
an earlier and increased accumulation of ROS and an enhanced tolerance after 
inoculation with B. cinerea (L'Haridon et al., 2011) or Sclerotinia sclerotiorum (Walz et 
al., 2008). This might explain why A. thaliana is susceptible to B. cinerea, despite the 
release of cutinase and lipase.  

 

 
 
Figure 1. Hypothetical model explaining cuticle–derived resistance to B. cinerea.    
A: During the infection of a wild type plant, B. cinerea releases cutinase and PAMPs that 
lead to its recognition and potentially to ROS formation and defense activation. However, 
the production of oxalate by B. cinerea interferes with ROS production and prevents 
efficient defenses thus allowing colonization. B: In various mutants affected in the cuticle 
and its permeability (see Table 1), ROS are produced constitutively leading to the 
priming of defenses. Upon infection, fungal oxalate is insufficient to scavenge ROS and 
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the plant defense is successful. The products of the activity of fungal cutinase are referred 
to as DAMPs that can also be perceived by the fungus and activate more cutinase 
expression. 

 
 
3. Future directions 
   
How plants perceive changes in the level of cutin monomers is still not known and 

is a question that needs to be addressed. The experimental evidence accumulated so far 
makes it reasonable to assume that plants are equipped to perceive cutin monomers or 
other related products possibly by receptors. A genetic screening would be an approach 
of choice to identify such receptors. In fact, we are currently screening A. thaliana 
mutants or ecotypes that lack an increase in resistance to B. cinerea after treatment with 
fungal cutinase. A series of mutants and ecotypes could be identified, all displaying an 
increased in susceptibility to B. cinerea. These results are now being followed up; one 
predicts that such mutants could be blocked in either a putative receptor for cutinase-
generated monomers or alternatively in any step downstream of it.  

Using the available genome-wide gene expression microarray data, one can identify 
common genetic elements during the resistance syndrome in cuticle deficient mutants. 
Using the microarray overlap search tool and analysis (MASTA) (Reina-Pinto et al, 
2009b), differentially expressed gene lists can be generated and classified according to 
the gene ontology (GO). Using this strategy a list of 25 upregulated genes statistically 
significant under the GO category “response to fungus” can be identified. These genes 
point towards common functions that might relate to the resistance syndrome in cuticle 
deficient mutants and they deserve further attention. 

Another intriguing question is the chemical nature of the fungitoxicity in the 
diffusates of cuticular mutants.  It is not clear whether the same chemical causes the 
observed activity for each mutant; a bioassay-assisted chemical identification is under 
way to clarify this point.  
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