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Abstract. The purpose of this article is to prove existence of mass minimizing integral

currents with prescribed possibly non-compact boundary in all dual Banach spaces and

furthermore in certain spaces without linear structure, such as injective metric spaces

and Hadamard spaces. We furthermore prove a weak�-compactness theorem for integral

currents in dual spaces of separable Banach spaces. Our theorems generalize results of

Ambrosio–Kirchheim, Lang, the author, and recent results of Ambrosio–Schmidt.
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1 Introduction

In this paper we study the generalized Plateau problem in the context of locally

non-compact metric spaces. Roughly speaking, this problem concerns the ques-

tion of existence of an .mC 1/-dimensional generalized surface of least volume

with prescribedm-dimensional boundary in a given metric space. A suitable notion

of surface in the context of area minimization problems is provided by the theory

of integral currents. In the setting of Euclidean space, this theory was developed

by Federer–Fleming in [4], who solved Plateau’s problem in the class of inte-

gral currents in Euclidean space. In [1], Ambrosio–Kirchheim extended Federer–

Fleming’s theory to the setting of complete metric spaces. They then solved the

generalized Plateau problem in the class of integral currents in compact metric

spaces (provided that given a boundary the family of fillings is not empty) and fur-

thermore in dual spaces of separable Banach spaces, provided that the prescribed

boundary lies in a compact set. This result was generalized in [8] to all dual Banach

spaces as well as to Hadamard spaces (for Hadamard spaces, the result is due to

U. Lang), still requiring that the prescribed boundary remain in a compact set.

By definition, Hadamard spaces are complete simply-connected metric spaces of
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non-positive curvature in the sense of Alexandrov, see e.g. [3, Section II.1]. It was

only shown very recently by Ambrosio–Schmidt [2] that the condition on compact

boundary can be dropped in the case of separable dual Banach spaces. The aim

of the present paper is to remove the separability condition made in [2]. In fact,

we will show that the generalized Plateau problem can be solved for non-compact

boundaries in a class of metric spaces which includes e.g. all dual Banach spaces

(also non-separable ones), all injective metric spaces (i.e. absolute 1-Lipschitz

retracts), and all Hadamard spaces. We therefore generalize corresponding re-

sults in [1,2,8]. We furthermore partially generalize weak�-compactness theorems
proved in [1, 2] to the setting of dual spaces of separable Banach spaces.

We now give precise formulations of our main results. Given a complete metric

space X and m � 0, we will denote by Mm.X/ and Im.X/ the spaces of metric
m-currents of finite mass and of integral m-currents, respectively, in the sense of

Ambrosio–Kirchheim [1]. Given T 2 Mm.X/, the mass of T will be denoted by

M.T / and, in case m � 1, the boundary of T by @T . We refer to Section 2 for

the basic definitions from the theory of metric currents. Our first theorem gives

solutions to Plateau’s problem and to the corresponding free boundary problem in

the context of Banach spaces.

Theorem 1.1. LetX be a Banach space which is 1-complemented in a dual Banach
space. Let m � 0. Then

(i) for every S 2 Im.X/ with @S D 0 there exists T 2 ImC1.X/ with @T D S

and such that
M.T / � M.T 0/

for all T 0 2 ImC1.X/ with @T 0 D S ,

(ii) for every S 2 Mm.X/ there exists T 2 ImC1.X/ such that

M.T /CM.@T � S/ � M.T 0/CM.@T 0 � S/
for all T 0 2 ImC1.X/.

If m D 0, then the condition @S D 0 in (i) should be replaced by S.1/ D 0,

see Section 2. In the above, a Banach space X is said to be 1-complemented in

a dual Banach space if X is (isometric to) a subspace W of a dual Banach space

Y such that there is a norm 1 projection of Y onto W . Particular examples of

such spaces are dual Banach spaces, L1-spaces, and L-embedded Banach spaces

([5]). Note that no compactness assumption on sptS or separability assumption

on X is made, and that furthermore S in (ii) is only required to be a current of

finite mass. Theorem 1.1 generalizes [1, Theorem 10.6], [8, Theorem 1.5], and

[2, Theorems 1.1 and 1.3].
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Our next result provides a weak�-compactness theorem which partially gener-

alizes corresponding results in [1] and [2].

Theorem 1.2. LetX be either a reflexive Banach space or the dual space of a sep-
arable Banach space. Let m � 0 and let .Tn/ � Im.X/ be a sequence satisfying

sup
n
ŒM.Tn/CM.@Tn/� < 1 (1.1)

and
lim

r!1
h
sup

n
kTnk.XnB.0; r//

i
D 0:

Then there exists a subsequence Tnj
which w�-converges to some T 2 Im.X/.

Here, B.0; r/ denotes the (open) ball in X of radius r and center 0. If m D 0,

then (1.1) should be replaced by supn M.Tn/ < 1. For the definition of w�-con-
vergence see Definition 2.2. We remark that Theorem 1.2 fails in general if X is

the dual space of a non-separable Banach space, see Example 3.4. Our theorem

generalizes [1, Theorem 6.6] and [2, Theorem 1.4] in the case of integral currents.

While our theorem applies to a larger class of Banach spaces, [1, Theorem 6.6] and

[2, Theorem 1.4] apply to normal currents as well. It is interesting to note however

that Theorem 1.2 cannot be generalized to normal currents without the additional

assumption that X be separable, as was shown in [2, Example B.1].

We now briefly turn to metric spaces without a vector space structure. The meth-

ods which we use are not restricted to the setting of Banach spaces. Indeed, in

Theorem 3.3 we will generalize Theorem 1.1 to a class of metric spaces. We will,

in particular, obtain the following result as a consequence.

Theorem 1.3. Let X be a Hadamard space or an injective metric space and let
m � 0. Then assertions (i) and (ii) of Theorem 1.1 hold for X .

Theorem 1.3 generalizes a corresponding result for compact boundaries in Ha-

damard spaces which goes back to U. Lang and which was published in [8, Theo-

rem 1.6].

Finally, we mention that our approach differs from the one taken in [1] and [2].

Our methods combine arguments in the spirit of [8] with a variant of a compactness

theorem recently proved in [10] and [7].

The paper is structured as follows. In Section 2 we recall the definitions from

the theory of currents needed for the paper. We furthermore define the notion of

local weak convergence and establish a relationship with weak convergence. In

Section 3 we prove a variant of the compactness theorems established in [7,10] and

apply it in the proofs of the theorems stated above. We will furthermore state and

prove some generalizations of the above results, see Theorem 3.3 and Theorem 3.5.
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2 Preliminaries

In this section we recall the basic definitions from the theory of metric currents

developed in [1] which we will need in the sequel. With the exception of the def-

inition of local weak convergence, its relationship with weak convergence, and

Lemma 2.3, all definitions and results appear in [1].

Let .X; d/ be a complete metric space. We denote by Lip.X/ and Lipb.X/ the

spaces of real-valued Lipschitz functions and bounded Lipschitz functions on X ,

respectively. The Lipschitz constant of a Lipschitz function f will be denoted

by Lip.f /.

Definition 2.1. Let m � 0. An m-dimensional metric current T on X is a multi-

linear functional T W Lipb.X/ � Lipm.X/ ! R satisfying the following proper-

ties:

(i) If �
j
i ! �i pointwise as j ! 1 and if supi;j Lip.�

j
i / < 1, then

T .f; �
j
1 ; : : : ; �

j
m/ ! T .f; �1; : : : ; �m/:

(ii) If ¹x 2 X W f .x/ 6D 0º is contained in the union Sm
iD1Bi of Borel sets Bi

and if �i is constant on Bi , then

T .f; �1; : : : ; �m/ D 0:

(iii) There exists a finite Borel measure � on X such that

jT .f; �1; : : : ; �m/j �
mY

iD1

Lip.�i /

Z
X

jf j d� (2.1)

for all .f; �1; : : : ; �k/ 2 Lipb.X/ � Lipm.X/.

The space of m-dimensional metric currents on X is denoted by Mm.X/ and

the minimal Borel measure � satisfying (2.1) is called mass of T and denoted by

kT k. We also call mass of T the number kT k.X/ which we denote byM.T /. The
support of T is the closed set

sptT D ¹x 2 X W kT k.B.x; r// > 0 for all r > 0º:
As in [1] we will assume throughout this paper that the cardinality of any set is an

Ulam number. This is consistent with the standard ZFC set theory. We then have

that sptT is separable and furthermore that kT k is concentrated on a � -compact

set, i.e. kT k.XnC/ D 0 for a � -compact setC � X (see [1]). This will be relevant

in the proof of statement (ii) of Theorem 1.1.
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In the following we will often abbreviate � D .�1; : : : ; �m/ and write T .f; �/

instead of T .f; �1; : : : ; �m/. The restriction of T 2 Mm.X/ to a Borel set A � X

is given by

.T A/.f; �/ WD T .f�A; �/:

This expression is well-defined since T can be extended to a functional on tuples

for which the first argument lies in L1.X; kT k/. Furthermore, T A 2 Mm.X/

by [1, Theorem 3.5]. If m � 1 and T 2 Mm.X/, then the boundary of T is the

functional

@T .f; �1; : : : ; �m�1/ WD T .1; f; �1; : : : ; �m�1/I
it satisfies conditions (i) and (ii) in Definition 2.1. If it moreover satisfies condi-

tion (iii) in Definition 2.1, then T is called a normal current. By convention, ele-

ments ofM0.X/ are also called normal currents. If m D 0 and T 2 M0.X/, then

we say @T D 0 if T .1/ D 0. The push-forward of T 2 Mm.X/ under a Lipschitz

map ' from X to another complete metric space Y is given by

'#T .g; �/ WD T .g ı '; � ı '/
for .g; �/ 2 Lipb.Y / � Lipm.Y /. This defines an m-dimensional current on Y . It

follows directly from the definitions that @.'#T / D '#.@T /.

Definition 2.2. A sequence of currents Tn 2 Mm.X/ is said to converge weakly to

T 2 Mm.X/ if

Tn.f; �/ ! T .f; �/ (2.2)

for every .f; �/ 2 Lipb.X/ � Lipm.X/. If (2.2) only holds for those .f; �/ for

which f also has bounded support, we say that Tn converges locally weakly to T .

If X is a dual Banach space and (2.2) holds for those .f; �/ for which the f and

�i are also weak
�-continuous, we say that Tn w�-converges to T .

It is clear that if Tn converges locally weakly to T and

lim
r!1

h
sup

n
kTnk.XnB.x0; r//

i
D 0

for some x0 2 X , then Tn converges weakly to T . We furthermore have the fol-

lowing easy lemma.

Lemma 2.3. Let X; Y be complete metric spaces, m � 0, and S 2 Mm.X/. Let
.'j / be a sequence of Lipschitz maps 'j W sptS ! Y with supj Lip.'j / < 1. If
'j converges pointwise to a Lipschitz map ' W sptS ! Y , then 'j#S converges
weakly to '#S .
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Proof. Let .f; �/ 2 Lipb.Y / � Lipm.Y /. We may assume without loss of gen-

erality that jf j � 1 and that each �i is 1-Lipschitz. Set A WD supj Lip.'j / and

let " > 0. By � -compactness of sptS there exists C � sptS compact such that

kSk.XnC/ � "=.4Am/. We then obtain for each j that

j'#S.f; �/ � 'j#S.f; �/j � j.S C /.f ı '; � ı '/ � .S C /.f ı '; � ı 'j /j
C j.S C /.f ı ' � f ı 'j ; � ı 'j /j
C 2AmkSk.XnC/

� j.S C /.f ı '; � ı '/ � .S C /.f ı '; � ı 'j /j

C Am

Z
C

jf ı ' � f ı 'j j dkSk C "

2
:

The first term after the last inequality sign converges to 0 as j ! 1 by the con-

tinuity property of currents, property (i) in Definition 2.1. The second term con-

verges to 0 since f ı 'j converges uniformly to f ı ' on the compact set C .

Therefore, the sum of the three terms is � " for all j large enough. This shows

that 'j#S converges weakly to '#S .

In this paper we will mainly be concerned with integral currents. An element

T 2 M0.X/ is called integer rectifiable if there exist finitely many points

x1; : : : ; xn 2 X and �1; : : : ; �n 2 Zn¹0º
such that

T .f / D
nX

iD1

�if .xi /

for all bounded Lipschitz functions f . A current T 2 Mm.X/ with m � 1 is said

to be integer rectifiable if the following properties hold:

(i) kT k is concentrated on a countably Hm-rectifiable set and vanishes on all

Hm-negligible Borel sets, where Hm denotes the Hausdorff m-measure.

(ii) For any Lipschitz map ' W X ! Rm and any open set U � X there exists

� 2 L1.Rm;Z/ such that '#.T U / D ŒŒ� ��, where

ŒŒ� ��.f; �/ WD
Z

Rm

�f det.r�/ dHm:

Integer rectifiable normal currents are called integral currents. The corresponding

space is denoted by Im.X/.
Recently, variants of Ambrosio-Kirchheim’s theory that do not rely on the finite

mass axiom have been developed by Lang in [6] and by Lang and the author in [7].

We will not need any definitions or results from these theories, however.
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3 Proofs of the main results

The principal tool in the proofs of our main theorems is the following compactness

result, which is a variant of the compactness theorem proven by the author in [10]

and of a generalization proven by Lang and the author in [7].

Lemma 3.1. Let X be a complete metric space, 	 � X separable, and m � 0.
Let .Tn/ � Im.X/ be a sequence satisfying

sup
n
ŒM.Tn/CM.@Tn/� < 1:

Then there exist a subsequence .nj /, a complete metric spaceZ, and isometric em-
beddings 'j W X ,! Z such that 'j#Tnj

converges locally weakly to some element
T 2 Im.Z/ and 'j j� converges pointwise to an isometric embedding ' W 	 ,! Z.

The statement of Lemma 3.1 can be strengthened to apply also to the locally

integral currents of [7] and local weak convergence can be replaced by conver-

gence in the local flat topology. However, the above version suffices for all the

applications in this paper. Note that, on the one hand, the results in [7, 10] apply

more generally to sequences .Tn/ of integral currents in a sequence .Xn/ of metric

spaces. On the other hand, these results do not yield convergence of the isometric

embeddings 'j as Lemma 3.1 does.

The proof of Lemma 3.1 relies on the constructions used in [7, 10]. Roughly

speaking, the idea is to decompose each current Tn into a sum Tn D T 1
n CT 2

n C� � �
of currents T i

n with mass growth � 
ir
m for some 
i > 0 independent of n. This

mass growth implies that for fixed i the sequence .sptT i
n/ of supports is a uni-

formly compact sequence of metric spaces in the sense that for every " > 0 there

exists N 2 N such that every set sptT i
n , n D 1; 2; : : : , can be covered by at most

N balls of radius ". One can then use a variant of Gromov’s compactness theo-

rem together with the closure and compactness theorems for integral currents in a

compact metric space [1] to produce a desired metric space Z and a limit T as in

Lemma 3.1. The decomposition procedure alluded above was proved in [10, Lem-

ma 5.1, Theorem 1.2]. It was summarized in [7, Proposition 3.1] in a form which

is suitable for our purposes.

In the proof below we will follow the proof of [7, Theorem 1.1]. We would like

to emphasize, however, that even though the paper [7] deals with locally integral

currents we will only need integral currents in the sense of [1] and that we could

instead follow the arguments given in the proof of [10, Theorem 1.2].

Proof. Fix x0 2 	 and choose numbers 0 < R1 < R2 < � � � ! 1 such that, after

passing to a subsequence, we have

Tn B.x0; Rr/ 2 Im.X/
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with

sup
n
M.@.Tn B.x0; Rr/// < 1

for each r 2 N. Existence of such an Rr follows from [1, Theorem 5.6] together

with Fatou’s lemma. SetR0 WD 0, and defineAr WD B.x0; Rr/ n B.x0; Rr�1/ and

Tr;n WD Tn Ar

for r 2 N; clearly Tr;n 2 Im.X/ and

sup
n
ŒM.Tr;n/CM.@Tr;n/� < 1:

Fix integers 1 � j1 < j2 < � � � and positive numbers 1
2
> ı1 > ı2 > � � � with

X
i

ıi < 1:

By possibly replacing X by `1.X/ we may assume that X admits isoperimetric

inequalities of Euclidean type for integral currents, see [8, Corollary 1.3]. Now, let

Tr;n D T 1
r;n C � � � C T jnC1

r;n C U 1
r;n C � � � C U jnC1

r;n

be a decomposition with T 1
r;n; : : : ; T

jnC1
r;n ; U 1

r;n; : : : ; U
jnC1
r;n 2 Im.X/ as in [7, Pro-

position 3.1] for Tr;n, Rr , x0, and X . Let ¹y0; y1; y2; : : : º � 	 be a countable

dense subset of 	 with y0 D x0 and define 	s WD ¹y0; : : : ; ysº for s 2 N. For

n; s 2 N, define closed sets

Bs
n WD 	s [

s[
rD1

min¹s;jnº[
iD1

.sptT i
r;n [ sptU i

r;n/

and note thatB1
n � B2

n � � � � �X . According to [7, Proposition 3.1 (i)], for each s,

the sequence .Bs
n/ is uniformly compact. By [10, Proposition 5.2], after passage

to a subsequence, there exist isometric embeddings 'n W X ,! Z and compact

subsets Y 1 � Y 2 � � � � � Z, for some complete metric space Z, such that

'n.B
s
n/ � Y s

for all n and s. It can be shown exactly as in the proof of [10, Theorem 1.2] or

the proof of [7, Theorem 1.1] that, after passing to a further subsequence, 'n#Tn

converges locally weakly to some T 2 Im.Z/. Note that the proof in [7] shows

that after possibly replacing Z by `1.Z/ the 'n#Tn converge to T even in the

local flat topology (which implies local weak convergence).

We are left to prove that, after passing to a further subsequence, 'n converges

to an isometric embedding ' W 	 ,! Z. For this, note first that since	s � Bs
n we

obtain 'n.	s/ � Y s for all n and s. Since each Y s is compact, we may assume,
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after passing to a subsequence, that 'n.ys/ converges to some zs 2 Y s as n ! 1.

By density of ¹y0; y1; : : : º in 	 and by the fact that d.zs; zr/ D d.ys; yr/ for

all r; s it follows that there exists an isometric embedding ' W 	 ,! Z such that

'.ys/ D zs for all s. It finally follows that 'nj� converges to ', which concludes

the proof.

In the proofs of our main results we will use non-principal ultrafilters and ultra-

limits of sequences. Recall for this that a non-principal ultrafilter on N is a finitely

additive probability measure ! on N (together with the � -algebra of all subsets)

such that ! takes values in ¹0; 1º only and !.A/ D 0 whenever A � N is finite.

Existence of non-principal ultra-filters on N follows from Zorn’s lemma. It is not

difficult to prove that if .Y; �/ is a compact Hausdorff topological space, then for

every sequence .yn/n2N � Y there exists a unique point y 2 Y such that

!.¹n 2 N W yn 2 U º/ D 1

for every U 2 � containing y. We will call this point y the ultralimit of the se-

quence .yn/ and denote it by lim! yn.

We are now ready to prove Theorems 1.1–1.2 stated in the introduction.

Proof of Theorem 1.1. We first prove (i). Let S 2 Im.X/ with @S D 0 and set

s WD inf¹M.T 0/ W T 0 2 ImC1.X/; @T
0 D Sº:

Note that the set appearing on the right hand side is non-empty. Indeed, if m D 0

then this follows from the fact that X is geodesic. Ifm � 1, then this follows from

the isoperimetric inequality [8, Corollary 1.3]. Let now .Tn/ � ImC1.X/ be a se-

quence satisfying @Tn D S for all n 2 N and such thatM.Tn/ ! s. Clearly,

sup
n
ŒM.Tn/CM.@Tn/� < 1:

Set 	 WD sptS and note that 	 is separable. Let nj , Z, 'j , ', and T be as in

Lemma 3.1, where m is replaced by mC 1. By Lemma 2.3, 'j#S converges

weakly to '#S and hence @T D '#S . Now, viewX as a subspace of a dual Banach

space Y and let ! be a non-principal ultrafilter on N. Define a map  W sptT ! Y

as follows. Let z 2 sptT . Since 'j#Tnj
converges locally weakly to T , there exists

a sequence .xj / � X with xj 2 sptTnj
for all j 2 N and such that 'j .xj / ! z.

Clearly, .xj / is a bounded sequence in Y . Since closed balls of finite radius in Y ,

endowed with the weak�-topology, are compact and Hausdorff, it follows that

.xj / has an ultralimit lim! xj in Y . Define  .z/ WD lim! xj . It follows from the

lower semi-continuity of the norm in Y with respect to weak�-convergence that
 .z/ is independent of the choice of sequence .xj / and that  is 1-Lipschitz.

Since 'j .x/ ! '.x/ for all x 2 sptS , it follows furthermore that  ı ' D idsptS .
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Finally, if P W Y ! X is a projection of norm 1, then OT WD .P ı  /#T satisfies
OT 2 ImC1.X/ and

@ OT D .P ı  /#.'#S/ D P#S D S

andM. OT / � M.T / � lim infM.Tnj
/ D s. This completes the proof of (i).

The proof of statement (ii) is analogous up to someminor modifications. Indeed,

let S 2 Mm.X/ and set

s WD inf¹M.T 0/CM.@T 0 � S/ W T 0 2 ImC1.X/º:
Clearly, the set appearing on the right hand side is non-empty and thus s is fi-

nite. Let .Tn/ � ImC1.X/ be a sequence satisfying M.Tn/CM.@Tn � S/ ! s.

It follows that

sup
n
ŒM.Tn/CM.@Tn/� < 1:

Set 	 WD sptS and note that sptS is separable. Let nj , Z, 'j , ', and T be as

in Lemma 3.1, where m is replaced by mC 1. By Lemma 2.3, 'j#S converges

weakly to '#S . Let Y and P W Y ! X be as in (i). Define  W sptT [ sptS ! E

in a similar way as was defined in (i). Then is 1-Lipschitz and ı ' D idsptS .

It follows that OT WD .P ı  /#T satisfies OT 2 ImC1.X/ and

@ OT � S D .P ı  /#.@T � '#S/:
We thus obtain from the lower semi-continuity of mass with respect to (local) weak

convergence that

M. OT /CM.@ OT � S/ � M.T /CM.@T � '#S/
� lim inf

j !1 ŒM.Tnj
/CM.@Tnj

� S/� D s:

This completes the proof of (ii).

Remark 3.2.We remark that the use of non-principal ultrafilters and ultralimits

can be avoided in the above proof in the case that X is the dual of a separable

Banach space since in this case one can pass to a subsequence and use sequential

weak�-compactness of closed bounded balls, see also the proof of Theorem 1.2.

The proof of Theorem 1.1 easily generalizes to the following context. Let .X; d/

be a metric space and let ! denote a non-principal ultrafilter on N. A sequence

.xn/n2N � X is called bounded if supn d.xn; x1/ < 1. Define an equivalence

relation � on bounded sequences in X by considering .xn/ and .x
0
n/ equivalent

if lim! d.xn; x
0
n/ D 0, and denote by Œ.xn/� the equivalence class of .xn/ with

respect to �. The ultra-completion X! of X with respect to ! is the metric space
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given by the set

X! WD ¹Œ.xn/� W .xn/ � X with sup d.xn; x1/ < 1º
with the metric d!.Œ.xn/�; Œ.x

0
n/�/ WD lim! d.xn; x

0
n/. We note that X isometri-

cally embeds into X! by the map which assigns to x 2 X the equivalence class

of the constant sequence .x/. We may therefore view X as a subset of X! . In the

following we will say that a metric space X is 1-complemented in some ultra-

completion of X if there exists a non-principal ultrafilter ! on N such that X ,

viewed as a subset of X! , admits a 1-Lipschitz retraction of X! onto X . Note that

if X is a dual Banach space, then X is 1-complemented in every ultra-completion

of X . Consequently, if X is a Banach space which is 1-complemented in some

dual Banach space (in the terminology established before the statement of Theo-

rem 1.1), thenX is 1-complemented in every ultra-completion ofX . The following

result generalizes Theorem 1.1.

Theorem 3.3. Let X be a complete metric space and suppose that X is 1-comple-
mented in some ultra-completion of X . Let m � 0. Then

(i) for every V 2 ImC1.X/ there exists T 2 ImC1.X/ with @T D @V and

M.T / � M.T 0/

for all T 0 2 ImC1.X/ with @T 0 D @V ,

(ii) for every S 2 Mm.X/ there exists T 2 ImC1.X/ such that

M.T /CM.@T � S/ � M.T 0/CM.@T 0 � S/
for all T 0 2 ImC1.X/.

Note that the statement in (i) of Theorem 3.3 is slightly weaker than the state-

ment (i) in Theorem 1.1 inasmuch as we assume that there exists a filling of @V .

This is needed since in the generality considered in Theorem 3.3 integral currents

without boundary need not have a filling.

Proof. The proof is analogous to the proof of Theorem 1.1.

Theorem 1.3 now comes as a consequence of Theorem 3.3. Indeed, if X is a

Hadamard space, then so is every ultra-completion X! of X and, as a closed con-

vex subspace of X! , the nearest point projection from X! to X is 1-Lipschitz, see

e.g. [3, Proposition II.2.4]. Therefore, in the terminology established above, X is

1-complemented in every ultra-completion of X . Statement (ii) of Theorem 1.3

therefore follows from statement (ii) of Theorem 3.3. As for (i), if S 2 Im.X/
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is such that @S D 0, then by [8, Corollary 1.4] there exists V 2 ImC1.X/ with

@V D S . Statement (i) of Theorem 1.3 now follows from this together with state-

ment (i) of Theorem 3.3. If X is an injective space, then X is an absolute 1-Lip-

schitz retract and thus there exists a 1-Lipschitz projection of X! onto X and thus

X is 1-complemented in every ultra-completion of X . Statements (i) and (ii) now

follow as above.

We finally turn to the proof of our w�-compactness theorem.

Proof of Theorem 1.2. Let .Tn/ be as in the statement of the theorem. Set	 WD ¹0º
and let nj , Z, 'j , ', and T be as in Lemma 3.1. Then 'j .0/ converges to some

z0 2 Z. Let .zk/ � sptT be a dense sequence. For each k 2 N choose a sequence

.xk
j / � X with xk

j 2 sptTnj
for all j and such that 'j .x

k
j / ! zk . Since

kxk
j k D d.'j .x

k
j /; 'j .0// ! d.zk; z0/ as j ! 1;

it follows that for k fixed the sequence .xk
j / is bounded. After passing to a sub-

sequence we may therefore assume that the sequence ¹xk
j º converges to some xk

in the weak�-topology of X . (Note that for this separability of a predual or reflex-
ivity of X is needed.) Define  .zk/ WD xk and note that  is 1-Lipschitz by the

lower semi-continuity of the norm on X with respect to w�-convergent sequences.
Since the sequence .zk/ is dense in sptT , we can extend  to a 1-Lipschitz map

 W sptT ! X . Set OT WD  #T and note that OT 2 Im.X/. We will show that Tnj

is w�-convergent to OT . For this let f; �1; : : : ; �m 2 Lip.X/ be weak�-continuous
and such that jf j � C for some C . For each j let f j W Z ! R be a Lipschitz

extension of f ı '�1
j with Lip.f j / D Lip.f / and such that jf j j � C . Similarly,

let �
j
i W Z ! R be a Lipschitz extension of �i ı '�1

j with Lip.�
j
i / D Lip.�i /.

For each k we have

jf ı  .zk/ � f j .zk/j � jf .xk/ � f .xk
j /j C jf j .'j .x

k
j // � f j .zk/j

� jf .xk/ � f .xk
j /j C Lip.f / � d.'j .x

k
j /; z

k/;

from which it follows together with the weak�-continuity of f that f j converges

pointwise to f ı  on sptT . Analogously, �
j
i converges to �i ı  on sptT . Now,

since 'j#Tnj
converges locally weakly to T and

lim
r!1

h
sup

n
kTnk.XnB.0; r//

i
D 0;

it follows that 'j#Tnj
converges weakly to T . By possibly replacing Z by `1.Z/

we may assume by [9, Theorem 1.4] that 'j#Tnj
converges even in the flat norm

to T . In particular, there exist Uj 2 Im.Z/ and Vj 2 ImC1.Z/ such that

T � 'j#Tnj
D Uj C @Vj and M.Uj /CM.Vj / ! 0:
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We now obtain

j OT .f; �/ � Tnj
.f; �/j

� jT .f ı  ; � ı  / � T .f j ; �j /j C jT .f j ; �j / � 'j#Tnj
.f j ; �j /j

� jT .f ı  ; � ı  / � T .f ı  ; �j /j C jT .f ı  � f j ; �j /j
C jUj .f

j ; �j /j C jVj .1; f
j ; �j /j

� jT .f ı  ; � ı  / � T .f ı  ; �j /j

C
mY

iD1

Lip.�i /

Z
Z

jf ı  � f j j dkT k

C
mY

iD1

Lip.�i / ŒC C Lip.f /� � .M.Uj /CM.Vj //:

Since each �
j
i converges pointwise to �i ı  on sptT with bounded Lipschitz

constants, the first term after the last inequality sign converges to 0 by the con-

tinuity property of currents. Since f j converges uniformly to f ı  on compact

subsets of sptT and sptT is � -compact, it follows that the second term converges

to 0 as well. Since also the third term converges to 0, it follows that Tnj
indeed

w�-converges to OT as claimed. This concludes the proof.

The following example shows that in general the assumption in the statement

of Theorem 1.2 that a predual of X be separable cannot be dropped.

Example 3.4. Let X denote the dual space of `1. For n � 1 define xn 2 X by

xn.a/ WD an for a D .a1; a2; : : : / 2 `1, and let the current Tn 2 I0.X/ be given
by Tn.f / WD f .xn/ for every f 2 Lipb.X/. It follows that Tn is supported in the

closed unit ball in X and thatM.Tn/ D 1 for every n. It is easy to show that there

cannot exist a subsequence .nj / such that Tnj
is w�-convergent to some T . In-

deed, given a subsequence .nj /, let a D .a1; a2; : : : / 2 `1 be defined by ak D 1

if k D nj for some j even and ak D 0 otherwise. Define a weak�-continuous
function f 2 Lipb.X/ by f .x/ WD '.x.a//, where ' is the truncation function

given by '.t/ D max¹�1;min¹1; tºº for t 2 R. Clearly, Tnj
.f / D f .xnj

/ does

not converge as j ! 1.

We note that the only facts about dual spaces X of separable Banach spaces

which are used in the proof of Theorem 1.2 are the sequential weak�-compactness
of closed bounded balls in X and the lower semi-continuity of the norm on X

with respect to weak�-convergent sequences. The proof therefore easily gives the
following generalization of Theorem 1.2.
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Theorem 3.5. Let X be a Banach space and W be a vector space topology on X
such that closed bounded balls in X are sequentially W -compact and such that
the norm on X is lower semi-continuous with respect to W -convergent sequences.
Then the conclusion of Theorem 1.2 holds when w�-convergence is replaced by
W -convergence.

We note that W -convergence of a sequence Tnj
to T means by definition that

Tnj
.f; �/ ! T .f; �/ for all f; �1; : : : ; �m 2 Lip.X/ which are also W -continu-

ous and such that f is bounded. Theorem 3.5 generalizes [2, Theorem A.1] for

integral currents.
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