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Abstract Hyperbolic truncated simplices are polyhedra bounded by at most 2n + 2
hyperplanes in hyperbolic n-space. They provide important models in the context of
hyperbolic space forms of small volume. In this work, we derive an explicit formula for
their inradius by algebraic means and by using the concept of reduced Gram matrix.
As an illustration, we discuss implications for some polyhedra related to small volume
arithmetic orientable hyperbolic orbifolds.
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1 Introduction

Let H
n be the hyperbolic space of dimension n, and let P ⊂ H

n be a convex polyhe-
dron. The inradius r = r(P) is the radius of the greatest ball embedded in P . Beside
volume, it is an important quantity when investigating the geometry of fundamental
polyhedra and space forms.

Explicit formulas for r are known only for certain classes of hyperbolic polyhedra,
such as triangles (see [1] for example) and regular simplices (see [9]). The aim of this
work is to give an expression for r(T ), where T is a hyperbolic (truncated) simplex.
More precisely, T is either an ordinary hyperbolic n-simplex of finite volume or arises
as polarly truncated finite-volume part of a total simplex ̂T in the extended hyper-
bolic space (see Sect. 2). This class of polyhedra has particularly nice combinatorial
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properties and plays an important role in the context of hyperbolic orbifolds of small
volume (see [8] for example).

We follow the vector space approach initiated by Milnor [11] and Vinberg [18]
in the setting of the Lorentz–Minkowski space, and we use Gram matrix theory for
the description of polyhedra (see [6], [18, Part I, Chap. 6]). A crucial fact is that, for
a polarly truncated simplex T , the invertible Gram matrix ̂G : =G(̂T ) of the total
simplex ̂T is a principal submatrix of the (singular) Gram matrix G(T ). We first give
a condition for ̂T to have an inball (i.e. an embedded ball of maximal finite radius) in
H

n , and then show by describing explicitly its center that in this case, its radius r̂ is
given by

sinh2 r̂ = −det(̂G)
∑n+1

i, j=1 cofi j (̂G)
,

where cof i j denotes the (i, j)-th cofactor, as usual (see Sect. 3). Furthermore, we give
a criterion in order to decide whether r̂ equals the inradius r of T .

As a by-product, we provide closed formulas for the inradius and the circumradius
of a compact hyperbolic simplex and of a spherical simplex in arbitrary dimension.
Furthermore, inspired by Vinberg’s proof of Schläfli’s volume differential formula
[18], we prove the monotonicity of the inradius with respect to an angle variation.

As an application (see Sect. 4), we show how certain Coxeter polyhedra, which
are related to arithmetic hyperbolic orbifolds of small volume, can be interpreted as
hyperbolic truncated simplices. Finally, we provide tables collecting their volume,
inradius and local density.

2 Hyperbolic Truncated Simplices and Their Gram Matrices

2.1 The Hyperbolic Space Hn

Let R
n,1 be the real vector space R

n+1 equipped with the standard bilinear form of
signature (n, 1), i.e.

〈x, y〉 = x1 y1 + · · · + xn yn − xn+1 yn+1,

where x = (x1, . . . , xn, xn+1) and y = (y1, . . . , yn, yn+1) are vectors in R
n+1.

For a real number ρ, we denote by

S(ρ) := {x ∈ R
n,1 | ‖x‖2 := 〈x, x〉 = ρ

}

the pseudosphere of radius ρ in R
n,1.

Then, the subset

Hn = {x ∈ R
n,1 | 〈x, x〉 = −1, xn+1 > 0

} ⊂ S(−1)

equipped with the metric

d(x, y) = dH(x, y) = arcosh(−〈x, y〉) ∀x, y ∈ Hn,
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is the vector space model of the hyperbolic n-space H
n . The group of isometries of

(Hn, dH) is isomorphic to the projective orthogonal group P O(n, 1) of signature
(n, 1), and acts transitively on Hn (cf. [12, Chap. 3.2]). Furthermore, up to the choice
of a representative, the boundary of Hn is given by

∂Hn ={x = (x1, . . . , xn+1) ∈ R
n,1
∣

∣ 〈x, x〉 = 0,
∑n+1

i=1 x2
i = 1, xn+1 > 0

} ⊂ S(0),

and the closure Hn denotes the union Hn ∪ ∂Hn .
The space Hn is especially convenient when one wants to look at polyhedral objects

and their description by Gram matrices.
For k ≥ 1, a k-dimensional vector subspace V ⊂ R

n,1 is hyperbolic if it has a
nonempty intersection with Hn , and the intersection V ∩ Hn is a hyperbolic (k − 1)-
plane. It is elliptic if V ∩Hn is empty. Otherwise, V is called parabolic. The restriction
of 〈·, ·〉 on V is respectively of signature (n, 1), positive definite or positive semi-
definite.

In particular, the orthogonal complement

V ⊥ = {x ∈ R
n+1 | 〈v, x〉 = 0, ∀v ∈ V

}

is elliptic if and only if V is hyperbolic ([12, Chap. 3.1]).
As a consequence, for a hyperbolic hyperplane H ⊂ Hn of dimension (n−1), there

exists a vector u ∈ S(1) such that for ̂Hu :=u⊥, one has H = Hu : =̂Hu ∩ Hn . The
closed half-space bounded by ̂Hu and not containing u will be denoted by ̂Hu

−:={x ∈
R

n+1 | 〈u, x〉 ≤ 0
}

, and we write H−
u = ̂Hu

− ∩ Hn .
The relative position of two hyperbolic hyperplanes Hu and Hv in Hn can be directly

determined by means of the product 〈u, v〉 ([12, Chap. 3.2]):

(1) Hu and Hv intersect in Hn ⇔ |〈u, v〉| < 1. The dihedral angle � (Hu, Hv) is
given by

� (Hu, Hv) = arccos(−〈u, v〉). (1)

(2) Hu and Hv intersect in ∂Hn ⇔ |〈u, v〉| = 1. They are parallel, and their inter-
section angle is 0.

(3) Hu and Hv do not intersect in Hn ⇔ |〈u, v〉| > 1. We call Hu and Hv ultra-
parallel. The hyperbolic distance d(Hu, Hv) is given by

d(Hu, Hv) = arcosh |〈u, v〉|. (2)

Furthermore, if Lu,v denotes the hyperbolic line orthogonal to both Hu and Hv ,
then 〈u, v〉 < 0 if and only if u and v are oppositely oriented tangent vectors to
Lu,v .

For later purpose, we will also need the following fact ([12, p. 75]).
Let Hu , u ∈ S(1), be a hyperbolic hyperplane and x be a point in Hn .
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Then, the distance d(x, Hu) between x and Hu is given by

d(x, Hu) = arsinh |〈x, u〉|. (3)

In particular, 〈x, u〉 < 0 if and only if x and u are not in the same half-space of
R

n+1 bounded by Hu .

2.2 Hyperbolic Truncated Simplices

For N > n, an (n-dimensional) hyperbolic polyhedron P is the intersection with
non-empty interior in Hn of the form

P = Pn =
N
⋂

i=1

H−
ui

(4)

of N closed half-spaces H−
ui

. Each H−
ui

is bounded by the hyperplane Hi := Hui , with
ui ∈ S(1) pointing outside P , say, and the hyperplanes H1, . . . , HN are supposed to
form a minimal family of hyperplanes bounding P .

The polyhedron P is uniquely determined, up to isometry, by the set of its normal
vectors.

For i ∈ {1, . . . , N }, the facet Fi ⊂ Hi of P is the intersection

Fi = P ∩ Hi .

If N = n + 1 and P is of finite volume, then P is a hyperbolic simplex, and has
particularly nice properties (cf. [11,17,18] for example). In particular, P is the convex
hull of n + 1 points v1, . . . , vn+1 ∈ Hn which form a basis of R

n+1 and are called
vertices. Every vertex vi is given by

vi =
n+1
⋂

j=1
j �=i

H j . (5)

Hence, each hyperplane Hi lies opposite to the vertex vi in P .
In the sequel, we extend the concept of a hyperbolic simplex to a wider class of

polyhedra. Let u1, . . . , un+1 ∈ S(1) be a basis of R
n+1 such that 〈ui , u j 〉 < 1 for

i �= j . Then, the intersection

Θ :=
n+1
⋂

i=1

̂Hi
−

(6)

is a simplicial n-cone in R
n+1 of apex o = (0, . . . , 0) (see also [6]). In particular, for

every i , the intersection
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v̂i : =
n+1
⋂

j=1
j �=i

̂Hj

is a line passing through o.
It is easy to see that every line v̂i contains a point vi such that

{

vi = v̂i ∩ (Hn ∪ S(1)),

〈ui , vi 〉 < 0.
(7)

Definition 1 The set

̂T := Θ ∩ (Hn ∪ S(1)
) ⊂ R

n+1

with vertices v1, . . . , vn+1 satisfying (7) is called the total simplex associated to
u1, . . . , un+1.

Remark 1 By passing to the Klein–Beltrami model Kn of H
n (see [12, Chap. 6.1] for

example), ̂T is a simplex in the real projective space RP
n intersecting Kn non-trivially.

Let p, q ≥ 0 be integers such that p + q ≤ n + 1.

Definition 2 A total simplex ̂T is said to be of type (p, q) if p of its vertices lie in
S(1), q vertices are in ∂Hn , and the remaining ones belong to Hn . The vertices lying
in Hn are called ordinary vertices, the ones lying in ∂Hn ideal, and the ones lying in
S(1) ultra-ideal vertices of ̂T .

The set of the ordinary vertices of ̂T is denoted by V−, the set of the ideal vertices
V0, and the set of the ultra-ideal vertices V+.

With these definitions, a total simplex ̂T of type (0, q), 0 ≤ q ≤ n + 1, is a
hyperbolic simplex. If q = 0, it is compact, and if q = n + 1, ̂T is a totally ideal
hyperbolic simplex.

Let us now consider a total simplex ̂T ⊂ R
n+1 of type (p, q), p > 0, with

associated cone Θ = ⋂n+1
i=1
̂Hi

−
. Then each ultra-ideal vertex vi gives rise to the

hyperbolic hyperplane Hvi = v⊥
i which intersects ̂T non-trivially. More specifically,

by (5), Hvi intersects each Hj , j �= i orthogonally.
Let k ∈ {1, . . . , p} be an integer, and let v1, . . . , vk ∈ V+ be ultra-ideal vertices of

̂T such that the set

T :=
n+1
⋂

i=1

H−
i ∩

k
⋂

j=1

H−
v j

⊂ Hn (8)

is nonempty and has positive finite volume.

Definition 3 The set T is called the hyperbolic k-truncated simplex (of type (p, q))
associated to ̂T with respect to the vertices v1, . . . , vk of ̂T .
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Fig. 1 Any pentagon with 4 right angles is a 2-truncated triangle

Remark 2 By analogy with projective geometry of quadratic forms, for an ultra-ideal
vertex vi ∈ S(1), we call Hvi polar hyperplane, and write H∗

i . By (5), we have
� (H∗

i , Hj ) = π
2 for i �= j . Let F∗

i = ̂T ∩ H∗
i be the corresponding facet of T .

Example 1 (1) A hyperbolic truncated triangle is either a triangle, a quadrilateral with
2 consecutive right-angles, a pentagon with 4 right angles (cf. Fig. 1) or a totally
rectangular hexagon.

(2) Lambert cubes are hyperbolic 2-truncated 3-simplices (cf. [8]).
(3) Straight simplicial prisms are hyperbolic 1-truncated simplices.

2.3 The Reduced Gram Matrix of T

For a k × k matrix M and i, j in
{

1, · · · , k
}

, we denote by Mi j the (k − 1) × (k − 1)

matrix obtained by removing the i-th row and j-th column from M .
The matrix Mi := Mii is the i-th principal submatrix, and the (i, j)-th cofactor

cof i j (M) of M is given by (−1)i+ j det(Mi j ), as usual.
Recall that, for M invertible, the coefficients of M−1 can be expressed according to

[M−1]i j = 1

det(M)
cof j i (M), 1 ≤ i, j ≤ k.

After these preliminaries, consider a hyperbolic polyhedron P ⊂ Hn with normal
vectors u1, . . . , uN ∈ S(1) as in (4).
The Gram matrix G(P) =: G = (gi j )1≤ i, j ≤N of P is given by

gi j = 〈ui , u j 〉, i, j = 1, . . . , N . (9)

It is clear that G is real symmetric with gii = 1 for all i = 1, . . . , N . By (1) and (2),
we get the geometric interpretation

gi j =
{ − cos � (Hi , Hj ) ⇔ |〈ui , u j 〉| ≤ 1,

− cosh d(Hi , Hj ) ⇔ |〈ui , u j 〉| > 1.
(10)
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A crucial fact is that if P is a hyperbolic simplex, then the matrix G(P) =
(〈ui , u j 〉)1≥i, j≥N is invertible and of signature (n, 1) (cf. [17]).

In the sequel, we consider a total simplex ̂T of type (p, q), p ≥ 0, with associated
cone Θ =⋂n+1

i=1
̂Hui

−
, ui ∈ S(1), and associated hyperbolic k-truncated simplex T .

Since k ≥ 1, the Gram matrix G = G(T ) is singular of size (n + k +1)× (n + k +1).
This motivates the following

Definition 4 The reduced Gram matrix of T is defined by ̂G := G(̂T ).

In other words, we consider in the singular matrix G(T ) the invertible principal
submatrix ̂G of identical signature (n, 1).

Vice-versa, consider a symmetric matrix A = (ai j )1≤i, j≤n+1 ∈ GL(n + 1, R) of
signature (n, 1) with aii = 1 and ai, j < 1 for 1 ≤ i, j ≤ n + 1. In fact, A can

be interpreted as the Gram matrix of a total simplex ̂T with cone Θ = ⋂n+1
i=1

̂Hui

−

bounded by hyperbolic hyperplanes in R
n+1 as follows.

Since A is invertible of signature (n, 1), there exists a matrix U ∈ GL(n + 1)

such that A = U t JU , where J = Diag(1, . . . , 1,−1) is the matrix associated to the
standard quadratic form 〈·, ·〉 on R

n,1. Write U = (u1| . . . |un+1), with well-defined
vectors ui ∈ S(1). It follows that A = G(̂T ) = ̂G, for a total simplex ̂T with cone
Θ :=⋂n+1

i=1
̂Hui

− ⊂ R
n+1, as required.

The next goal is to construct explicitly vertex vectors for ̂T which are vectors
v1, . . . , vn+1 satisfying (7).

Inspired by [11], we put, for i = 1, . . . , n + 1,

vi :=
⎧

⎨

⎩

∑n+1
k=1 cof ik (̂G) uk√

| cof i i (̂G) det(̂G)| if cof i i (̂G) �= 0,

∑n+1
k=1 cof ik(̂G) uk if cof i i (̂G) = 0.

(11)

A straightforward computation using the identity

n+1
∑

k=1

gik cofk j (̂G) = det(̂G)

n+1
∑

k=1

gik[̂G−1]k j = det(̂G) δi j

for 1 ≤ i, j ≤ n + 1 shows that

〈vi , u j 〉 =
⎧

⎨

⎩

−δi j

√

∣

∣
det(̂G)

cof i i (̂G)

∣

∣ cof i i (̂G) �= 0,

δi j det(̂G) cof i i (̂G) = 0.

(12)

This can be used to deduce the useful identities

〈vi , v j 〉 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

− cof i j (̂G)√
| cof i i (̂G) cof j j (̂G)| cof i i (̂G), cof j j (̂G) �= 0,

− cof i j (̂G)

√

∣

∣
det(̂G)

cof j j (̂G)

∣

∣ cof i i (̂G) = 0, cof j j (̂G) �= 0,

cof i j (̂G) det(̂G) cof i i (̂G), cof j j (̂G) = 0.

(13)
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For j = i , one gets then

〈vi , vi 〉 =

⎧

⎪

⎨

⎪

⎩

−1 ⇔ cof i i (̂G) > 0,

0 ⇔ cof i i (̂G) = 0,

1 ⇔ cof i i (̂G) < 0.

(14)

Then, if p (resp. q) denotes the number of ultra-ideal (ideal) vertices of ̂T and if
for k ≤ p the intersection T = ⋂n+1

i=1 H−
ui

∩ ⋂k
i=1 H−

vi
is nonempty and of finite

volume, then modulo a change of indices T is the hyperbolic k-truncated simplex of
type (p, q) associated to ̂T with respect to the ultra-ideal vertices v1, . . . , vk ∈ V+,
with reduced Gram matrix ̂G.

3 The Inradius of a Hyperbolic Truncated Simplex

Let ̂T ⊂ R
n+1 be a total simplex of type (p, q) with simplicial cone Θ =⋂n+1

i=1
̂Hi

−
,

and let T ⊂ Hn be an associated hyperbolic k-truncated simplex with respect to
ultra-ideal vertices v1, . . . , vk ∈ V+, 1 ≤ k ≤ p.

Furthermore, let ui ∈ S(1) be the oriented normal vector related to the hyperbolic
hyperplanêHi of Θ .

Denote by F1, . . . , Fn+1 the facets of T associated to u1, . . . , un+1, and by
F∗

1 , . . . , F∗
k those associated to v1, . . . , vk , all together forming the facet complex

of T . This will be our setting for the rest of the chapter.
Let us denote by B = B(T ) the ball of maximal radius embedded in T which is

the inball of T . The goal of this chapter is to determine the inradius r := r(B) of T .

3.1 The Inball of a Total Simplex

For i, j ∈ {1, . . . , n + 1}, i �= j , let Hi j be the hyperbolic hyperplane given by

Hi j := (ui − u j )
⊥.

Geometrically, we will see that Hi j is the hyperbolic hyperplane intersecting the inte-
rior of ̂T which is midway to the hyperplanes Hi and Hj . More precisely, if Hi and Hj

intersect, then Hi j is the hyperplane bisecting the dihedral angle αi j . If Hi and Hj are
ultra-parallel, then Hi j is the hyperplane equidistant to Hi and Hj . If Hi and Hj are
parallel, then Hi j is the hyperplane determined by horospherical bisector associated
to Hi and Hj .

Let us define the vectors

bi := ui − ui+1, 1 ≤ i ≤ n. (15)

Then, by (11) and (14), we get that for all i ∈ {1, . . . , n}
∥

∥bi
∥

∥

2 = 〈ui − ui+1, ui − ui+1〉 = 2 − 2〈ui , ui+1〉 = 2 − 2gi,i+1 > 0.
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Now, we normalize and suppose that bi ∈ S(1), i = 1, . . . , n + 1. In view of (10),
we deduce

Hbi = Hi,i+1, i = 1, . . . , n. (16)

One notices that b1, . . . , bn are linearly independent. We set

L :=
⋂

1≤i< j≤n+1

Hi j . (17)

In view of (16) and since Θ is a simplicial cone, L is a line in R
n+1. In particular,

each x ∈ L satisfies

〈x, ui 〉 = 〈x, u j 〉 , 1 ≤ i, j ≤ n + 1, i �= j, (18)

and we have

L =
n
⋂

i=1

Hbi .

Lemma The line L is hyperbolic (respectively parabolic, elliptic) if and only if
∑n+1

i, j=1 cof i j (̂G) is strictly positive (respectively zero, strictly negative).

Proof In order to facilitate notations, suppose that v1 . . . , vq are the ideal vertices of
̂T , such that, by (14),

{

cof11(̂G) = · · · = cofqq(̂G) = 0,

cof i i (̂G) �= 0 for all i = q + 1, . . . , n + 1.

Let b1, . . . , bn ∈ S(1) be the vectors given in (15). Then, any nonzero point x ∈ L
satisfies the conditions

〈x, bi 〉 = 0, i = 1, . . . , n. (19)

Since the vectors v1, . . . , vn+1 form a basis of R
n+1, any nonzero x ∈ L can be

represented as

x =
n+1
∑

i=1

λi vi , λi ∈ R. (20)

By (12) and (15), the n equations 〈x, bi 〉 = 0 have the obvious solution

{

λ1 = · · · = λq = κ 1√
| det(̂G)| ,

λi = κ
√

| cof i i (̂G)|, i = q + 1, . . . , n + 1,
κ ∈ R \ {0}.
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For

μi :=
{ 1√

| det(̂G)| i = 1, . . . , q,
√

| cof i i (̂G)| i = q + 1, . . . , n + 1,
(21)

one has for each x ∈ L nonzero

x = κ

n+1
∑

i=1

μi vi . (22)

Then, one has for any x ∈ L \ {0}

〈x, x〉 = κ2
n+1
∑

i, j=1

μi μ j 〈vi , v j 〉. (23)

By (13) and (21) we obtain

μi μ j 〈vi , v j 〉 = − cof i j (̂G) for all i, j = 1, . . . , n + 1,

that is

〈x, x〉 = −κ2
n+1
∑

i, j=1

cof i j (̂G), for all x ∈ L \ {0}. (24)

Hence, L is a hyperbolic (respectively parabolic, elliptic) line if and only if
∑n+1

i, j=1 cof i j (̂G) > 0 (respectively = 0, < 0). ��
Corollary A total hyperbolic simplex ̂T with Gram matrix ̂G has an inball (i.e. an
embedded ball of maximal finite radius) in Hn if and only if

∑n+1
i, j=1 cof i j (̂G) > 0.

Proof Suppose that ̂T has an inball B(̂T ) in Hn . Since T is combinatorially a simplex
(cf. Remark 1), by convexity, B(̂T ) must be tangent to all hyperplanes H1, . . . , Hn+1
bounding ̂T . By the proof of the Lemma, the line L defined in (17) is then hyperbolic,
since it contains the center of B(̂T ). Therefore

∑n+1
i, j=1 cof i j (̂G) > 0.

Suppose that
∑n+1

i, j=1 cof i j (̂G) > 0. Then, the line L is hyperbolic. Hence, by (3)

and (18), the point̂b = L∩Hn is the center of B(̂T ), and the radius r(B(̂T )) is given
by d(̂b, Hi ) for any 1 ≤ i ≤ n + 1. In particular, this radius is finite. ��
Remark 3 The Corollary can be completed as follows.

(1) If
∑n+1

i, j=1 cof i j (̂G) = 0, by a continuity argument, the ball B(̂T ) is a horoball

tangent to the hyperplanes bounding ̂T .
(2) If

∑n+1
i, j=1 cof i j (̂G) < 0, then any hyperbolic ball embedded in ̂T is tangent to at

most n hyperplanes bounding ̂T , as the proof above shows.
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If ̂T has an inball in Hn , let us denote it by ̂B = B(̂T ). Then, the radius r̂ := r(̂B)

is called the inradius of ̂T .

Example 2 For a < −1, the matrix

̂G(a) =
⎛

⎝

1 − 1
2 0

− 1
2 1 a

0 a 1

⎞

⎠

is the Gram matrix of a total triangle ̂T (a) of type (1, 0) in R
2,1. Since

3
∑

i, j=1

cof i j (̂G(a)) = −
(

a2 + 3a − 15/4
)

,

one deduces that̂T (a) has an inball ̂B = B(a) in H2 if and only if − 3
2 −√

6 < a < −1.
In the limiting case a0 = − 3

2 −√
6, B(a0) is a horoball tangent to the 3 sides of ̂T (a0)

(cf. Remark 3 (1)).

Theorem Let ̂G = G(̂T ) be the Gram matrix of a total simplex̂T with inball ̂B ⊂ Hn.
Then, the inradius r̂ = r(̂B) is given by

r̂ = arsinh

√

√

√

√

− det(̂G)
∑n+1

i, j=1 cof i j (̂G)
. (25)

Proof As in the proof of the Corollary, let̂b = L ∩ Hn be the center of ̂B. Then, by
writing

̂b =
n+1
∑

i=1

λi vi

as in (20), the condition

〈̂b,̂b〉 = −1

together with (24), leads to

κ = 1
√

∑n+1
i, j=1 cof i j (̂G)

.

Observe that ̂T can always be moved such that the vectors vi satisfy [vi ]n+1 > 0,
ensuring that [̂b]n+1 > 0 by (21). Then, (24) becomes

̂b =
∑n+1

i=1 μi vi
√

∑n+1
i, j=1 cof i j (̂G)

. (26)
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By (3), we have

r̂ = d(̂b, Hi ) = arsinh |〈̂b, ui 〉| , i = 1, . . . , n + 1.

A direct and easy computation using (12), (18), (21) and (26) finishes the proof. ��
Remark 4 If p = 0, then T = ̂T is a compact simplex or a simplex of finite volume
with q ideal vertices, 1 ≤ q ≤ n + 1, whose inradius r = r(T ) equals r̂ . In particular,
for n = 2, we get the inradius formula for triangles given by Beardon [1, Theorem
7.14.2].

Furthermore, by adapting the setting to the Euclidean case, we can get the following
analogous result for spherical simplices.

Remark 5 Let T ⊂ Sn be a spherical n-simplex with Gram matrix G.
Then, its inradius r = r(T ) is given by

r = arcsin

√

det(G)
∑n+1

i, j=1 cof i j (G)
. (27)

If p = q = 0, let C denote the circumball of T = ̂T , with radius R := r(C).

Proposition 1 Let T ⊂ Hn be a compact hyperbolic simplex with Gram matrix G.
Then the circumradius R of T is given by

R = arcosh

√

det(G)
∑n+1

i, j=1 gi j
√

cof i i (G) cof j j (G)
. (28)

Proof We follow a similar strategy as in the proof of the Theorem. Let c ∈ Hn denote
the center of C. Then, c satisfies the conditions

⎧

⎪

⎨

⎪

⎩

〈c, vi 〉 = 〈c, v j 〉, 1 ≤ i < j ≤ n + 1,
∥

∥ c
∥

∥

2 = −1,

[ c ]n+1 > 0.

(29)

Since u1, . . . , un+1 is a basis of R
n+1, we represent c as

c =
n+1
∑

i=1

σi ui .

Then, a direct computation using (12) shows that the system of equations (29) admits
the unique solution

c =
n+1
∑

i=1

√

cof i i (G)

−∑n+1
l,m=1 glm

√
cof ll(G)

√
cofmm(G)

ui . (30)
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Since

R = d(c, vi ) = arcosh |〈c, vi 〉|, i = 1, . . . , n + 1,

the use of (12) and (30) allows us to finish the proof. ��

As for the inradius, a proof similar to the one of Proposition 1 allows us to deduce
the following properties.

Remark 6 Let G be the Gram matrix of a compact hyperbolic n-simplex T ⊂ Hn .
The entries and the cofactors of G satisfy the condition

n+1
∑

i, j=1

gi j

√

cof i i (G) cof j j (G) < 0.

Remark 7 Let T ⊂ Sn be a spherical n-simplex with Gram matrix G. Then the
circumradius R of T is given by

R = arccos

√

det(G)
∑n+1

i, j=1 gi j
√

cof i i (G) cof j j (G)
. (31)

3.2 The inball of a hyperbolic truncated simplex

Consider a total simplex ̂T of type (p, q) with p ≥ 1, with inball ̂B in Hn . Then
every ultra-ideal vertex vi comes with its polar hyperplane H∗

i which may intersect
the inball ̂B of ̂T or not. The following result gives a precise criterion.

Proposition 2 Let ̂T be a total simplex of type (p, q), p ≥ 1, with Gram matrix ̂G,
such that ̂T has an inball ̂B ⊂ Hn. Let r̂ be the radius of ̂B. Denote by T ⊂ Hn

its associated hyperbolic k-truncated simplex with respect to the ultra-ideal vertices
v1, . . . , vk ∈ V+ of ̂T , 1 ≤ k ≤ p. Let r be the inradius of T . Then, r = r̂ if and only
if

∑n+1
j=1 cof i j (̂G)

√

det(̂G) cof i i (̂G)
≥ 1 for all i = 1, . . . , k. (32)

Proof Let̂b ∈ Hn be the center of ̂B as in the proof of Theorem (see Sect. 3.1). For
i = 1, . . . , k, we set

di := d(̂b, H∗
i ).
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Since vi ∈ S(1) for i ∈ {1, . . . , k} as usual (see (7)), we can use (3) and combine it
with (21) and (26) to deduce that

di = arsinh

∑n+1
j=1 cof i j (̂G)

√

∑n+1
l,m=1 cof lm(̂G)

√

− cof i i (̂G)

. (33)

Then, by (25) and (33), we get that r̂ ≤ di if and only if
∑n+1

j=1 cof i j (̂G)
√

det(̂G) cof i i (̂G)
≥ 1. (34)

If (34) holds for all i = 1, . . . , k, then ̂B is contained in
⋂k

i=1(H∗
i )− in such a way

that ̂B is embedded in T . This completes the proof. ��
Suppose that, in the proof above, one has ̂B � (H∗

i )− for at least one i ∈ {1, . . . , k}.
Then, the inradius r = r(B) can—roughly—be determined as follows.

First, observe that B must be tangent to at least n + 1 of the hyperplanes bounding
T . Next, fix a configuration ω of n + 1 hyperplanes bounding T . The set ω gives rise
to a total simplex̂Tω of type (pω, qω), with Gram matrix ̂Gω, say.

Suppose that ̂Tω has an inball ̂Bω in Hn , with center ̂bω and radius r̂ω. Let H be
a hyperplane bounding T but not ̂Tω (in general, H does not coincide with a polar
hyperplane associated tôTω). Then, ̂Bω is embedded in T if and only if for each such
H , one has

d(̂bω, H) ≥ r̂ω.

This condition can be checked by using (3) with the corresponding expressions (26)
and (21) for ̂Gω (or by using (34) if H coincides with a polar hyperplane for̂Tω).

Let Ω be the set of all configurations ω of n + 1 hyperplanes bounding T , and,
motivated by the Corollary, define

Ω+ := {ω ∈ Ω
∣

∣

∑n+1
i, j=1 cof i j (̂Gω) > 0

} ⊂ Ω.

By the above, one sees that

1 ≤ card Ω+ ≤
(

n + k + 1
n + 1

)

In this way, the inradius r of T is given by

r = max
ω∈Ω+

{

r̂ω

∣

∣ ̂Bω is embedded in T
}

.

3.3 Inradius Monotonicity

In the sequel, we investigate the behavior of the inradius r = r(T ) of a spherical
or hyperbolic simplex T with respect to a dihedral angle variation. To this end, we
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adapt the idea of Vinberg in the proof of Schläfli’s differential formula for the volume
of a non-Euclidean convex polyhedron (see [18, pp.119-120]). More concretely, let
X n = Sn or Hn , and let

T =
n+1
⋂

i=1

H−
i ⊂ X n

be a simplex as usual. Consider the simplicial cone

K :=
n
⋂

i=1

H−
i

in X n . For X n = Sn (respectively Hn), volume is a strictly increasing (respectively
decreasing) function with respect to the dihedral angle

α := � (Hn, Hn+1).

More precisely, there is an infinitesimal displacement of Hn+1 into a hyperplane H ′
n+1

such that the intersection

T ′ = K ∩ (H ′
n+1

)−

is a simplex having the same dihedral angles as T except for

α′ = α + dα > α,

and such that

{

T ⊂ T ′ if X n = Sn,

T ′ ⊂ T if X n = Hn .
(35)

By convexity, we deduce from (35) that the inradius r = r(α) of a spherical
(respectively finite volume hyperbolic) simplex T is strictly increasing (respectively
decreasing). Therefore we have proven the following result.

Proposition 3 Let T ⊂ Sn (respectively Hn) be a spherical (respectively compact or
ideal hyperbolic) simplex. Then, the inradius r of T is a strictly increasing (respectively
decreasing) function with respect to each dihedral angle of T .

Notice that, by continuity, Proposition 3 remains valid for hyperbolic k-truncated
simplices.
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4 Some Extremal Truncated Simplices

Hyperbolic (truncated) simplices are not only distinguished by their particularly
nice combinatorial structure, but appear also as fundamental polytopes of hyperbolic
orbifolds and manifolds of small characteristic invariants such as volume. More specif-
ically, such orbifolds are often quotient spaces of hyperbolic space by arithmetic dis-
crete reflection groups related to (truncated) Coxeter simplices. A famous example is
Siegel’s orbifold of minimal area π/42 which is related to the (2, 3, 7)-triangle group
defined over the field Q(2 cos(π/7)) (cf. [13]). For details concerning volumes of
arithmetic hyperbolic orbifolds, see for example [2, Sect. 2]. A good survey about
hyperbolic orbifolds of small volume is [10].

4.1 Coxeter Polyhedra and Coxeter Groups

LetX n = Sn, En,or Hn be one of the standard geometric spaces of constant curvature.
A Coxeter polyhedron in X n is a convex polyhedron P ⊂ X n whose dihedral angles
are of the form αi j = π

ki j
, for integers ki j ≥ 2. If X n = Hn we allow the vertices of

P to lie on ∂Hn .
In the sequel, we always suppose that P is of finite volume. Then, it is bounded by

finitely many hyperplanes, say H1, . . . , HN , and the reflections s1, . . . , sN with respect
to H1, . . . , HN generate the Coxeter group W = W (P) < Isom(X n) associated to
P .

A Coxeter polyhedron P and its Coxeter group W are often described by their Cox-
eter graph Σ = Σ(P) as follows. A node i in Σ represents the bounding hyperplane
Hi of P (or the generator si of W ). Two nodes i and j are joined by an edge with
weight 2 ≤ ki j ≤ ∞ if Hi and Hj intersect in X n with angle π

ki j
. If the hyperplanes

Hi and Hj have a common perpendicular in Hn , the nodes i and j are joined by a
dotted edge. In practice, an edge of weight 2 is omitted, and an edge of weight 3 is
written without its weight.

A good reference about Coxeter polyhedra (compactness, finite volume) and Cox-
eter groups (arithmeticity) is [18, Part II, Chapt. 5–7].

Example 3 Consider the following Coxeter graph with 5 nodes.

�

�

�

�

��
�

�
�

5

5
By Vinberg’s existence criterion (see [17]), this graph describes a Coxeter poly-

hedron P ⊂ H4 of infinite volume. Moreover, by Sect. 2, P can be interpreted as
hyperbolic part of a total simplex of type (5, 0) whose associated 5-truncated simplex
is a compact Coxeter polyhedron. For more details, see [16].

Example 4 Recall that a Coxeter n-simplex with linear Coxeter graph Σ is called
a Coxeter n-orthoscheme. The following linear graphs encode compact hyperbolic
Coxeter k-orthoschemes in Hk , k = 2, 3, 4, respectively.
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� � �7Σ2 : � � � �5Σ3 : � � � � �5Σ4 :

Moreover, the graph Σ5 given by

� � � � � � �5Σ5 :

yields a compact 1-truncated orthoscheme in H5. The truncating polar hyperplane
corresponds to the white node of Σ5.

Example 5 Bugaenko [4,5] showed that the following graphs give rise to compact
arithmetic Coxeter polyhedra in Hk , k,= 6, 7, 8, respectively.

� �

�

� �

�

� � �

Σ6 :
5 5

4 4

� �

�

� �

�

�

�

� � �

����
����

5 5

4 4
Σ7 :

� � � � � � � � �

� �

5 5
Σ8 :

By using the approach described in Sect. 2, one sees that Σ6 and Σ8 can be interpreted
as 2-truncated orthoschemes, and Σ7 describes a 3-truncated simplex. As in Example
3, the truncating polar hyperplanes are represented by white nodes.

Example 6 The following graph represents a non-compact Coxeter polyhedron in
H17, which is combinatorially a pyramid over the product of two simplices (see [15]
for example).

� � �

�

� � � � � � � � � � � � �

�

� �

Σ17 :

By Sect. 2, one can interpret Σ17 as the graph of a 1-truncated simplex. For example,
identify the truncating polar hyperplane by the white node as indicated. By a result
of Emery [7], the volume of this polytope is equal to the minimal value amongst all
volumes of orientable hyperbolic arithmetic n-orbifolds, and this uniformly for n ≥ 2
(see Sect. 4.2).

It is an interesting fact that the total simplices given in Examples 2–5 have embed-
ded hyperbolic inballs, which, by criterion (32), coincide with the inballs of the cor-
responding hyperbolic truncated simplices.

4.2 Some Explicit Values

Each Coxeter polytope P ⊂ Hn yields a tessellation by the action of the associated
Coxeter group. Therefore, the inball B of P gives rise to an infinite ball packing whose
local density (see [3]) is defined by
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δ(P) = voln(B)

voln(P)
< 1, (36)

where the volume of B is given by

voln(B) = 2 π
n
2

�( n
2 )

r
∫

0

sinhn−1(t) dt.

By (36), we notice that small volume hyperbolic Coxeter polytopes are closely
related to ball packings of large local density (see [14], for example). Observe that the
Coxeter polytopes given in Examples 3–5 are known to give rise to hyperbolic orbifolds
of very small volume (see [10]). In the sequel, we shall apply our Theorem (see Sect. 3)
to these polytopes in order to provide a list of geometric quantities including volume,
inradius, and local density.

Consider the graphs Σn which describe Coxeter (truncated) simplices Tn ⊂ Hn ,
n = 2, . . . , 8, 17, as explained in Examples 3–5. Write vn = voln(Tn), rn = r(Tn)

and δn = δ(Tn).
Table 1 lists the graphs Σn and their volumes vn , n = 2, . . . , . . . , 8, 17. In this table,

k0 is the field Q(
√

5), while l0 is the number field Q[x]/(x4−x3+3x−1). Furthermore,
ζk is the Dedekind zeta function associated to the field k, and Ll/k = ζl/ζk is the L-
function corresponding to a quadratic extension l/k. Notice that the volume of the
Coxeter truncated simplex with graph Σ7 is still unknown!

Table 1 Graphs and volumes of the Coxeter (truncated) n-simplices Tn
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Table 2 Inradii and local
densities of the Coxeter
(truncated) simplices Tn

n sinh2 rn rn � δn �

2
−461+324 cos π

7 +240 cos2 π
7

2 351 1.044 · 10−1 4.585 · 10−1

3 −17+19
√

5
232 1.158 · 10−1 1.670 · 10−1

4 −2+√
5

85 5.268 · 10−2 4.161 · 10−2

5 −577+345
√

5
47 672 6.382 · 10−2 7.278 · 10−3

6 −47+37
√

5
4 636 8.768 · 10−2 1.227 · 10−3

7 61+65
√

5
17 404 1.087 · 10−1 ?

8 −58+65
√

5
17761 7.007 · 10−2 5.747 · 10−5

17 1
1240 2.839 · 10−2 3.455 · 10−10

Table 2 collects the exact values of sinh2 rn , as well as approximative values for
rn and for δn . By the (non-)truncation criterion (32), the inradii rn could be obtained
directly from formula ((25) (see Sect. 3).
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