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Abstract

The evolutionarily conserved target of rapamycin complex 1 (TORC1) controls growth-related processes such as protein,
nucleotide, and lipid metabolism in response to growth hormones, energy/ATP levels, and amino acids. Its deregulation is
associated with cancer, type 2 diabetes, and obesity. Among other substrates, mammalian TORC1 directly phosphorylates
and inhibits the phosphatidate phosphatase lipin-1, a central enzyme in lipid metabolism that provides diacylglycerol for
the synthesis of membrane phospholipids and/or triacylglycerol as neutral lipid reserve. Here, we show that yeast TORC1
inhibits the function of the respective lipin, Pah1, to prevent the accumulation of triacylglycerol. Surprisingly, TORC1
regulates Pah1 in part indirectly by controlling the phosphorylation status of Nem1 within the Pah1-activating,
heterodimeric Nem1-Spo7 protein phosphatase module. Our results delineate a hitherto unknown TORC1 effector branch
that controls lipin function in yeast, which, given the recent discovery of Nem1-Spo7 orthologous proteins in humans, may
be conserved.
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Introduction

Phosphatidate (PA) is a central precursor for membrane

phospholipid biosynthesis that also plays regulatory roles in overall

lipid metabolism in eukaryotic cells [1,2]. Evolutionarily conserved

PA phosphatases (PAPs) coined lipins dephosphorylate PA to

produce diacylglycerol (DAG), which then can be channeled into

the synthesis of phospholipids, or be acylated to triacylglycerol

(TAG), a major form of fat that is deposited in specialized

endoplasmatic reticulum (ER) -derived subcellular structures

termed lipid droplets [1,2,3,4,5]. Underscoring the importance

of lipins in this latter process, mutation of mouse lipin-1 causes a

near complete absence of TAGs in white adipose tissue and defects

in adipocyte differentiation, both common signs of lipodystrophy,

while overexpression of mouse lipin-1 promotes obesity [6,7,8].

Reminiscent of this phenotype in higher eukaryotes, loss of the

single yeast lipin ortholog Pah1 causes, in addition to an overall

deregulation of lipid metabolism, a dramatic defect in TAG

accumulation when cells are grown to stationary phase

[9,10,11,12]. Of note, mammalian and yeast lipins play additional

roles in transcriptional modulation of phospholipid biosynthesis

genes and may therefore also indirectly contribute to the observed

defects in TAG accumulation [13,14].

Control of lipin function is a tightly regulated process, which

depends on the phosphorylation/dephosphorylation of specific

residues within lipins that dictate their subcellular localization

and/or activity [14]. Pah1, for instance, is phosphorylated at 5

serine residues by the glucose-responsive protein kinase A (PKA),

as well as by the cyclin-dependent protein kinase (CDK) Cdc28

and the phosphate-responsive Pho80-Pho85 cyclin-CDK, which

collectively (with overlapping specificities) target an additional set

of 7 serine/threonine residues [15,16,17,18,19,20]. Combined,

these phosphorylation events serve to inhibit membrane associa-

tion and activation of Pah1 and consequently prevent TAG

synthesis in cells that proliferate on nutrient rich media [21].

Downregulation of these protein kinases following nutrient

starvation, e.g. in cells entering stationary phase [9,11,22],

contributes to the activation of Pah1-driven TAG synthesis. In

parallel, Pah1 activation requires the nuclear/ER membrane-

associated protein phosphatase Nem1 and its regulatory subunit

Spo7, which bind to the acidic carboxy-terminal tail in Pah1 and

appear to target most, if not all, of its phosphorylated residues

[13,15,20,23,24]. Nem1-Spo7-mediated dephosphorylation of

Pah1, in addition to favoring its membrane association via a N-

terminal amphipathic helix, activates the catalytic efficiency of

Pah1 and simultaneously primes it for proteasome-dependent

degradation [13,20,24,25,26]. Dephosphorylated Pah1 is therefore

both active and particularly unstable, which likely reflects a

physiological constraint that requires cells to prevent excess

drainage of PA into the synthesis of TAG [21]. Whether the

function of the Nem1-Spo7 module is regulated by posttransla-

tional mechanisms is currently not known.

PLOS ONE | www.plosone.org 1 August 2014 | Volume 9 | Issue 8 | e104194

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0104194&domain=pdf


The evolutionarily conserved target of rapamycin complex 1

(TORC1) is at the core of a signaling pathway that controls growth

related processes such as protein, lipid, and nucleotide metabolism

in response to diverse signals including growth hormones (insulin/

IGF), energy/ATP levels, and amino acids [27,28]. Deregulation

of TORC1 is associated with various pathological conditions in

humans including cancer, obesity, type 2 diabetes and neurode-

generation [29]. Among other substrates (e.g., S6 kinase, 4E-

binding protein, TFEB, and ULK1), the essential serine/threonine

protein kinase within mammalian TORC1 also directly phos-

phorylates, and thereby inhibits the function of lipin-1

[30,31,32,33,34]. Whether TORC1-mediated control of lipin

function represents an ancestral mechanism that regulates TAG

accumulation remains to be determined. Here, we show that

TORC1 inhibition in yeast induces dephosphorylation and

activation of Pah1, which is accompanied by Pah1-dependent

accumulation of TAG. Moreover, we demonstrate that all of these

processes depend on the presence of the Nem1-Spo7 module and

that TORC1 specifically regulates the phosphorylation status of

Ser195 within Nem1 to properly regulate Pah1.

Materials and Methods

Strains, Plasmids, and Growth Conditions
Yeast cells were pre-grown overnight at 30uC in standard rich

medium with 2% glucose (YPD) or synthetic defined (SD) medium

with 2% glucose and supplemented with the appropriate amino

acids for maintenance of plasmids. Prior to the experiments, cells

were diluted to an OD600 of 0.1 in YPD and grown until they

reached an OD600 of 0.6–0.8. Rapamycin was dissolved in 10%

Tween-20/90% ethanol and used at a final concentration of

200 ng ml21. Strains and plasmids used in this study are listed in

Tables 1 and 2, respectively. All tagged proteins studied were

functional and expressed from their own promoter except in the

case of Nem1-PtA and Spo7-myc13 (used for phosphopeptide

analyses by mass spectrometry [MS]), which were expressed under

the control of the galactose-inducible GAL1 promoter. For

galactose induction of the expression of the respective genes, cells

were pre-grown on SD medium with 2% raffinose and 0.1%

sucrose, diluted to an OD600 of 0.1 with the same medium, and

grown for 3 h in the presence of 2% galactose.

Protein Analyses
Total protein extracts were prepared as previously described

[35]. SDS-PAGE and immunoblot analyses were performed

according to standard protocols. For the analysis of protein

phosphorylation states, we used the previously described method

for Phos-tag acrylamide gel electrophoresis [36]. Mouse anti-HA

(12CA5) antibodies and purified IgG from rabbit serum (Sigma)

were used at concentrations of 1 mg ml21. Mouse anti-phospho-

glycerate kinase 1 antibodies (Invitrogen) and rabbit anti-Adh1

antibodies were used at dilutions of 1:5000 and 1:200000,

respectively. Horseradish peroxidase-conjugated goat anti-

mouse/anti-rabbit antibodies (Biorad) or goat anti-mouse/mouse

anti-rabbit IgG light chain specific antibodies (Jackson Immunor-

esearch) were used at a 1:5000 dilution.

Protein A Pulldown and Two-Hybrid Experiments
Exponentially growing cells treated, or not, with rapamycin and

expressing the indicated Protein A (PtA) fusion proteins were

harvested at 4uC by centrifugation, washed once with H2O and

resuspended in lysis buffer (150 mM KCl, 20 mM Tris HCl

pH 8.0, 5 mM MgCl2, 1% Triton X-100, 1 mM PMSF, 1x

EDTA free protease inhibitor cocktail [Roche], and 1x PhosSTOP

phosphatase inhibitor cocktail [Roche]) and frozen in liquid

nitrogen. Lysates were prepared by disruption of frozen cells with

glass beads (0.5 mm diameter) using a Precellys cell disruptor and

subsequent clarification by centrifugation (5 min at 14000 rpm;

4uC). Protein concentrations in lysates were determined by the

method of Bradford [37]. Cleared lysates were incubated with

prewashed IgG sepharose beads (GE Healthcare) for 2 h at 4uC
and washed 3 times with 5 volumes of lysis buffer. Immunopre-

cipitates were resuspended in 26 Laemmli buffer, denatured for

10 min at 65uC, and used for SDS-PAGE and immunoblot

analyses. The split-ubiquitin membrane based two-hybrid system

was used essentially as described [38].

In vitro Dephosphorylation of Nem1
In vitro dephosphorylation of Nem1 was performed after

immunoprecipitation of Nem1-PtA from yeast cell extracts. Cells

(50 OD600) were treated with 6% TCA and disrupted with glass

beads in 500 ml urea Buffer (50 mM Tris HCl pH 7.5, 5 mM

EDTA, 6 M urea, and 1% SDS, 1x PhosSTOP phosphatase

inhibitor cocktail and 1x EDTA free protease inhibitor cocktail.

Cell extracts were then diluted in 4 ml lysis buffer and

immunoprecipitation was performed as described above. Samples

were then washed 3 times with lysis buffer and resupended in

100 ml of FastAP buffer (10 mM Tris HCl pH 8.0, 0.1 M KCl,

0.02% Triton X-100, 0.1 mg/ml BSA, 5 mM MgCl2, and 1x

protease inhibitor cocktail) containing, or not, 5 units of FastAP

phosphatase (Fermentas) with or without phosphatase inhibitor

cocktail. Reactions were incubated for 30 min at 37uC and

terminated by addition of 2x SDS-PAGE loading buffer. After

10 min at 65uC, the samples were resolved by phosphate affinity

SDS-PAGE on Phos-tag gels and immunoblotted with anti-IgG

antibodies.

Identification of Nem1 Phosphopeptides by Mass
Spectrometry

To identify phosphorylation sites in Nem1, overexpressed

Nem1-PtA was purified from nem1D spo7D double mutants

overexpressing Spo7-myc13. Cells were grown exponentially on

galactose-containing medium and then subjected, or not, to a 60-

min rapamycin treatment. Following affinity purification, Nem1-

PtA was separated by SDS-PAGE and the band corresponding to

Nem1-PtA was excised and digested with trypsin and chymotryp-

sin. Phosphopeptides were enriched via an affinity step on TiO2

micro-columns. To identify phosphorylated peptides, the eluates

from the TiO2 columns were analyzed by nano-LC-MS/MS.

Lipid Labeling
In vivo TAG synthesis was monitored by labeling the neutral

lipid pool with radioactively labeled palmitic acid (10 mCi ml21

[9,10-3H]palmitic acid; American Radiolabeled Chemicals) that

was added to exponentially growing cells just prior to their

treatment with rapamycin or vehicle for 90 min. Cells (15 OD600)

were collected and lipids were extracted with chloroform/

methanol (1:1), separated by thin-layer chromatography (TLC)

on silica gel 60 plates (Merck, Darmstadt, Germany), developed in

petroleum-ether/diethyl-ether/acetic acid (70:30:2), and quanti-

fied using a Berthold Tracemaster 20 Automatic TLC-Linear

Analyzer (Berthold Technologies, Bad Wildbach, Germany).

Enzymatic measurement of [DAG+TAG] levels
Cells (30–50 OD600) growing exponentially on YPD medium

were treated with rapamycin or vehicle, harvested by centrifuga-

tion at 4uC, washed once with H2O, resupended in 300 ml of
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Table 1. Strains Used in This Study.

Strain Genotype Source Figure

BY4742 MATa; his3D1, leu2D0, ura3D0, lys2D0 Euroscarf 1A–D, 4A

ED19-4B MATa; his3D1, leu2D0, ura3D0, pah1D::kanMX4 This study 1A/B/D

ED28-9A [BY4742] nem1D::kanMX4 This study 1A/B, 3A–C, 4B

ED29-1A [BY4742] spo7D::kanMX4 This study 1A

YOR245C [BY4742] dga1D::kanMX4 Euroscarf 1A

YNR008W [BY4742] lro1D::kanMX4 Euroscarf 1A

RSY3290 [BY4742] dga1D, lro1D::kanMX4 This study 1A

ED65-1C MATa; his3D1, leu2D0, ura3D0, app1D::HIS3MX6, lpp1D:: kanMX4, dpp1D::kanMX4 This study 1C/D

ED67-5C [ED65-1C] nem1D::kanMX4 This study 1C/D

ED2545 [BY4742] PAH1-HA3::kanMX4 This study 1E, 2A/C

ED41-8B MATa; his3D1, leu2D0, ura3D0, nem1D::kanMX4, PAH1-HA3::kanMX4 This study 1E, 2A/C/D, 4C/D

ED36-11C [BY4742] nem1D::kanMX4, spo7D::kanMX4, PAH1-HA3::kanMX4 This study 2B–D

ED36-5D [BY4742] nem1D::kanMX4, spo7D::kanMX4 This study MS analyses

NMY51 MATa; his3D200, trp1-901, leu2-3,112, ade2, LYS::(lexAop)4-HIS3, ura3::(lexAop)8-lacZ,
ade2::(lexAop)8-ADE2, GAL4

Dual-systems 2E

doi:10.1371/journal.pone.0104194.t001

Table 2. Plasmids Used in This Study.

Plasmid Genotype Source Figure

YCplac111 CEN/ARS, LEU2 [54] 2C/D

YCplac33 CEN/ARS, URA3 [54]

pRS416 CEN/ARS, URA3 [55]

pRS415 CEN/ARS, LEU2 [55] 4C/D

pSB2235 [YCplac111] NEM1-HA3 This study 2B/D, 3A/B, 4A/B

pED2321 [YCplac111] DGA1-PtA This study 2A

p2202 [YCplac111] NEM1-PtA [13] 2A/C, 3C, 4C/D

pED2378 [YCplac111] NEM1S195A-PtA This study 4C/D

pSB2411 [YCplac111] GAL1p-SPO7-myc13 This study MS analyses

pSB2413 [pRS416] GAL1p-NEM1-PtA This study MS analyses

pED2342 [YCplac33] SPO7-PtA This study 2B/D

pED2520 [YCplac33] DGA1-PtA This study 2D

pPR3-N 2m, NUBG-HA, TRP1 Dualsystems

pCab CEN, CUB-LEXA, LEU2 Dualsystems

pMJA2383 [pPR3-N] NUBG-HA-SPO7 This study 2E

pMJA2381 [pPR3-N] NUBG-HA-NEM1 This study 2E

pMJA1854 [pCab] MON1-CUB-LEXA This study 2E

pMJA2379 [pCab] NEM1-CUB-LEXA This study 2E

pMJA2387 [pCab] SPO7-CUB-LEXA This study 2E

pMJA2389 [pCab] PAH1-CUB-LEXA This study 2E

pSB2364 [YCplac111] NEM1S195A-HA3 This study 4B

pSB2353 [YCplac111] NEM11-249-HA3 This study 4A

pSB2586 [YCplac111] NEM188-446-HA3 This study 4A

pSB2587 [YCplac111] NEM1147-446-HA3 This study 4A

pSB2588 [YCplac111] NEM1199-446-HA3 This study 4A

pSB2585 [YCplac111] NEM1250-446-HA3 This study 4A

doi:10.1371/journal.pone.0104194.t002
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extraction buffer (50 mM Tris HCl pH 7.5, 0.3% Triton X-100),

and lysed with glass beads using a Precellys cell disruptor. The

total lysates were clarified by centrifugation (5 min at 5000 rpm)

and lipids were extracted from these lysates [39]. The MBL

Triglyceride Quantification Kit (JM-K622-100) was used to

quantify the [DAG+TAG] levels after resuspension of the dried

lipid extracts in the assay buffer provided with the kit.

Phosphatidate phosphatase activity assay
PAP activity was determined in cell lysates by measuring the

formation of fluorescent DAG from NBD-PA (1-acyl-2-{12-

[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl}-sn-glycero-

3-phosphate ammonium salt) (AvantiH Polar lipids, Inc). Protein

lysates were essentially obtained as described in the Protein A

pulldown section, except that the buffer used was 50 mM Tris

HCl pH 8.0, 0.5 mM PMSF, 10 mM b-mercaptoethanol, 1x

EDTA free protease inhibitor cocktail, and 1x PhosSTOP

phosphatase inhibitor cocktail, and lysates were clarified by

centrifugation for 5 min at 1600 rpm. Reactions (100 ml; 80 mg of

total protein extract) were carried out in buffer containing 50 mM

Tris HCl pH 8.0, 1 mM MgCl2 or 4 mM EDTA, and 10 mM b-

mercaptoethanol, and started by the addition of NBD-PA (2 mM)

solubilized in 10 mM Triton X-100. The reactions were

incubated for 15 min at 30uC and terminated by the addition

of 0.5 ml of 0.1 M HCl (in methanol). Following addition of 1 ml

chloroform and 1 ml of 1 M MgCl2 and centrifugation (1000 rpm

for 10 min at room temperature), the chloroform-soluble lipid

fractions were isolated and dried under nitrogen as described [40].

Lipids were resuspended in chloroform/methanol (1:1), deposited

on silica gel 60 plates (Merck) and separated by TLC using

chloroform/methanol/H2O (62:25:4) as a solvent system [41].

NBD-DAG production was determined by recording fluorescence

with a Typhoon FLA 9500 device (excitation 473 nm; Filter

BPB1, centered at 530 nm; width 20 nm) and quantified with the

ImageQuantTLsoftware (GE Healthcare).

Results and Discussion

TORC1 inhibition activates Pah1 phosphatidate
phosphatase via the Nem1-Spo7 protein phosphatase
module

To address the question whether TORC1 regulates TAG

synthesis in yeast, we treated wild-type and various mutant cells

with rapamycin and assessed the in vivo incorporation of

[3H]palmitic acid into TAG. TORC1 inhibition resulted in a

significant (.5 fold) increase of TAG levels in wild-type, but not in

pah1D cells (Fig. 1A and 1B). Interestingly, rapamycin-induced

TAG synthesis further required the acyl-CoA:diacylglycerol

acyltransferase Dga1, which forms TAG from acyl-CoA and

DAG [42], but not the phospholipid:diacylglycerol acyltransferase

Figure 1. TORC1 inhibition activates Pah1 phosphatidate phosphatase via the Nem1-Spo7 protein phosphatase module. (A)
Incorporation of radioactively labeled palmitic acid into triacylglycerol (TAG) was monitored in exponentially growing (EXP) and rapamycin-treated
(RAP; 90 min) cells. Relevant genotypes of strains are indicated (WT, wild type). (B) Representative TLC plate showing radioactively-labeled, separated
lipid samples from the experiment in (A) that were extracted from exponentially growing (RAP; 2) and rapamycin-treated (RAP; +) WT, pah1D, and
nem1D strains. STE, steryl esters; FFA, free fatty acids; DAG, diacylglycerol; MAG, monoacylglycerol; PL, phospholipids. (C) The combined levels of DAG
and TAG were determined in rapamycin-treated (4 h) cells using a commercially available enzymatic kit and expressed in each case relative to the
respective levels in exponentially growing cells. (D) Relative PAP activity in exponentially growing (EXP) and rapamycin-treated (RAP; 30 min and
60 min) cells. Results are presented as relative activities compared to the activity in exponentially growing app1D dpp1D lpp1D cells (defined as 1.0),
which express Pah1 as only source of PAP activity [44]. Assays carried out in the presence of EDTA are indicated (+ EDTA). (E) Phos-tag phosphate-
affinity gel electrophoresis and SDS-PAGE analyses of endogenously tagged Pah1-HA3 in exponentially growing WT and nem1D cells treated with
rapamycin (RAP) for the indicated times. The levels of Pgk1 served as loading controls. In Figures 1A, 1C, and 1D, each bar represents the mean 6 SD
of three experiments.
doi:10.1371/journal.pone.0104194.g001
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Lro1 [43], which forms TAG via transesterification of fatty acids

from phospholipids to DAG (Fig. 1A). An independent enzymatic

assay confirmed that TORC1 inhibition resulted in roughly a 3.5-

fold increase of the cellular levels of DAG and TAG combined,

and that this increase depended mainly on Pah1, but not on any of

the three other known PAP enzymes in yeast (i.e. App1, Dpp1,

and Lpp1; Fig. 1C) [9,44,45,46,47]. In line with these data, the

relative PAP activity of Pah1 increased more than 2-fold in app1D
dpp1D lpp1D cells after a 1-h rapamycin treatment, while the

basal PAP activity in pah1D cells provided by App1, Dpp1, and

Lpp1 combined remained unaffected by the same treatment

(Fig. 1D). Importantly, the addition of EDTA, which chelates the

Figure 2. TORC1 has little impact on the interaction between Pah1 and the Nem1-Spo7 module. (A) Biochemical interaction between
Nem1 and Pah1. Plasmid-encoded Dga1-PtA or Nem1-PtA was immunoprecipitated from extracts of Pah1-HA3-expressing wild-type (lane 1) or
nem1D cells (lanes 2–4), respectively, that were either grown exponentially (0 min) or treated with rapamycin (RAP) for the indicated times. Lysates
(Input) and immunoprecipitates (PtA-Pulldown) were subjected to SDS-PAGE and immunoblots were probed with anti-HA or anti-IgG antibodies. WT
and D denote wild-type and deleted version of NEM1, respectively. Numbers below the PtA-Pulldown blots indicate the relative amount of Pah1-HA3

that bound to and was pulled down with Nem1-PtA (normalized to the samples of exponentially growing cells). (B) Biochemical interaction between
Spo7 and Nem1/Pah1. Plasmid-encoded Spo7-PtA was immunoprecipitated from extracts of untreated (0 min) and rapamycin-treated (RAP; 30 min)
nem1D spo7D PAH1-HA3 cells that coexpressed plasmid-encoded Nem1-HA3. For details see (A). (C) The interaction between Nem1 and Pah1 requires
Spo7. Plasmid-encoded Nem1-PtA was immunoprecipitated from extracts of exponentially growing, Pah1-HA3-expressing nem1D (lane 2) or nem1D
spo7D (lane 3) cells. Pah1-HA3-expressing wild-type cells were used as control (lane 1). Please note that loss of Spo7 consistently resulted in decreased
levels of Nem1. For details see (A). WT and D denote wild-type and deleted version(s), respectively, of the indicated gene(s). (D) The interaction
between Spo7 and Pah1 does not require Nem1. Plasmid-encoded Dga1-PtA or Spo7-PtA was immunoprecipitated from extracts of exponentially
growing, Pah1-HA3-expressing nem1D (lane 1) or nem1D spo7D (lanes 2 and 3) cells, which coexpressed, or not, plasmid-encoded Nem1-HA3. Please
note that our anti-HA antibodies weakly cross-react with proteins that are present in cell lysates (indicated by the asterisk), but absent in the PtA-
pulldown fractions. For details see (A). WT and D denote wild-type and deleted version(s), respectively, of the indicated gene(s). (E) Spo7 specifically
interacts with both Nem1 and Pah1, while Nem1 only interacts with Spo7, but not with Pah1, when assayed in a split-ubiquitin membrane-based
yeast two-hybrid assay. Interactions were tested by monitoring either growth on plates lacking adenine (-Ade), or b-galactosidase activities (in Miller
units; numbers on the right of the panels represent the means of three independent experiments performed with exponentially growing cells) of cells
expressing the indicated combinations of NubG-Spo7 or NubG-Nem1 and Nem1-Cub, Pah1-Cub, Spo7-Cub, or Mon1-Cub (control).
doi:10.1371/journal.pone.0104194.g002
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Mg2+ required for Pah1 activity [9,12], abolished Pah1 activation

in app1D dpp1D lpp1D cells following rapamycin treatment

(Fig. 1D). Together, these data show that inactivation of TORC1

results in activation of Pah1 activity and Dga1-dependent

channeling of DAG into TAG.

Consistent with a suggested role for the Nem1-Spo7 protein

phosphatase in Pah1 activation in cells approaching stationary

phase [15,20,21], our analyses revealed that Nem1 was required

for the activation of Pah1 in rapamycin-treated app1D dpp1D
lpp1D cells (Fig. 1D). Consequently, loss of Nem1 (or of Spo7)

rendered cells unable to synthesize and accumulate TAGs when

treated with rapamycin (Fig. 1A, 1B, and 1C). Notably, as seen in

cells approaching stationary phase [15], in rapamycin-treated

wild-type cells activation of Pah1 correlated with both its

dephosphorylation (as visualized on Phos-tag phosphate affinity

gel electrophoresis) and degradation (Fig. 1E). Loss of Nem1,

however, prevented the dephosphorylation, activation, and

degradation of Pah1 under the same conditions (Fig. 1D and 1E).

TORC1 moderately impacts on the interaction between
Pah1 and the Nem1-Spo7 module

Based on these results, we considered it possible that Nem1-

Spo7, rather than acting as a passive module that counteracts the

activities of various protein kinases (e.g., Cdc28, Pho80-Pho85,

and PKA), may in fact be part of a specific TORC1-controlled

regulatory signaling branch. To address this issue experimentally,

we analyzed the predicted in vivo interactions between Nem1-

Spo7 and Pah1 using classical co-immunoprecipitation (co-IP)

assays in exponentially growing and rapamycin-treated cells.

Nem1-PtA, but not a control protein (Dga1-PtA), interacted with

HA3-tagged Pah1 (Fig. 2A; and data not shown). Rapamycin

treatment caused a slight increase of the Nem1-PtA protein levels

and moderately enhanced the relative amount of Pah1-HA3 that

was co-IPed with Nem1-PtA (i.e. 1.55-fold after a 30-min

rapamycin treatment; SD 60.29; n = 4; Fig. 2A). In parallel

experiments, Nem1-HA3 and Pah1-HA3 also robustly co-IPed

with Spo7-PtA in both exponentially growing and rapamycin-

treated cells (Fig. 2B). From these results, we infer (i) that the

Nem1-Spo7 module constitutively binds a fraction of Pah1, which

is also in line with a previous report that implicated the Pah1

carboxy-terminal acidic domain in mediating the interaction with

Nem1-Spo7 in exponentially growing cells [48], and (ii) that

TORC1 does not play a major role in controlling the protein-

protein interactions among Nem1, Spo7, and Pah1. Interestingly,

in this context, we further observed that the Nem1-Pah1

interaction (in both exponentially growing and rapamycin-treated

cells) was entirely dependent on the presence of Spo7 (Fig. 2C; and

data not shown), while the Spo7-Pah1 interaction did not require

Nem1 (Fig. 2D; and data not shown). Thus, Nem1 binds and

targets Pah1 indirectly via Spo7. In further support of this

conclusion, Spo7 interacted with both Nem1 and Pah1, while

Nem1 only interacted with Spo7, but not with Pah1, when

examined in a split-ubiquitin, membrane-based two hybrid assay

(Fig. 2E). These findings therefore also provide a rationale for our

observation that loss of Spo7 phenocopies the loss of Nem1 with

respect to the defect in rapamycin-induced TAG synthesis

(Fig. 1A).

TORC1 inhibits Pah1 function in part by controlling the
phosphorylation status of Ser195 in Nem1

To address the possibility that TORC1 may control the

function of the Nem1-Spo7 module via posttranslational modifi-

cation(s), we analyzed the potential phosphorylation patterns of

Nem1 and Spo7 in exponentially growing and rapamycin-treated

cells using Phos-tag phosphate affinity gel electrophoresis. When

extracted from exponentially growing or rapamycin-treated cells,

Nem1-HA3 migrated as a single band following analysis by

standard SDS PAGE (Fig. 3A). Phos-tag phosphate affinity gel

electrophoresis, in contrast, revealed two major Nem1-HA3 (or

Nem1-PtA) isoforms (labeled P0 and P1) in extracts from

exponentially growing cells and an additional third major isoform

in extracts from rapamycin-treated cells (labeled P2; Fig. 3B and

3C; and data not shown). Alkaline phosphatase (AP) treatment of

purified Nem1-PtA from exponentially growing or rapamycin-

treated cells converted the Nem1-PtA P1 or P1/P2 isoforms,

respectively, to the P0 isoform, unless protein phosphatase

inhibitor cocktail (PPI) was added prior to the addition of AP

(Fig. 3C). Thus, Nem1 appears to harbor at least one amino acid

residue that is constitutively phosphorylated and one residue that is

specifically phosphorylated following TORC1 inactivation. Since

similar analyses with Spo7 did not readily reveal any potential

phosphorylation events (data not shown), we focused our studies

on the identification of the two amino acid residues in Nem1 that

we assumed are phosphorylated in vivo. Using a combination of

MS and tandem MS (TMS) analyses on Nem1-PtA samples that

had been purified from exponentially growing and rapamycin-

treated cells, we identified several serines (at positions 51, 140, 143,

150, 151, 157, 158, 208, 210, and 212) that are potentially

phosphorylated. None of these serine residues, however, appeared

to be differentially phosphorylated between the samples subjected

to MS-TMS analyses and only Ser210, which has already

previously been identified [49], received a high confidence

phosphorylation score.

To identify the TORC1-controlled residue in Nem1 that

appears to have escaped detection by our MS analyses, we

analyzed the phosphorylation pattern of a series of truncated forms

of Nem1-HA3 in exponentially growing and rapamycin-treated

cells. Only Nem1-HA3 variants containing amino acids 147 to 199

of Nem1 displayed on Phos-tag gels the additional rapamycin-

induced isoform that seemed to correspond to the P2 isoform

Figure 3. TORC1 antagonizes Nem1 phosphorylation. (A, B) SDS-
PAGE (A) and Phos-tag phosphate-affinity gel electrophoresis (B)
analyses of plasmid-encoded Nem1-HA3 in exponentially growing
nem1D cells treated with rapamycin (RAP) for the indicated times.
The levels of Pgk1 served as loading controls in (A). (C) Phosphorylation
pattern analysis of Nem1-PtA on Phos-tag gels. Plasmid-encoded Nem1-
PtA was purified from exponentially growing (EXP) and rapamycin-
treated (RAP; 30 min) nem1D cells and treated with (+), or without (2),
alkaline phosphatase (AP) in the absence (2), or presence (+), of
phosphatase inhibitors (PPI). P0, P1, and P2 (in B and C) denote 3
differentially phosphorylated Nem1-HA3 or Nem1-PtA isoforms.
doi:10.1371/journal.pone.0104194.g003
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observed with full-length Nem1-HA3 (Fig. 4A). Individual muta-

tions of the Ser/Thr residues to Ala within this domain allowed us

to pinpoint Ser195, which, when mutated to Ala, specifically

prevented the formation of the rapamycin-induced P2 isoform of

the respective Nem1S195A-HA3 variant (Fig. 4B). Interestingly, the

remaining P1 isoform displayed by Nem1Ser195-HA3, whether it

was extracted from exponentially growing or from rapamycin-

treated cells, further collapsed into one single P0 isoform when also

Ser210 was mutated to Ala (Fig. 4A; and data not shown). A

fraction of Nem1-HA3 is therefore constitutively phosphorylated at

Ser210, while the phosphorylation of Ser195 specifically requires

downregulation of TORC1.

To assess whether the phosphorylation of Ser195 in Nem1 is

functionally relevant for Pah1 activation and subsequent TAG

accumulation, we first measured TAG accumulation in rapamy-

cin-treated nem1D cells expressing plasmid-encoded, PtA-tagged

Figure 4. TORC1 inhibits Pah1 function in part by preventing phosphorylation of Ser195 in Nem1. (A) Phos-tag phosphate-affinity gel
electrophoresis analysis of full length and schematically indicated truncated, plasmid-encoded Nem1-HA3 variants in exponentially growing (RAP;
0 min) and rapamycin-treated (RAP; 30 min) wild-type cells. The two dark grey boxes in the N-terminal region denote membrane-spanning regions
and the black stripe within the highly conserved C-terminal domain (grey box) indicates the position of the Nem1 catalytic site. (B) Phos-tag
phosphate-affinity gel electrophoresis analysis of plasmid-encoded Nem1-HA3 and Nem1S195A-HA3 in exponentially growing (RAP; 0 min) and
rapamycin-treated (RAP; 30 min) nem1D cells. P0, P1, and P2 denote 3 differentially phosphorylated full-length (in [A] and [B]) or truncated (in [A])
Nem1-HA3 isoforms. (C) Incorporation of radioactively labeled palmitic acid into triacylglycerol (TAG) was monitored in exponentially growing (EXP)
and rapamycin-treated (RAP; 90 min) nem1D PAH1-HA3 cells that carried either an empty plasmid or a plasmid allowing the expression of PtA-tagged
Nem1 or Nem1S195A. Relevant genotypes of strains are indicated. (D) SDS-PAGE analysis of endogenously tagged Pah1-HA3 from nem1D cells
coexpressing, or not, plasmid-encoded PtA-tagged Nem1 or Nem1S195A. Cells were either grown exponentially (RAP; 0 min) or treated with
rapamycin (RAP) for the times indicated. Pah1-HA3 levels were quantified, normalized with respect to the Adh1 loading control, and expressed in
percent relative to the value at time point 0 (see numbers below the panels). Numbers represent means 6 SD of three experiments. Relevant
genotypes of strains are indicated. (E) Model for the role of TORC1 in controlling TAG synthesis in yeast. TORC1 indirectly regulates (dashed bar) the
phosphorylation status of Ser195 (and potentially other residues; indicated by the dashed arrow and the question mark) in Nem1 by activating or
inhibiting hitherto unknown protein phosphatase(s) or kinase(s), respectively. Arrows and bars denote positive and negative interactions,
respectively. For details, see text.
doi:10.1371/journal.pone.0104194.g004
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Nem1 or Nem1S195A. In these experiments, TAG levels were on

average slightly reduced in rapamycin-treated Nem1S195A-express-

ing cells when compared to Nem1 expressing cells (Fig. 4C). In

these in vivo assays, however, it is possible that potentially more

significant effects of the nem1S195A allele on TAG levels were

masked by the activities of TAG lipases (e.g., Tgl3, Tgl4, or Tgl5),

which may also be implicated in homeostatic control of TAG

levels in rapamycin-treated cells. To further assess the functional

relevance of Ser195 in Nem1, we therefore also measured the

kinetics of Pah1 degradation in rapamycin-treated cells, which is a

sensitive proxy for the in vivo function of Nem1 (Fig. 1E). In this

assay, expression of Nem1S195A significantly compromised,

although not as strongly as loss of Nem1, the degradation of

Pah1 (Fig. 4D). Notably, Nem1S195A/S210A-HA3 and Nem1S195A-

HA3 expression similarly abrogated Pah1 degradation in rapamy-

cin-treated cells, which indicates that Ser210 phosphorylation is not

part of a TORC1-controlled mechanism (data not shown). In sum,

we infer from our current results that TORC1 restrains Nem1

function in part by favoring the dephosphorylated state of Ser195 in

Nem1 as well as in part by still elusive mechanisms, which may

formally also implicate additional phosphorylation sites within

Nem1 (or Spo7) that have escaped our current analyses (Fig. 4E).

Our data therefore identify the Nem1-Spo7 module as an element

of a hitherto unknown TORC1 effector branch controlling lipin

function in yeast and highlight that the function of the Nem1-Spo7

module, like the one of the respective counterbalancing protein

kinases, is fine-tuned by regulatory processes.

Like Pah1, lipin-1 is specifically dephosphorylated by the

human Nem1 orthologous C-Terminal Domain Nuclear Envelope

Phosphatase 1 (CTDNEP1; aka dullard) [50,51]. Moreover,

CTDNEP1 also functions within a heterodimer together with

the recently identified metazoan Spo7 orthologous Nuclear

Envelope Phosphatase 1-Regulatory Subunit 1 (NEP1-R1; aka

TMEM188) to activate lipin-1 [52]. It will therefore be interesting

to evaluate whether the CTDNEP1-NEP1-R1 heterodimer may

also control lipin-1 function in response to TORC1 in higher

eukaryotes. Such insight may prove valuable for our understand-

ing of diseases that are associated with deregulated lipin-1 function

such as lipodystrophy, peripheral neuropathy, and insulin

resistance in mice, or recurrent osteomyelitis and rhabdomyolysis

in humans [8,53].
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