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Gai Z, Chu L, Hiller C, Arsenijevic D, Penno CA, Montani J,
Odermatt A, Kullak-Ublick GA. Effect of chronic renal failure on
the hepatic, intestinal, and renal expression of bile acid transporters.
Am J Physiol Renal Physiol 306: F130–F137, 2014. First published
November 6, 2013; doi:10.1152/ajprenal.00114.2013.—Although the
kidney is believed to play a minor role in bile acid (BA) excretion,
chronic renal failure (CRF) has been reported to be associated with
increased serum bile acid levels and alterations in BA homeostasis.
The mechanisms for elevated BA levels are poorly understood in both
clinical and experimental studies. This study was designed to examine
the effects of naturally progressing CRF of longer duration on the
hepatic and renal mRNA and protein levels of the BA-synthesizing
enzyme Cyp7a1 and the BA transporters Ntcp, Bsep, Mrp3, Ost-�,
and Ost-�. Sprague-Dawley rats were randomized to the CRF group
(5⁄6 nephrectomy) or to the sham-operated control group and were
analyzed 8 wk after surgery. Results obtained in the CRF rats were
compared with those obtained in rats that had undergone uninephrec-
tomy (UNX). The CRF group exhibited significantly increased plasma
cholesterol and BA concentrations. Hepatic Cyp7a1 mRNA and
protein levels were almost identical in the two groups. Hepatic Mrp3,
Ost-�, and Ost-� expression was increased, suggesting increased
basolateral efflux of bile acids into the blood. However, no such
changes in BA transporter expression were observed in the remnant
kidney. In UNX rats, similar changes in plasma BA levels and in the
expression of BA transporters were found. We hypothesize that the
increase in plasma BA is an early event in the progression of CRF and
is caused by increased efflux across the basolateral hepatocyte mem-
brane.
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THE KIDNEY IS ONE OF THE MAJOR organs involved in whole-body
homeostasis, with its major functions being the excretion of
waste metabolites, regulation of blood pressure and lipid me-
tabolism, secretion and degradation of hormones, and the
production and utilization of systemic glucose (16, 22, 30). It
is well known that chronic renal impairment is further com-
plicated by high blood pressure (3), deranged carbohydrate
metabolism (21), and dyslipidemia (5). Moreover, chronic
renal failure (CRF) has been reported to be associated with
increased serum bile acid levels and alterations in the bile acid
balance (14).

Primary bile acids are synthesized from cholesterol by hepa-
tocytes (12, 36). They are secreted into bile and play important
roles in the emulsion, digestion, and absorption of dietary fat
and liposoluble vitamins. Except for a small fraction of bile
acids constituting �5% of the whole pool that is lost every day
in the feces, the remaining bile acids that reach the intestine are
actively reabsorbed toward the portal blood, mainly by the
ileum (39). The flux of bile acid molecules through hepato-
cytes plays an important role in controlling, at the transcrip-
tional level, the rate of metabolic pathways responsible for
de novo biosynthesis of the additional bile acids necessary
to compensate for fecal loss (25). Although it has tradition-
ally been thought that filtration, reabsorption, and secretion
by the kidney play a minor role in bile acid homeostasis in
healthy humans, urinary output of sulfated bile acids be-
comes an important excretion route under cholestatic con-
ditions (9, 37).

Several studies have reported that hepatic Cyp7a1 activity,
the rate-limiting enzyme in bile acid synthesis, is virtually
identical in rats with CRF and normal control animals (19, 34).
Moreover, an unchanged rate of bile acid production was also
demonstrated (19, 26), indicating normal hepatic de novo
synthesis of bile acids in CRF. However, these studies did not
evaluate expression of bile acid transporters. Thus, they could
not explain the occurrence of elevated serum bile acid levels in
CRF. The present study was therefore undertaken to determine
the mechanism underlying the increased bile acid levels in
CRF. The expression of hepatic Cyp7a1 and of both hepatic
and renal bile salt transporters (e.g., Ntcp, Slco1a1, Bsep,
Mrp3, Mrp4, Ost-� and Ost-�) was compared in CRF and
sham-operated control animals (with free access to regular rat
chow). Furthermore, an additional uninephrectomized rat
group was examined to study the impact of renal function on
bile acid metabolism and transport.

METHODS

Animal models. Male Sprague-Dawley rats weighing 180–200 g
were randomly assigned to the CRF and sham-operated normal
control groups. Another group of male Sprague-Dawley rats weighing
180–200 g were randomly assigned to the UNX or sham-operated
normal control groups. Rats from each group were housed in a
climate-controlled, light-regulated facility with a 12:12-h day-night
cycle. The animals were fed regular rat chow and received water ad
libitum. The animals assigned to the renal surgery groups underwent
a 5⁄6 nephrectomy or a uninephrectomy by surgical resection using a
flank incision to expose the kidney retroperitoneally as described
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elsewhere (42). Sham-operated animals underwent the same incision
and kidney exposure, but the kidney was left intact. A minimum of
eight animals was used in each group. Plasma total cholesterol and
creatinine concentrations were measured using a synchro CX3 auto-
analyzer (Beckman Instruments). Plasma total bile acids were mea-
sured using a kit from Crystal Chemistry, and individual bile acid
species were quantitated by liquid chromatography-tandem mass
spectrometry (LC-MS/MS) (27). Urinary protein concentrations were
determined using a kit from Wako Chemical Industries (Tokyo,
Japan). All experiments were approved by the local institutional
animal committee.

Isolation of primary proximal tubule cells. Primary proximal tubule
cells were isolated from kidneys of Sprague-Dawley rats as described
previously (6). Briefly, kidney cortices from rats (weighing 180–200
g) were dissected, sliced, minced, and digested in 0.25% trypsin
solution (Life Technologies BRL, Grand Island, NY) in a shaking
incubator at 37°C for 1 h. Trypsin was neutralized with growth
medium (DMEM and 10% FBS containing 100 U/ml penicillin and
0.1 mg/ml streptomycin). The suspension was pipetted and was
passed through a 100-�m cell strainer (BectonDickinson Labware,
Franklin Lakes, NJ). The samples were centrifuged (600 rpm for 5
min) to pellet the tubules, washed with 10 ml of medium, centrifuged,
and washed twice more. The final pellet, consisting mostly of renal
tubules, was resuspended in culture medium (REBM bullet kit,
Clonetics), plated onto culture dishes (Nalge Nunc, Naperville, IL),
and incubated at 37°C in a CO2 incubator with medium changes every
2 days until confluent. Experiments were carried out in serum-free
DMEM. Cells were incubated by the addition of 100 �M chenode-
oxycholic acid or 1 �M GW4064 (Sigma-Aldrich, St. Louis, MO) for
24 h. Total RNA was extracted by the method described below.

Isolation of liver and kidney RNA and quantification of transcript
levels. The rats were killed 8 wk after surgery. The liver and kidney
were removed immediately, snap frozen in liquid nitrogen, and stored
at �80°C. Total RNA was prepared using TRIzol (Invitrogen). The
amount of mRNA was determined from the absorbance at 260 nm.
After DNAse treatment (Promega), 2 �g total RNA was reverse
transcribed using oligo-dT priming and SuperscriptII (Invitrogen).
First-strand complementary DNA was used as the template for real-
time polymerase chain reaction analysis with TaqMan master mix and
primers (Applied Biosystems). Transcript levels, determined in two
independent complementary DNA preparations, were calculated as
described and expressed relative to the GAPDH housekeeping gene.
All of the results are expressed as means � SE. Unpaired t-tests were
used for statistical comparisons.

Western blotting. Lysates (20 �g protein) from liver, ileum, or
kidney tissue were separated by SDS-PAGE and blotted on polyvi-
nylidene difluoride membranes (Millipore, Billerica, MA). The mem-
branes were blocked with TBS containing 0.1% Tween 20 and 3%
BSA for 1 h at room temperature and incubated overnight at 4°C with
the respective antibodies. Subsequently, the blots were washed with
TBS containing 0.1% Tween 20, treated with horseradish-peroxidase-
conjugated secondary antibodies at room temperature for 1 h, and
developed using the ECL Plus detection system (Amersham Bioscience,
Buckinghamshire, UK). Antibodies against Bsep, Ntcp, Slco1a1, Mrp2,
and Mrp3 were previously generated in our group (Dr. Bruno Stieger);
anti-Cyp7a1 was from Biorbyt, anti-Ost�, and anti-Asbt (Santa Cruz
Biotechnology, Santa Cruz, CA).

RESULTS

Plasma bile acid concentrations in CRF rats. The effect of
CRF on plasma cholesterol, creatinine, creatinine clearance,
urinary protein, and body weight is shown in Table 1. As
expected, the CRF group exhibited a significant increase in
plasma creatinine concentration and a significant decrease in
creatinine clearance and body weight compared with the nor-

mal control group. In addition, the CRF group exhibited mild
proteinuria and a significant rise in total cholesterol relative to
that found in the control group. In parallel, the plasma total bile
acid concentration was significantly higher in the CRF group
(P � 0.01, Fig.1A), consistent with other reports (11, 14). The
increase in plasma bile acids as determined with the enzymatic
assay was confirmed by LC-MS/MS analysis of individual bile
acid species, which showed about a twofold increase in the
concentration of individual bile acids measured, notably un-
conjugated bile acids (Supplementary Table S1; all supplemen-
tary material for this article is accessible on the journal web-
site.). Concentrations of almost all bile acids were increased in
CRF rats, including cholic acid, chenodeoxycholic acid,
muricholic acid, and hyodeoxycholic acid. However, the per-
centage of 6-hydroxylated bile acids (muricholic acid and
hyodeoxycholic acid) did not differ between groups.

Effect of CRF on expression of bile acid transporters in the
liver, intestine, and kidney. In view of the increase in serum
bile acids, we studied the expression of hepatic Cyp7a1, the
rate-limiting step in bile acid synthesis. As shown in Fig. 1, C
and D, expression of Cyp7a1 did not differ between the two
groups at the mRNA and protein levels. Moreover, mRNA
expression of Cyp8b1, an enzyme involved in the synthesis of
cholic acid, was almost identical in the CRF group and control
animals (Fig. 1B). These results indicate that the increase in
plasma bile acids does not result from a higher synthesis rate of
bile acids.

In CRF rats, both mRNA and protein expression of the
basolateral uptake transporters Ntcp and Slco1a1 did not differ
compared with controls. In contrast, mRNA levels of Mrp3,
Ost-�, and Ost-�, the basolateral bile acid efflux transporters,
were increased (Fig. 2A). Western blots confirmed higher
expression of Mrp3 and Ost-� (Fig. 2B) in CRF rats at the
protein level. However, mRNA expression of Bsep and Mrp2,
the canalicular efflux pumps, was almost the same as in the
sham group. Since Mrp3, Ost-�, and Ost-� are target genes of
Fxr (43), a nuclear receptor that is activated by bile acids, we
compared Fxr and its downstream target gene Shp in CRF and
control groups. As shown in Fig. 2C, mRNA levels of Fxr and
Shp did not differ between groups. Shp expression in CRF rats
was consistent with that of Cyp7a1, indicating that elevated
plasma bile acids do not negatively regulate bile acid synthesis
in CRF.

mRNA and protein levels of bile acid transporters from
ileum and the remaining kidney of CRF rats were examined
and compared with the control animals. In contrast to the
changes in bile acid transporter expression found in the liver,
there were no significant changes in bile acid transporters both

Table 1. Effect of CRF on plasma concentrations of
cholesterol, creatinine, creatinine clearance (Ccr), urinary
protein, and body weight

Sham (n 	 8) CRF (n 	 8) P Value

Total cholesterol, mg/dl 59.8 � 5.4 142.5 � 16.4 �0.01
Creatinine, ml/dl 0.54 � 0.02 1.31 � 0.16 �0.01
Ccr, ml/24 h 1.9 � 0.08 0.6 � 0.11 �0.01
Urine protein, mg/24 h 9.2 � 1.2 39.2 � 3.4 �0.01
Body weight, g 433.5 � 6.9 386.4 � 7.7 �0.01

Values are means � SE; n 	 8/group. Sham, sham-operated control; CRF,
chronic renal failure; Ccr, creatinine clearance.
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in the ileum and the remaining 1/6 kidneys of the CRF group
(Fig. 3). Fxr and Shp levels in the kidney were also checked in
both groups. Almost identical Fxr and Shp mRNA levels were
found in the CRF group, indicating that the Fxr signaling
pathway was not activated in the remaining kidney.

Effect of FXR agonists on expression of FXR target genes in
proximal tubule cells from the kidney. In view of the apparent
difference between the liver and kidney in the changes in bile
acid transporter expression induced by CRF, we next investi-
gated whether Fxr signaling is conserved in rat kidney. As Fxr
is expressed in kidney proximal tubules (23) and many Fxr
target genes are also located there (43), we aimed to exclude an
absence of intact Fxr signaling in the kidney as an explanation
for the lack of effect of CRF on renal bile acid transporter
expression. To demonstrate this, we cultured kidney proximal
tubule cells from rats and incubated cells with CDCA or
GW4064, two Fxr agonists that activate Fxr signaling. Signif-
icant increases in Shp and Mrp2 mRNAs, two known Fxr
target genes in the kidney (8, 15), were observed in proximal
tubule cells incubated with CDCA or GW4064 for 24 h.
Meanwhile, the Fxr mRNA expression level did not change
(Fig. 4). Furthermore, mRNA levels of bile acid transporters
Ost-�/� were significantly higher, and the Slco1a1 mRNA
level was decreased after CDCA and GW4064 treatment (Fig.
4). Taken together, these data suggest that the Fxr signaling
pathway is conserved in the kidney and that an activation of
Fxr would be expected to influence the expression of bile acid
transporters in renal proximal tubule cells.

Effect of UNX on bile acid transporters in the liver and
kidney. Finally, we employed UNX as a model to further assess
whether the change in bile acid levels was correlated with
kidney function, since UNX rats did not show any renal failure
at 8 wk after surgery. As shown in Fig. 5A, increased plasma
bile acid levels were also observed in UNX rats, with no
marked changes in Cyp7a1 compared with the control group
(Fig. 5C). Furthermore, hepatic basolateral bile acid transport-
ers Ost-�/� were increased at the mRNA level (Fig. 5B).

However, analysis of the renal expression of bile acid trans-
porters in the remnant kidney again showed no differences
between the two groups (Fig. 5D).

DISCUSSION

This study shows that plasma bile acid levels are increased
in rats with CRF induced by 5⁄6 subtotal nephrectomy. We
observed increased expression of hepatic basolateral bile acid
efflux transporters Mrp3, Ost-�, and Ost-� in CRF rats, but no
such changes in bile acid transporter expression were ob-
served in ileum and the remnant kidney. Although the
expression of Mrp3 and Ost-�/� is low in rodent liver, their
mRNA levels were strongly increased in the liver of CRF
rats, with no change in Shp and bile acid-synthesizing
enzymes. Furthermore, similar changes in plasma bile acids
and expression levels of bile acid transporters were detected
in rats with UNX, a relatively mild animal model of renal
dysfunction. These results suggest that changes in hepatic
bile acid homeostasis are an early event in the progression
of CRF, and increased plasma bile acid levels may result
from an increased efflux of bile acids across the basolateral
hepatocyte membrane (Fig. 6).

An important finding in this study was the increase in plasma
bile acid concentrations in CRF, which is consistent with
previous clinical reports by Jimenez et al. (14). Despite ele-
vated bile acid levels, Cyp7a1, the rate-limiting de novo bile
acid-synthesizing enzyme, was not repressed at either the
mRNA level or the protein level. Another rate-limiting
enzyme involved in the synthesis of cholic acid, Cyp8b1,
also remained at normal levels. These results are in line with
the absence of increased Shp mRNA expression in CRF rats,
suggesting that Fxr was not activated. Furthermore, the
expression of Fxr, which acts in concert with Shp to sup-
press bile acid-synthesizing enzymes, did not differ from the
controls. Thus the contribution of the Fxr-Shp pathway to
the increase in plasma bile acid levels appears to be minor,

Fig. 1. Effect of chronic renal failure (CRF)
on total serum bile acid levels and bile acid-
synthesizing enzymes in the liver. A: plasma
total bile acid levels in control (sham) rats
and rats with CRF. B and C: comparisons of
hepatic Cyp8b1 mRNA (B) and Cyp7a1
mRNA (C) levels between sham and CRF
groups. Values are means � SE; n 	
8/group. D: representative Western blot of
Cyp7a1 in liver tissue of sham and CRF
groups. Samples from rat ileum were used as
a negative control.
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which also explains the lack of negative feedback regulation
on de novo bile acid production. The increase in serum bile
acids is most probably attributable to the increased expres-
sion of Ost-�/� and Mrp3. Normally, these genes are ex-
pressed at low levels in hepatocytes, and we hypothesize
that their induction could shuttle the transport of bile acids
back into sinusoidal blood (43). However, the extent to
which induction of Ost-�/� and Mrp3 translates into a true
increase in the basolateral efflux of bile acids remains to be
elucidated in functional studies.

It is unclear whether the changes in bile acid transporter
expression represent a secondary compensatory response to the
changes in renal function induced by CRF or UNX. Increased
plasma bile acid levels could activate energy expenditure in
adipocytes and reduce macrophage inflammation and lipid
loading through TGR5 (28, 29, 38). As a result, the free fatty
acids eluted from adipocytes may redistribute in organs such
as the liver and kidneys (40, 41). Changed bile acid levels
also reflect obese and diabetic conditions in both mice and
humans (4, 18). The major efflux pump for bile acids out of
the hepatocyte is the bile salt export pump (7), and induction
of Bsep expression may reduce the bile acid load in hepa-

tocytes. The increased expression of Mrp3, Ost-�, and
Ost-� also provides a mechanism to lower hepatocellular
retention of hydrophobic bile acids and other potentially
toxic compounds that would normally be destined for biliary
excretion. Other studies (10, 17) showed a significant in-
crease in liver Mrp3 expression at the mRNA and protein
levels in CRF rats, consistent with our results. Naud et al.
(24) found a significant increase in liver Mrp2 at the mRNA
but not the protein level in CRF rats, which is confirmed by
our data.

Very few studies have evaluated the effect of CRF on the
urinary output of bile acids. Clinical studies showed increased
serum bile acids in both CRF and transplant patients; however,
they did not show any change in the urinary output of bile acids
in these patients (14). Data from Zollner et al. (43) suggest that
the upregulation of Ost-�/� expression and the increased efflux
of bile acids into the blood for renal excretion may exert a
protective effect on hepatocytes and the biliary epithelium in
response to an increased bile acid load (43). Moreover, recent
studies demonstrate that uremic toxins can directly inhibit
transport activities of organic anion transporters OATP1B1,
OATP1B3, and OATP2B1 in hepatocytes (31, 33) and OATs

Fig. 2. Effect of CRF on the expression of bile
acid transporters in the liver. A: comparison of
hepatic bile acid transporter mRNA levels be-
tween sham and CRF groups. B: representative
Western blot of Bsep, Ntcp, Slco1a1, Mrp2,
Mrp3, and Ost-� in liver tissue of sham and CRF
groups. C: comparison of hepatic Fxr and Shp
mRNA levels between sham and CRF groups.
Values are means � SE; n 	 8/group. *P �
0.01.
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in the kidney (13). However, further studies should be done to
correlate renal expression of bile acid transporters with the
urinary excretion of bile acids.

Previous studies demonstrated that cholic acid induces the
expression of Ost-� and Ost-� in the liver and kidneys in
Fxr
/
 but not Fxr�/� mice, confirming that Ost-�/� are
regulated by Fxr (43). We observed similar changes in Ost-�
and Ost-� mRNA levels after Fxr activation in proximal tubule
cells of rat kidney (Fig. 4). Nonetheless, in this study, the lack
of parallelism in Ost-�/� expression between the liver and
kidneys and the absence of Fxr activation in these two tissues

suggest that the response of basolateral bile acid transporters is
due to other factors. Recent evidence indicates that uremic
toxins and proinflammatory cytokines may affect the transcrip-
tion of hepatic transporter genes (1, 32). Naud et al. (24)
showed that uremic serum modifies the expression of hepatic
drug transporters including Mrp3. In human primary hepato-
cytes, TNF-�, IL-6, and IL-1�, the major proinflammatory
cytokines that are increased in CRF, reduce the expression of
NTCP and induce the expression of MRP1 and MRP4 (35).
Moreover, several orphan nuclear receptors, including the
pregnane X receptor and constitutive androstane receptor, are

Fig. 3. Effect of CRF on the expression of bile acid transporters in the kidney and intestine. A: comparison of bile acid transporter mRNA levels in remnant
kidneys of CRF rats and in kidneys from the sham group. Values are means � SE; n 	 8/group. B: representative Western blot of the apical Na
-dependent
bile acid transporter (Asbt), Mrp3, and Ost-� in kidney tissue of sham and CRF groups. C: comparison of bile acid transporter mRNA levels in ileum of sham
and CRF rats. D: representative Western blot of Asbt, Mrp3, and Ost-� in ileum tissue of sham and CRF groups. Values are means � SE; n 	 8/group. *P �
0.01.

Fig. 4. Effect of FXR agonists on the expres-
sion of bile acid transporters in primary
cultured proximal tubule cells (PTCs) iso-
lated from rat kidney. Shown is a compari-
son of bile acid transporter mRNA levels
and Fxr and Shp mRNA levels in PTCs
treated with DMSO, chenodeoxycholic acid
(CDCA), or GW4064 for 24 h. Values are
means � SE; n 	 3/group. *P � 0.01.
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known to regulate the transcription of transporter genes in the
liver of CRF rats (2, 20). However, the exact molecular
mechanism for the increase in expression of Ost-� and Ost-�
in CRF remains to be elucidated.

In summary, both CRF and uninephrectomy are associ-
ated with an increase in plasma bile acid levels, suggesting
that this is an early event that takes place before kidney
function is impaired. Maintenance of bile acid synthesis and

elevated basolateral Mrp3 and Ost-�/� expression may
either be a desired response during chronic renal disease to
raise serum bile acid concentrations, thereby inducing a
signaling effect of bile acids in other tissues, or it may
indicate a protective mechanism of hepatocytes to facilitate
basolateral extrusion of bile acids in response to an as yet
uncharacterized effect of renal failure on hepatocyte bile
acid homeostasis.

Fig. 5. Effect of uninephrectomy (UNX) on
the expression of bile acid transporters in the
liver and kidney. A: plasma total bile acid
levels in sham-operated rats and rats with
UNX. B and C: comparison of hepatic bile
acid transporter mRNA levels and Cyp7a1,
Cyp8b1, Fxr, and Shp mRNA levels be-
tween sham and UNX rats. D: comparison of
bile acid transporter mRNA levels in rem-
nant kidneys of UNX rats and in kidneys of
sham group. Values are means � SE; n 	
8/group. *P � 0.01.

Fig. 6. Bile acid transporters expressed in the
plasma membrane of hepatocytes, enterocytes, and
renal proximal tubular cells. Transporters which
efflux bile acids are shown in green, and transporters
that mediate the uptake of bile acids are shown in
orange. Bile acids are synthesized and conjugated in
the liver and secreted into the intestine. They are
reabsorbed into the portal circulation in the small
intestine and subsequently return to the liver, where
uptake into hepatocytes occurs by Na
-dependent
(Ntcp) and Na
-independent (Oatps) transporters.
In the kidney, bile acids undergo glomerular filtra-
tion, but are reabsorbed in the proximal renal tubule
by the apical Na
-dependent bile acid transporter
(Asbt).

6

ht
tp

://
do

c.
re

ro
.c

h



GRANTS

This study was supported by grant no. 320030_144193 from the Swiss
National Science Foundation, the NCCR-Kidney.ch program, and the Interna-
tional Fellowship Program (grant no. 246539) on Integrative Kidney Physiol-
ogy and Pathophysiology (IKPP).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

Author contributions: Z.G., L.C., C.H., D.A., and C.A.P. performed exper-
iments; Z.G., L.C., C.H., C.A.P., and J.-P.M. analyzed data; Z.G. and
G.A.K.-U. interpreted results of experiments; Z.G. and C.H. prepared figures;
Z.G. drafted manuscript; Z.G., A.O., and G.A.K.-U. approved final version of
manuscript; L.C., J.-P.M., A.O., and G.A.K.-U. edited and revised manuscript;
G.A.K.-U. provided conception and design of research.

REFERENCES

1. Beigneux AP, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR.
Reduction in cytochrome P-450 enzyme expression is associated with
repression of CAR (constitutive androstane receptor) and PXR (pregnane
X receptor) in mouse liver during the acute phase response. Biochem
Biophys Res Commun 293: 145–149, 2002.

2. Bohan A, Boyer JL. Mechanisms of hepatic transport of drugs: implica-
tions for cholestatic drug reactions. Semin Liver Dis 22: 123–136, 2002.

3. Boudville N, Prasad GV, Knoll G, Muirhead N, Thiessen-Philbrook
H, Yang RC, Rosas-Arellano MP, Housawi A, Garg AX, and Donor
Nephrectomy Outcomes Research (DONOR) Network. Meta-analysis:
risk for hypertension in living kidney donors. Ann Intern Med 145:
185–196, 2006.

4. Chen X, Lou G, Meng Z, Huang W. TGR5: a novel target for weight
maintenance and glucose metabolism. Exp Diabetes Res 2011: 853501,
2011.

5. Cheung AK, Wu LL, Kablitz C, Leypoldt JK. Atherogenic lipids and
lipoproteins in hemodialysis patients. Am J Kidney Dis 22: 271–276, 1993.

6. Gai Z, Zhou G, Gui T, Itoh S, Oikawa K, Uetani K, Muragaki Y.
Trps1 haploinsufficiency promotes renal fibrosis by increasing Arkadia
expression. J Am Soc Nephrol 21: 1468–1476, 2010.

7. Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, Roth J,
Hofmann AF, Meier PJ. The sister of P-glycoprotein represents the
canalicular bile salt export pump of mammalian liver. J Biol Chem 273:
10046–10050, 1998.

8. Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB,
Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson
TM, Kliewer SA. A regulatory cascade of the nuclear receptors FXR,
SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6: 517–526,
2000.

9. Gregg JA. Urinary excretion of bile acids in patients with obstructive
jaundice and hepatocellular disease. Am J Clin Pathol 49: 404–409, 1968.

10. Holzer B, Stieger B, Folkers G, Meier PJ, Fattinger K. Differential
regulation of basolateral and canalicular transporter expression in rat liver
in chronic renal failure. Clin Pharmacol Ther 77: P34–P34, 2005.

11. Igel-Korcagova A, Raab P, Brensing KA, Poge U, Klehr HU, Igel M,
von Bergmann K, Sudhop T. Cholesterol metabolism in patients with
chronic renal failure on hemodialysis. J Nephrol 16: 850–854, 2003.

12. Javitt NB. Bile acid synthesis from cholesterol: regulatory and auxiliary
pathways. FASEB J 8: 1308–1311, 1994.

13. Ji L, Masuda S, Saito H, Inui K. Down-regulation of rat organic cation
transporter rOCT2 by 5/6 nephrectomy. Kidney Int 62: 514–524, 2002.

14. Jimenez F, Monte MJ, El-Mir MY, Pascual MJ, Marin JJ. Chronic
renal failure-induced changes in serum and urine bile acid profiles. Dig
Dis Sci 47: 2398–2406, 2002.

15. Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM,
Tontonoz P, Kliewer S, Willson TM, Edwards PA. Regulation of
multidrug resistance-associated protein 2 (ABCC2) by the nuclear recep-
tors pregnane X receptor, farnesoid X-activated receptor, and constitutive
androstane receptor. J Biol Chem 277: 2908–2915, 2002.

16. Kida K, Nakajo S, Kamiya F, Toyama Y, Nishio T, Nakagawa H.
Renal net glucose release in vivo and its contribution to blood glucose in
rats. J Clin Invest 62: 721–726, 1978.

17. Laouari D, Yang R, Veau C, Blanke I, Friedlander G. Two apical
multidrug transporters, P-gp and MRP2, are differently altered in chronic
renal failure. Am J Physiol Renal Physiol 280: F636–F645, 2001.

18. Li T, Francl JM, Boehme S, Ochoa A, Zhang Y, Klaassen CD,
Erickson SK, Chiang JY. Glucose and insulin induction of bile acid
synthesis: mechanisms and implication in diabetes and obesity. J Biol
Chem 287: 1861–1873, 2012.

19. Liang K, Vaziri ND. Gene expression of LDL receptor, HMG-CoA
reductase, and cholesterol-7 alpha-hydroxylase in chronic renal failure.
Nephrol Dial Transplant 12: 1381–1386, 1997.

20. Liddle C, Goodwin B. Regulation of hepatic drug metabolism: role of the
nuclear receptors PXR and CAR. Semin Liver Dis 22: 115–122, 2002.

21. Mak RH, DeFronzo RA. Glucose and insulin metabolism in uremia.
Nephron 61: 377–382, 1992.

22. McGuinness OP, Fugiwara T, Murrell S, Bracy D, Neal D, O’Connor
D, Cherrington AD. Impact of chronic stress hormone infusion on hepatic
carbohydrate metabolism in the conscious dog. Am J Physiol Endocrinol
Metab 265: E314–E322, 1993.

23. Modica S, Gadaleta RM, Moschetta A. Deciphering the nuclear bile acid
receptor FXR paradigm. Nucl Recept Signal 8: e005, 2010.

24. Naud J, Michaud J, Leblond FA, Lefrancois S, Bonnardeaux A,
Pichette V. Effects of chronic renal failure on liver drug transporters.
Drug Metab Dispos 36: 124–128, 2008.

25. Pandak WM, Li YC, Chiang JY, Studer EJ, Gurley EC, Heuman DM,
Vlahcevic ZR, Hylemon PB. Regulation of cholesterol 7 alpha-hydrox-
ylase mRNA and transcriptional activity by taurocholate and cholesterol in
the chronic biliary diverted rat. J Biol Chem 266: 3416–3421, 1991.

26. Pandak WM, Vlahcevic ZR, Heuman DM, Krieg RJ, Hanna JD, Chan
JC. Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl coen-
zyme A reductase and cholesterol 7 alpha-hydroxylase in rats with subtotal
nephrectomy. Kidney Int 46: 358–364, 1994.

27. Penno CA, Arsenijevic D, Da Cunha T, Kullak-Ublick GA, Montani
JP, Odermatt A. Quantification of multiple bile acids in uninephrecto-
mized rats using ultra-performance liquid chromatography-tandem mass
spectrometry. Anal Methods 5: 1155–1164, 2013.

28. Pols TW, Nomura M, Harach T, Lo Sasso G, Oosterveer MH, Thomas
C, Rizzo G, Gioiello A, Adorini L, Pellicciari R, Auwerx J, Schoonjans
K. TGR5 activation inhibits atherosclerosis by reducing macrophage
inflammation and lipid loading. Cell Metab 14: 747–757, 2011.

29. Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile
acid membrane receptor TGR5 as an emerging target in metabolism and
inflammation. J Hepatol 54: 1263–1272, 2011.

30. Stumvoll M, Chintalapudi U, Perriello G, Welle S, Gutierrez O,
Gerich J. Uptake and release of glucose by the human kidney. Postab-
sorptive rates and responses to epinephrine. J Clin Invest 96: 2528–2533,
1995.

31. Sun H, Huang Y, Okochi H, Frassetto L, Benet LZ. Uremic toxins
inhibit hepatic uptake of eprosartan (Abstract). Clin Pharmacol Ther 77:
P2, 2005.

32. Toell A, Degenhardt S, Grabensee B, Carlberg C. Inhibitory effect of
uremic solutions on protein-DNA-complex formation of the vitamin D
receptor and other members of the nuclear receptor superfamily. J Cell
Biochem 74: 386–394, 1999.

33. Tsujimoto M, Hatozaki D, Shima D, Yokota H, Furukubo T, Izumi S,
Yamakawa T, Minegaki T, Nishiguchi K. Influence of serum in hemo-
dialysis patients on the expression of intestinal and hepatic transporters for
the excretion of pravastatin. Ther Apher Dial 16: 580–587, 2012.

34. Vaziri ND, Sato T, Liang K. Molecular mechanisms of altered choles-
terol metabolism in rats with spontaneous focal glomerulosclerosis. Kid-
ney Int 63: 1756–1763, 2003.

35. Vee ML, Lecureur V, Stieger B, Fardel O. Regulation of drug trans-
porter expression in human hepatocytes exposed to the proinflammatory
cytokines tumor necrosis factor-alpha or interleukin-6. Drug Metab Dis-
pos 37: 685–693, 2009.

36. Vlahcevic ZR, Pandak WM, Stravitz RT. Regulation of bile acid
biosynthesis. Gastroenterol Clin North Am 28: 1–25, 1999.

37. Wagner M, Zollner G, Trauner M. Nuclear receptor regulation of the
adaptive response of bile acid transporters in cholestasis. Semin Liver Dis
30: 160–177, 2010.

38. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW,
Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans
K, Bianco AC, Auwerx J. Bile acids induce energy expenditure by
promoting intracellular thyroid hormone activation. Nature 439: 484–489,
2006.

39. Wilson FA, Treanor LL. Characterization of the passive and active
transport mechanisms for bile acid uptake into rat isolated intestinal
epithelial cells. Biochim Biophys Acta 406: 280–293, 1975.

7

ht
tp

://
do

c.
re

ro
.c

h



40. Zhao HL, Sui Y, Guan J, He L, Zhu X, Fan RR, Xu G, Kong AP, Ho
CS, Lai FM, Rowlands DK, Chan JC, Tong PC. Fat redistribution and
adipocyte transformation in uninephrectomized rats. Kidney Int 74: 467–
477, 2008.

41. Zhao HL, Sui Y, He L, Guan J, Xiao SJ, Zhong DR, Xu Q, Zeng SE. Lipid
partitioning after uninephrectomy. Acta Diabetol 48: 317–328, 2011.

42. Zheng S, Huang Y, Yang L, Chen T, Xu J, Epstein PN. Uninephrec-
tomy of diabetic OVE26 mice greatly accelerates albuminuria, fibrosis,

inflammatory cell infiltration and changes in gene expression. Nephron
Exp Nephrol 119: e21–e32, 2011.

43. Zollner G, Wagner M, Moustafa T, Fickert P, Silbert D, Gumhold J,
Fuchsbichler A, Halilbasic E, Denk H, Marschall HU, Trauner M.
Coordinated induction of bile acid detoxification and alternative elimina-
tion in mice: role of FXR-regulated organic solute transporter-�/� in the
adaptive response to bile acids. Am J Physiol Gastrointest Liver Physiol
290: G923–G932, 2006.

8

ht
tp

://
do

c.
re

ro
.c

h


