
Simulated annealing algorithm for optimal capital growth

Yong Luoa,c,∗, Bo Zhub, Yong Tanga,d

a School of Management and Economics, University of Electronic Science and Technology, 610054 Chengdu, PR China
b School of Finance, Southwestern University of Finance and Economics, 610074 Chengdu, PR China
c College of Science, Ningbo University of Technology, 315211 Ningbo, PR China
d Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland

h i g h l i g h t s

• Extension of the capital growth under multi games case.
• Dynamic optimal capital growth of a portfolio was investigated.
• A general framework that one strives to maximize growth was developed.
• Simulated annealing algorithm was investigated to solve the framework.
• Performance and risk parameter based on real financial data was calculated.

We investigate the problem of dynamic optimal capital growth of a portfolio. A general
framework that one strives tomaximize the expected logarithmutility of long term growth
rate was developed. Exact optimization algorithms run into difficulties in this framework
and this motivates the investigation of applying simulated annealing optimized algorithm
to optimize the capital growth of a given portfolio. Empirical results with real financial data
indicate that the approach is inspiring for capital growth portfolio.

1. Introduction

For an investor, there are two aspects to improve a trading strategy. The first and the most important goal is to achieve a
positive expected return. Once this has been achieved, the investor needs to know what percentage of his capital to risk on
each trade, this task is often known as asset allocation or position sizing. The principle of asset allocation is maximizing the
expected value of the logarithm of wealth after each period, which was originally developed for gambling [1–11]. Breiman’s
1961 paper proved that optimal strategy based on log utility will beat any different strategies almost surely in the long
run [12].

The gamblers often bet on several games at once, it is interested in blackjack when a player bets on multiple hands or
more players share a common bankroll. Simultaneous bets at different tables are independent but at the same table they
have a correlation, this should reduce the fraction per hand. Practical applications to long sequences of wagers are especially
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appropriate for the strategy. Hedge fund trading that enters and exits in a few seconds is an application of this. However,
when applied to investmentwithmany assets, optimization algorithms such as quadratic programming run into difficulties.

We investigate the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives to
maximize the expected log utility of long term growth rate was developed. The original approach ignores many of the
constraints faced by real world investors: trading limitations, budget constraint, no short sales, etc. It is very difficult to
solve with these constraints. In this study, we investigate applying the simulated annealing algorithm to solve the problem
of maximizing long term growth.

Simulated annealing (SA) is a local search technique for combinatorial optimization, such as optimizing functions with
multiple variables. Its convergence properties and its ability to escape local optimal have made it a popular technique over
the past years [13,14]. SA takes less CPU time than genetic algorithm (GA) when used to solve optimization problems,
because it finds the optimal solution using point by point iteration rather than a search over a population of individuals.

This paper is organized as follows. In Section 2, the capital growth strategy was reviewed. A general framework that one
strives to maximize the expected log utility of long term growth rate was developed in Section 3. Finally in Section 4, we
present the empirical results with real financial data. We show that in consequence, the approach is inspiring for capital
growth portfolio.

2. Brief review of the capital growth strategy

We assume that a gambler has found a positive expectation return and he is able to play this game repeatedly, we let
the initial bankroll be W0, and after n iterations the bankroll is Wn. The winning probability is p, the probability of losing is
1 − p. We define the game return as ri = (Wi − Wi−1)/Wi−1, whereWi is the wealth after i turns.

The amount of money he could make depends only on how much he chooses to bet. How much would he bet? Further,
suppose the gambler bets fraction fi of the actual wealth in i turn. After n turns the gambler’s wealth equals

Wn = W0

n∏
i=1

(1 + firi). (1)

The returns are independent, so the average wealth after n turns can be written as

〈Wn〉 = W0

n∏
i=1

(1 + E[firi]). (2)

Since the game has a positive expectation, E[firi] > 0 in this situation, in order to maximize 〈Wn〉, we would maximize
E[firi] at each turn. The optimal strategy is to stake all capital in each trial, however, the probability of ruin is given by 1−pn

and with p < 1, limn→∞(1 − pn) = 1 so ruin is almost sure. Thus maximization of 〈Wn〉 is not a good criterion for a long
run investment.

In 1956, an asymptotically optimal strategy was proposed by Kelly [1], who made use of a quantity G called the expo-
nential rate of growth of the gambler’s wealth. Without affecting the results, in our analysis we use natural logarithms

G = lim
n→∞

1

n
ln

Wn

W0

(3)

as a criterion for investment optimization. Due to the multiplicative character ofWn,G can be rearranged as

G = lim
n→∞

1

n
ln

n∏
i=1

(1 + firi) = lim
n→∞

1

n

n∑
i=1

ln(1 + firi) = 〈ln(1 + firi)〉. (4)

Imagine that a gambler is faced with an infinitely wealthy opponent whowill wager bets made on repeated independent
trials of a biased coin. For the risk game introduced above is p ln(1 + f ) + (1 − p) ln(1 − f ) which is maximized by the
investment fraction

f ∗ = 2p − 1. (5)

Moreover, G(fc) = 0 so we get unique number fc > 0, where 0 < f ∗ < fc < 1. The gambler’s wealth will exceed the
initial value when f is chosen in the internal (0, fc). But, if f > fc , the ruin is almost sure. In order to maximize wealth, we
should maximize E[ln(1+ firi)] by choosing the optimal fraction f ∗ at each trial although the probabilities change from one
trial to the next.

The gambler introduced here follows a different criterion from the classical gambler. Because of the logarithm which is
additive in repeated bets and towhich the law of large numbers applies. At every bet hemaximizes the expected value of the
logarithm of his capital. The criterion asymptotically maximizes the expected growth rate of wealth, which is often called
the capital growth strategy.

A criticismapplied to the strategy is that capital is not infinitely divisible butmultiples of aminimumunit. If theminimum
bet allowed is small relative to the gambler’s initial capital, the probability of ruin in the standard sense is negligible. In the
security markets, the minimum unit can be as small as desired.
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3. Optimization of simultaneous risky investments

Consider that there are n+1 investment opportunities r0, r1, . . . , rn at time t , which can be done simultaneously in each
time step, r0 represent risk free asset. In opportunities i(i = 0, 1, . . . , n), the investor allocates the fraction fi of the total
wealth. Let F∗ = (f ∗

0 , f ∗
1 , . . . , f ∗

n ) be optimal investment strategy. We assume that f ∗
0 + f ∗

1 + · · · + f ∗
n ≤ 1 which means

there is no borrowing. Let the probability of the outcome r0, r1, . . . , rn be p0, p1, . . . , pn. The capital growth function

G(f0, f1, . . . , fn) =
∑

[p(·) ln(1 + f0r0 + f1r1 + · · · + fnrn)], (6)

where p(·) is joint distribution of n assetswith correlated outcomes, p(·) = p0p1 . . . pn if the returns ri are independent. Note
that concave function G(f0, f1, . . . , fn) is defined if and only if 1+ f0r0 + f1r1 + · · ·+ fnrn > 0. Computational procedures for
finding an optimal fixed fraction strategy are based on the theory of concave function. To find the optimal f ∗

i , let ∂G/∂ fi = 0.
For portfolios with many securities are extremely difficult to be optimized due to the computation complexity.

For our simultaneous risky investment, the optimal fractionwould be the solution of the following optimization problem

maxG(f0, f1, . . . , fn) (7)

subject to the following constraints

n∑
i=0

fi = 1

fi ≥ 0

1 ≤ i ≤ n.

(8)

The first constraint, called budget constraint, requires that all of the budget to be invested in the risky portfolio and
risk free asset. The non-negative constraints express requires that no short sales are allowed. Note that the optimal growth
function

G(f0, f1, . . . , fn) =
∑

[p(·) ln(1 + f0r0 + f1r1 + · · · + fnrn)]

= E

{
ln

[
W (f0, f1, . . . , fn)

W0

]1/t
}

= (1/t)E[lnW (f0, f1, . . . , fn)] − (1/t) logW0. (9)

The wealth of portfolio at time t

W (f0, f1, . . . , fn) = W0

T∏
t=1

[
1 +

n∑
i=1

firi

]
. (10)

So for a fixed period t , maximizing G(f0, f1, . . . , fn) is the same as maximizing (1/t)E[lnW (f0, f1, . . . , fn)]. In such
situations, classical quadratic programming does not work efficiently and heuristic optimization techniques may be
considered as a choice and worth investigation.

It may seem surprising that the portfolio should depend on the past, because the future has no relationship to the past.
Indeed the stock sequence is arbitrary, and the malicious nature can make future to take advantage of past beliefs. Cover
shows that there exists a universal portfolio strategy, which is only based on the past historical data, that will perform
asymptotically as well as the optimal portfolio based on foreknowledge of the price.

lim
n→∞ ln

Ŵn

W ∗
n

= 0 (11)

where Ŵn represents the wealth of universal portfolio strategy based on historical data after n periods, W ∗
n denotes the

maximum wealth of the optimal portfolio with foreknowledge [15].
For financial return series, the samplemean is a poor estimator for the expected return. The samplemean is the best linear

unbiased estimator of the populationmean for distributionswhich are not heavy tailed. Furthermore, the resulting estimator
has a large estimation error, which significantly influences the portfolio selection. There are different ways to address this
issue. On the estimation side, one can try to produce robust estimates of the input parameters for the optimization problems
and this can be achieved by using backtesting.

Backtesting is used in financial industries referring to testing a trading strategy using existing historic data. Instead of
applying a strategy for the forward testing, an investor can do a simulation of his or her trading strategy on past data in
order to gauge the effectiveness of the strategy. The most common backtesting platforms include Matlab, Tradestation and
WealthLab. Our empirical results are based on QuantDeveloper and C#.

Simulated annealing (SA) is a local search technique for combinatorial optimization problems, especially for optimizing
functions with multiple variables. Its convergence properties and its use of hill climbing moves to escape local optima have
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made it a popular technique over the past years. It is based on an analogy of thermodynamics with the way metals cool
and anneal. A particle configuration is a solution to the problem, the energy of a configuration is the value of the objective
function where a minimum energy configuration corresponds to an optimal solution.

The major advantage of SA over classical other local search methods is its ability to avoid getting trapped in local
optimization while searching for a global optimization. Other local searches such as hill climbing strategy might converge
to a local optimal and fail to get the global optimal. In many cases, SA takes less CPU time than genetic algorithm (GA) in
solving optimization problems, because it finds the optimal solution using point by point iteration rather than a search over
a population of individuals.

Objective function
LetW (f0, f1, . . . , fn) be the wealth of a portfolio. We note that

G(f0, f1, . . . , fn) = E

{
ln

[
W (f0, f1, . . . , fn)

W0

]1/t
}

= (1/t)E[lnW (f0, f1, . . . , fn)] − (1/t) lnW0. (12)

The wealth of portfolio at time t

W (f0, f1, . . . , fn) = W0

T∏
t=1

[
1 +

n∑
i=1

firi

]
. (13)

So for a fixed period t , maximizing G(f0, f1, . . . , fn) is the same as maximizing (1/t)E[lnW (ft , f1, . . . , fn)].
Statement of SA algorithm

Suppose that the solution space, F, is the set of all possible solutions. Let G : F → R be an objective function defined on
the solution space. Our goal is to find a global optimal f ∗, f ∗ ∈ F such that G(f ∗) ≥ G(f ) for all f ∈ F, where solution vector
be f = (f0, f1, . . . , fn), best available solution vector is f ∗ = (f ∗

0 , f ∗
1 , . . . , f ∗

n ). The objective function must be bounded to
ensure that f ∗ exits. A neighboring solution f ′ is generated either randomly or using some pre specified rule. The candidate
solution is accepted as the current solution based on the acceptance probability

P(·) =
{
e
− G(f ′)−G(f )

Tk , if G(f ′) − G(f ) < 0
1, if G(f ′) − G(f ) ≥ 0

(14)

where Tk is the temperature parameter at iteration k, such that Tk > 0 for all k and limk→+∞ Tk = 0. The generic simulated
annealing algorithm performs the following steps.

• Choose an initial solution f0, set the temperature change counter k = 0, set a temperature cooling schedule Tk, set an
initial temperature T0, setMk as the number of iterations executed at each temperature Tk.

• Repeat until a stopping criterion is fulfilled.
– Set repetition counterm = 0.
– Repeat untilm = Mk.

∗ Draw a solution f ′ in the neighborhood.
∗ Calculate Δf ,f ′ = G(f ′) − G(f ).
∗ If Δf ,f ′ ≥ 0, then f ← f ′.

∗ If Δf ,f ′ < 0, then f ← f ′ with probability e
− G(f ′)−G(f )

Tk .
∗ m ← m + 1.

– k ← k + 1.

Due to the generality of the concepts that it involves, simulated annealing can be applied to a wide range of optimization
problems. In particular, no specific requirements need to be imposed on the objective function nor on the solution space.
The simulated annealing pseudo code is outlined in the following.

1 m = number of moves to attempt;
2 t = current temperature;
3 s = stop temperature;
4 a = constant factor;
5 f_0 = initial solution;
6 g_old = old solution of objective function;
7 g_new = new solution of objective function;
8 if (t > s){
9 for(i = 1; i < m; i++){

10 Generate a random solution;
11 Evaluate the change in objective function, g_new − g_old;
12 if (g_new − g_old > 0){
13 accept this move and update configuration;
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14 } else{
15 accept with probability P;
16 update configuration if accepted;
17 }
18 }
19 t = a ∗ t;
20 }

In order to apply this technique, a serial of annealing parameters must be defined including the initial value of
temperature, the cooling schedule, the number of iterations to be performed at each temperature and the stopping criterion.

The theory of SA indicates that SA converges to a globally optimal solution with probability 1. However, the asymptotic
convergence, such as cooling schedule and stop criterion, cannot be met in practice. Thus, it is often critical to adjust
values of those parameters based on problem characteristics. We determine which parameters to be used considering the
performance and running time of the algorithm. In order to obtain good performance, we need to specify these values
carefully.

Initial value of temperature
Theoretically speaking, the initial temperature should be high enough so that all movements are acceptable. However,

it is necessary to control initial temperature because very high initial temperature could consume too much time. A proper
initial value of temperature is chosen so that it can cover the entire solution space. A very high initial temperature increases
the solution space and requires a large number of iterations.

Many researches have proposed different ways to select the initial temperature, but no conclusion has been made about
the approach of selection of the initial temperature. Following the recommendations of many authors, we set the initial
temperature in such a way that during the first cooling stage, the probability of acceptation of a move is relatively χ0. We
set the initial probability equal to 0.9. In preliminary phase, the algorithm runs M steps without rejecting any moves. The
average increasement of the objective function over this phase as Δ. T0 equal to

T0 = −Δ

lnχ0

. (15)

Cooling schedules
Simulated annealing convergence theory has been used to design effective cooling schedules. The earliest annealing

schedules based on the analogy with physical annealing. Cooling schedules are grouped into static schedules and adaptive
schedules. The first must be completely specified before the algorithm begins, and the second will adjust the decrease
rate of temperature based on the information obtained during the algorithm’s execution. Strenski and Kirkpatrick’s paper
suggests that optimal cooling schedules are not monotone decreasing in temperature [16]. They also show that in their
testing problem, geometric and linear cooling schedules perform better than logarithmic cooling schedules.

In proportional temperature cooling schedules, the temperature is kept fixed at each stage. After each stage, the
temperature is multiplied by a constant factor α ∈ (0, 1). Finally, temperature becomes very small and it does not search
any smaller energy level, which is called frozen state. The cooling schedule is given as

Tk+1 = αTk. (16)

The geometric ratio, used commonly in practice, use α between 0.1 and 0.99.

Number of iterations
The chain’s size at each temperature is chosen so that the system is close to the stationary distribution at that tempera-

ture. If the size is small compared to the total solution space, then the Markov chain cannot move around the solution space
fast enough to find the optimal solution in reasonable time. On the other hand, a very large size has the algorithm randomly
in a large solution space, and thus, is unable to focus on specific areas of the solution space.

The number of iterations Mk are difficult to quantify precisely. The value of the number of iterations depends on the
nature of the problem. There is no general agreement about it [17].

Stopping criterion
Stopping criterion is the condition that the algorithm stops, and it stops theoretically at the point that converges to

temperature of 0. Because the algorithm has to spend a long time under low temperatures in this case, it is typical to stop
the algorithm if the performance does not improve after some iterations.

If the number of iterations exceeds the allowed number of iterations, we terminate the algorithms, 108 in our experiment.
Our algorithm terminates if temperature reaches the minimum value of temperature. The idea is generated with the fact

that the chance of improvement in a solution is rare once the temperature is close to zero. At a very low temperature, moves
will be trapped in the neighborhood of the current solution.

Choice of neighborhood
Neighborhood search is a key problem in SA, which is an iterative procedure to move from an admissible schedule to

a new one until some admissible schedule satisfying a certain stopping criterion. The efficiency of simulated annealing is
highly influenced by the neighborhood search.
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Table 1
Optimal allocation of the pool portfolio.

Symbol

CSCO AMZN AAPL YHOO MSFT
C ADS BRK.A BAC AFL
KO SBUX JNJ KFT PFE
CBS TWX DIS TRI AOL
DUK RIO XOM AEP COP
CL GE PG AA DD
DIA XLE XLV USO FXI
CPHI SNP BIDU PTR CHL
AES ORCL QCOM EBAY GOOG
GS MA WMT FDX RTN

Fraction

0.0032 0.0164 0.0296 0.0179 0.0012
0.0023 0.0497 0.0021 0.0031 0.0007
0.0484 0.0221 0.0041 8.65E-05 0.0062
0.0137 0.0007 0.0034 0.0023 0.0486
0.0006 0.0461 0.0052 0.0463 0.0498
0.0003 0.0005 0.0004 0.0073 0.0001
0.0037 0.0011 0.0033 0.0139 0.0028
0.0407 0.0153 0.0489 0.0345 0.0002
0.0338 0.0004 0.035 0.046 0.0046
0.0001 0.0022 0.0036 0.0001 0.0111

Instead of predefining the random disturbance as a constant, we generate random disturbance from Cauchy distributed
randomnumbers. Cauchymutation ismore likely to generate an offspring that is further away from its parent than Gaussian
mutation due to its long flat tails. It is expected to have a higher probability of escaping from a local optimum or moving
away from a plateau. On the other hand, the smaller hill around the center indicates that Cauchy mutation spends less time
in exploiting the local neighborhood.

The one dimensional Cauchy density function centered at the origin is defined by

f (x) = 1

π

t

t2 + x2
, −∞ < x < ∞ (17)

where t is a scale parameter.

How to handle constraints
For better risk controlling, most portfolio managers limit the fraction allocate to a single asset. If all of our money put in

a basket, market crash will make us go bankruptcy. So, in our optimal model, we consider the constraint of asset fraction,
which is also similar to fraction Kelly strategy. But how do we ensure that the final solution satisfies all the constraints?
First, we should make sure the neighborhood of current solution consists of feasible solutions.

In our implementations, we selected all of the feasible approaches, in which the neighborhood of the current solution
may contain solutions satisfying the constraints. The algorithm draws a direction and takes a small step in this direction
away from the current solution. The direction is computed to meet the constraints, so all of the feasible approaches will not
lost time to deal with infeasible solutions.

4. Empirical results with real financial data

The algorithms described above have been implemented in C# and run on a personal computer. All the figures in this
paper are drawn with Matlab. In our implementations of simulated annealing, we adopted the geometric cooling schedule
defined in the last section. In order to describe more completely this cooling schedule, we need to specify the value of the
parameters. Unless otherwise stated, the parameter settings for the simulated annealing are defined as follows: number of
tries per on circle of temperatureM = 250; start temperature in the annealing schedule T0 = 100; stop temperature in the
annealing schedule S = 0.0001; temperature reduction factorα = 0.1;max number of objective function calls is 10million.

For the sake of constructing realistic problem instances, we use the daily data extracted from our database, which is from
USA stock market covering the period 1st January 2000–31st December 2011. The stock is obtained from these sectors:
technology, finance, consumer goods, health care, services, basicmaterials, industrial goods. Using a different sector division
can efficiently minimize the ratio of correlations and smooth the capital growth curve. For simplicity, we assume that there
have no transaction cost, tax and short sell, which will be investigated in a separate work. To illustrate the performance of
the optimal asset allocation, a trading model named Turtle [18] was applied.

It is assumed that the stocks were drawn at random from asset pool.1 The optimized fraction for the algorithms is shown
in Table 1. If we allocate on AAPL, we always allocate 2.96% of the total bankroll at time t . It can be seen that the algorithm

1 The pool portfolio include 50 assets from USA market: CSCO, AMZN, AAPL, YHOO, MSFT, C, ADS, BRK.A, BAC, AFL, KO, SBUX, JNJ, KFT, PFE, CBS, TWX,
DIS, TRI, AOL, DUK, RIO, XOM, AEP, COP, CL, GE, PG, AA, DD, DIA, XLE, XLV, USO, FXI, CPHI, SNP, BIDU, PTR, CHL, AES, ORCL, QCOM, EBAY, GOOG, GS, MA,
WMT, FDX, RTN.
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Fig. 1. Iterations of the pool portfolio.

Table 2
Optimal allocation of the capital growth portfolio.

Symbol
AAPL ADS KO SBUX AOL RIO AEP
COP CPHI BIDU PTR AES QCOM EBAY

Fraction
0.0299 0.0401 0.0407 0.0196 0.0459 0.0412 0.0471
0.0465 0.0224 0.0455 0.0459 0.0225 0.0315 0.047

Table 3
Execution time.

Computer Portfolio size Execution time (h)

PC (Intel i5-3450 3.1G processor, 4G memory) 50 8.9
PC (Intel i5-3450 3.1G processor, 4G memory) 14 2.3

produces most unequal sizes of fraction. The difference between the fraction is that some have a higher value of winning
or R multiple and, for some, the value is smaller. We note that the total committed is considerably less than 100% of the
bankroll.

For the value of optimal fraction, Fig. 1 illustrates the evolution of the portfolio growth rate in the course of iterations.
The simulation was repeated 5995 times and there are 1360 investment decision points. Convergence to solution is fast for
the simulated annealing algorithm, although error term does not reach zero for each circle. No further optimization occurs
after 4000 iterations, which suggests that the growth function has reached a good optimum.

Performance and risk analysis of the capital growth portfolio
The stock was selected if the fraction is larger than 2% in the pool portfolio.2 The optimized fraction of the selected

portfolio is shown in Table 2, which means there are 14 stocks in the portfolio. If we allocate on AAPL, we always allocate
2.99% of the total bankroll at time t . Its can be seen that the sum of fraction is 52.58%, which means 47.42% of total capital
will be allocated to money market.

Considering the data described in Table 4, the investor’s initial wealth is 1 million and there are 333 investment decision
points, average annual return is 460.6%, the final wealth ismore than 134 821 times the initial wealth. Indeed, Kelly criterion
provides an enormous growth rate but a very high volatility of wealth levels. The final wealth is very likely to be higher than
other strategies, but the volatility will be very bumpy. Drawdown controlling will be investigated in a separate work. From
the Skewness and Kurtosis data shown in the table, the return of the portfolio does not satisfy the assumption of normality
in classical mean variance models.

Table 3 shows the performance of different portfolio in the same computer. Fig. 2(a) is the curve of equity. For the value
of optimal fraction, Fig. 3(a) illustrates the simulation was repeated 1682 times, which is evolution of the portfolio growth
rate in the course of iterations.

Comparison with the equal weight portfolio
Assume that each stock has an equal weight, consequently, the optimal fractions are identical and the investment opti-

mization is simplified to a one variable problem. We optimize the problem with a simple downhill optimization technique.

2 The selected portfolio include 14 assets from USA stock market: AAPL, ADS, KO, SBUX, AOL, RIO, AEP, COP, CPHI, BIDU, PTR, AES, QCOM, EBAY.
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Table 4
Performance and risk analysis.

Statistics Capital growth portfolio Equal weight portfolio

Initial Wealth 1 million 1 million
Final Wealth 134 821 times 5 times
Average Annual Return (%) 460.6 40.45
Median Annual Return (%) 414.88 29.8
Maximum Annual Return (%) 1281.68 210.77
Minimum Annual Return (%) −79.53 −51.23
Average Monthly Return (%) 19.16 2.66
Median Monthly Return (%) 5.01 −1.1
MaximumMonthly Return(%) 260.64 64.86
MinimumMonthly Return (%) −84.08 −41.81
Compound Average Return 306.47 61.43
Minimum DrawDown −0.96 −0.78
Number Of RoundTrips 333 1398
Skewness 0.22 −0.64
Kurtosis 13.43 8.04

(a) Capital growth portfolio. (b) Equal weight portfolio.

Fig. 2. Equity of the portfolio (log scale).

(a) Capital growth portfolio. (b) Equal weight portfolio.

Fig. 3. Iterations of the portfolio.

The method is feasible only for small problems, since the number of possible states of the system increases exponentially
with the number of dimensions. The case of unequal weight is impossible achieved by straightforward optimization tech-
niquewhen the portfolio include 50 stocks. In fact, many hedge funds have the fastest real time largemachine or distributed
computing power in high frequency quantitative trading. Further systematic comparison with other heuristic techniques
such as genetic algorithm is a complex topic, which will be investigated in a separate work.
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The statistics of performance and risk are described in Table 4, the final wealth is more than 5 times to the initial wealth.
Fig. 2(b) provides a visual representation of equity. Fig. 3(b) illustrates the evolution of the capital growth in the course of
iterations.

5. Conclusions

We investigated the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives
to maximize the expected log utility of long term growth rate was developed. Classical optimization algorithms run into
difficulties in this framework, it motivates the investigation of the algorithm of simulated annealing. Simulated annealing
is a powerful tool for the solution of many optimization problems. Its main advantages are its ability to approach global
optimality.

The result shows that the investor’s wealth will exceed the initial value when the fraction is chosen less than critical
value. But, if larger than the value, ruin is almost sure. Empirical results with real financial data show the performance and
risk, final wealth of the capital growth strategy far more than the equal weight strategy. In order to maximize wealth, we
should choose the optimal fraction at each trade.
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