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The abundance of models of complex networks and the current insufficient validation standards make it
difficult to judge which models are strongly supported by data and which are not. We focus here on likelihood
maximization methods for models of growing networks with many parameters and compare their performance
on artificial and real datasets. While high dimensionality of the parameter space harms the performance of direct
likelihood maximization on artificial data, this can be improved by introducing a suitable penalization term.
Likelihood maximization on real data shows that the presented approach is able to discriminate among available
network models. To make large-scale datasets accessible to this kind of analysis, we propose a subset sampling
technique and show that it yields substantial model evidence in a fraction of time necessary for the analysis of
the complete data.
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I. INTRODUCTION

Complex networks are used to represent and analyze a wide
range of systems [1–3]. Models of complex networks usually
aim for simplicity and attempt to keep the number of param-
eters as low as possible. However, real data is more complex
than any simple model which makes it difficult to draw clear
links between data and models. To capture the increasingly
available massive real data [4], we need high-dimensional
models where the number of parameters grows with the num-
ber of nodes. An example of such a model is the latent space
model [5] where nodes are assigned independent and identi-
cally distributed vectors and the probability of a link connect-
ing two nodes depends only on the distance of their vectors.

While there are plenty of simple (and not so simple) network
models, little is known as to which of them are really supported
by data. While calibration of complex network models often
uses standard statistical techniques, their validation is typically
based on comparing their aggregate features (such as the
degree distribution or clustering coefficient—see Refs. [6,7]
for detailed accounts on network measurements) with what
is seen in real networks (see Refs. [8,9] for recent examples
of this approach). The focus on aggregate quantities naturally
reduces the discriminative power of model validation which
is often further harmed by the use of inappropriate statistical
methods [10]. As a result, we still lack knowledge of what is
to date the best model explaining the growth of the scientific
citation network, for example.

We argue that network models need to be evaluated by
robust statistical methods [11,12], especially by those that
are suited to high-dimensional models [13]. This is exem-
plified in [14] where various low-dimensional microscopic
mechanisms for evolution of social networks are compared on
the basis of their likelihood of generating the observed data.
Prohibitive computational complexity of maximum likelihood
estimation is often quoted as a reason for its limited use in the
study of real world complex networks [15]. However, as we
shall see here, even small subsets of data allow to discriminate
between models and point clearly to those that are actually
supported by the data. This, together with the ever-increasing
computational power at our disposal, opens the door to the
likelihood analysis of complex network models.

We analyze here a recent network growth model [16,17]
which naturally leans itself to high-dimensional analysis. This
model generalizes the classical preferential attachment (PA;
often referred to as the Barabási–Albert model in the complex
networks literature) [17, Secs. 7, 8] by introducing node
relevance which decays in time and co-determines (together
with node degree) the rate at which nodes acquire new links.
If either the initial relevance values or the functional form
of the relevance decay are heterogeneous among the nodes,
this model is able to produce various realistic degree distri-
butions. By contrast to Ref. [18], which modifies preferential
attachment by introducing an additive heterogeneous term, in
Ref. [16] relevance combines with degree in a multiplicative
way which means that once it reaches zero, the degree growth
stops. This makes the model an apt candidate for modeling
information networks where information items naturally lose
their pertinence with time and the growth of their degree
eventually stops (see Ref. [19] for a review of work on temporal
networks). This model has been recently used to quantify and
predict citation patterns of scientific papers [20].

Before methods for high-dimensional parameter estimation
are applied to real data, we calibrate and evaluate them
on artificial data where one has full control over global
network parameters (size, average degree, etc.) and true node
parameter values are known. For simplicity, we limit our
attention to the case where the functional form of relevance
decay is the same for all nodes and only the initial relevance
values differ. We present here various estimation methods
and evaluate their performance. Plain maximum likelihood
[12, Chapter 7] produces unsatisfactory results, especially in
the case of sparse networks which are commonly seen in
practice. We enhance the method by introducing an additional
term which suppresses undesired correlation between node
age and estimates of initial relevance. We then introduce
a mean-field approach which allows us to reduce high-
dimensional estimation to a low-dimensional one. Calibration
and evaluation of these parameter-estimation methods is done
on artificial data. Real data is then used to employ the
established framework and compare the statistical evidence for
several low- and high-dimensional network models on the
given data. Analysis of small subsets of input data is shown to
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efficiently discriminative among the available models. Since
this work focuses on model evaluation, estimated parameter
values are thus of secondary importance to us. Necessary
conditions for obtaining precise estimates and the potential
risk of large errors [21] are therefore left for future research
(see Sec. VI).

II. MODEL

The original model of preferential attachment with rele-
vance decay (PA-RD) has been formulated for an undirected
network where the initial node degree is nonzero because
of links created by the node on its arrival [16]. To allow
zero-degree nodes to collect links, some additive attractiveness
or random node selection need to be introduced. When these
two mechanisms are combined with PA-RD, the probability
that a new link created at time t attaches to node i can be
written as

P (i,t) = λ
Ri(t)[ki(t) + A]∑n(t)

j=1 Rj (t)[kj (t) + A]
+ 1 − λ

n(t)
. (1)

Here ki(t) and Ri(t) are degree and relevance of node i at time
t , respectively, n(t) is the number of nodes present at time
t , and A is the additive attractiveness term. Finally, λ is the
probability that the node is chosen by the PA-RD mechanism;
the node is chosen at random with the complementary
probability 1 − λ. When A = 0 and λ = 1, a node of zero
degree will never attract new links. Equation (1) can be used
to model a monopartite network where nodes link to each
other as well as a bipartite network where one set of nodes is
unimportant and we can thus speak of outside links attaching
to nodes. For example, one can use the model to describe the
dynamics of item popularity in a user-item bipartite network
representing an e-commerce system [22,23].

There are now two points to make. First, the model
is invariant with respect to the rescaling of all relevance
values, Ri(t) → ξRi(t). This may lead to poor convergence
of numerical optimization schemes because Ri(t) values can
drift in accord without affecting the likelihood value. The
convergence problems can be avoided by imposing an arbitrary
normalization constraint on the relevance values as we do
below. Second, A and λ act in the same direction: they intro-
duce randomness in preferential attachment-driven network
growth (in particular, as A → ∞ and/or λ → 0, preferential
attachment loses all influence). One can therefore expect that A
and λ are difficult to be simultaneously inferred from the data.
This is especially true for the original preferential attachment
without decaying relevance. If node relevance decays to zero,
node attraction due to A eventually vanishes while the random-
attachment part proportional to λ remains—it is therefore
possible, at least in principle, to distinguish between the two
effects. To better focus on the high-dimensional likelihood
maximization of node parameters, we assume λ = 1 in all our
simulations.

The PA-RD model has been solved in Ref. [16] for a case
where λ = 1, A = 0, and the initial degree of all nodes equal
to one. It was further assumed that Ti := ∫ ∞

0 Ri(t)dt is finite
for all nodes and the distribution of T values among the nodes,
�(T ), decays exponentially or faster. The probability normal-
ization term

∑
j Rj (t)[kj (t) + A] then eventually fluctuates
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FIG. 1. (Color online) (a) Illustration of a bipartite network
where only links’ target nodes are of interest. (b) Sample degree
distributions of networks produced according to Sec. II A.

around a stationary value �∗ and the expected final degree of
node i can be written as 〈kF

i 〉 = exp(Ti/�∗). It has been shown
that the network’s degree distribution, shaped mainly by �(T ),
can take on various forms including exponential, log-normal,
and power-law.

Description of artificial data

We begin by describing bipartite network data with tempo-
ral information. We consider a simplified bipartite case where
links arrive from outside and thus only their target nodes
matter—see Fig. 1(a) for illustration. Links are numbered with
l = 1, . . . ,E and the times at which they are introduced are
t1 � t2 � · · · � tE . Nodes are numbered with i = 1, . . . ,N

and the times at which they are introduced are τ1 � τ2 � · · · �
τN . At time t , there are n(t) target nodes in the network. Degree
of node i at time tl when link l is added is ki(tl) and the target
node of link l is nl . The average node degree is z := E/N (the
factor of two is missing here because we consider a bipartite
network where E edges point to N nodes of interest).

We use the PA-RD model to create artificial networks with
well-defined properties. There are initially nI nodes with zero
degree. After every �T time steps, a new node of zero degree
is introduced in the network. In each time step, one new link is
created and chooses its target node according to Eq. (1). The
network growth stops once there are EF = �znI /(1 − z/�T )�
links and nF = nI + 	EF /�T 
 nodes in the network. At
that point, the average node degree is approximately z. It
must hold that z < �T ; in the opposite case, the average
degree z cannot be achieved because new nodes dilute the
network too fast. Each node has the relevance decay function
Ri(t) = Ii exp[−(t − τi)/Θ] where Θ is the decay time scale
and Ii is the initial relevance of node i. Initial relevance values
are drawn from the exponential distribution f (I ) = e−I .
When the decay parameter Θ is sufficiently high, this setting
produces broad degree distributions [16] which are similar
to distributions often seen in real information networks [3,
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Chapter 4]. We use nI = 10, �T = 16, Θ = 50, A = 1, and
λ = 0 for all artificial networks studied here; their sample
degree distributions are shown in Fig. 1(b).

III. PARAMETER ESTIMATION METHODS

A. Maximum likelihood estimation

We first use the standard maximum likelihood estimation
(MLE) to estimate parameters of the PA-RD model [11]. A
generic form of log-likelihood of realization D for a network
growth model M has the form

lnL(D|M) =
E∑

l=1

ln P (nl,tl|M), (2)

where P (nl,tl|M) is the probability of link l arriving at node
nl at time tl under model M. It is convenient to transform this
quantity into log-likelihood per link by dividing it with the
number of links, lnL(D|M)/E. For model M represented by
its attachment probability P (nl,tl|M) and a vector of model
parameters p, log-likelihood can be maximized with respect
to these parameters and yields their estimates p̃.

Given a network realization obtained with Eq. (1), there
are several parameters to estimate: initial relevance values of
all nodes, additional attractiveness term A, and parameters
of the relevance decay function. (Note that we make the
estimation task easier by assuming that the functional form of
relevance decay is known.) Greedy (uphill) maximization of
log-likelihood is made possible by the profile of the likelihood
function which does not feature multiple local maxima in the
space of initial relevance values (see Sec. A for an explanation).
Starting from a random initial guess, we sequentially update all
model parameters by quadratic extrapolation and repeat this
process until the difference between new and old estimates
is less than some sufficiently small threshold (we use 10−3

here). Due to the scale-invariance of relevance values, they
can be normalized after each iteration so that their average
is one, which improves convergence. While each evaluation
of log-likelihood is time consuming and this straightforward
approach is thus computationally expensive, it is often, as we
shall show, viable.

B. Mean-field approximation to maximum likelihood estimation

As mentioned in Sec. II, when the number of nodes
is large and their relevance decays to zero, fluctuations
of the denominator in Eq. (1) become small and one can
therefore replace it with a constant term �∗. This mean-field
approximation decouples the dynamics of nodes which then
compete for new links with the external field �∗ instead
of competing with the other nodes present in the system.
Equation (1) then simplifies to

P (i,t) = Ri(t |ηi)[ki(t) + A]

�∗ , (3)

where η is a vector of parameters of node i and we again
assume λ = 1. In our case, the initial relevance value Ii is the
only node-specific parameter and thus ηi = (Ii). Since �∗ is
the same for all nodes, we can subsume it in Ii due to the
aforementioned scale invariance. The likelihood function for
node i is then constructed by evaluating all links created after

this node has been introduced in the network. For link l, we
assess whether the link points to node i (then δi,nl

= 1) or not
(then δi,nl

= 0). We get

lnLi(D|ηi) =
E∑
l=1

tl�τi

ln{P (i,tl)δi,nl
+ [1 − P (i,tl)](1 − δi,nl

)},

(4)
where we ignore links that are older than node i. This function
can be maximized with respect to ηi for any given A. Global
model parameters such as, in our case, A and the time
scale of relevance decay Θ can be estimated by minimizing∑

i lnLi(D|η̃i) with respect to them (estimates η̃i then need
to be updated to reflect new values of the global parameters).

The mean-field approximation to the maximum likelihood
estimation (MF-MLE) makes it easy to change the functional
form of relevance decay R(t) for any individual node and
thus classify their behavior (see Ref. [23, Chapter 8] for
more information on classification problems). While we do not
pursue this direction here, it is of particular significance to the
analysis of real data where various behavioral classes of nodes
are likely to coexist. Also, the vector of node parameters can
be easily extended by, for example, making the decay time Θ

node dependent, while still maintaining the low-dimensional
nature of the resulting likelihood optimization.

IV. ESTIMATION EVALUATION

To evaluate various estimation methods, we assess the
maximal likelihood that they are able to achieve. Parameter
estimation is simplified by assuming that the functional form
of relevance decay is known and only model parameters
A,Θ,{Ii}i are to be estimated. Since the true parameter values
are available to us, we also measure Pearson’s correlation
between true values I and their estimates Ĩ , r(I,Ĩ ) (the
higher the value, the better the estimates). In evaluating this
correlation, nodes with final degree four and less are excluded
because their estimates are too noisy due to the lack of data.
The advantage of using Pearson’s correlation to measure the
accuracy of estimates lies in its invariance with respect to
rescaling of Ĩi which fits well with the scale-invariance of the
PA-RD model itself. The accuracy of estimates of A and Θ is
measured as well.

Simulations reveal that MLE sometimes converges to
estimates which are far from the true parameter values. To
explain the reason for this behavior, Fig. 2 shows the results
of constrained likelihood maximization where we artificially
fix A and Θ at various values, many of which are far from the
true values A = 1 and Θ = 50. The corresponding maximal
log-likelihood values exhibit a shallow maximum in A with
the optimal value 2.7 lying significantly above the true value
1. Worse, the maximum in Θ is nonexistent: as Θ increases,
log-likelihood increases too and saturates at a value which
is maintained also in the limit Θ → ∞ (i.e., no relevance
decay). Resulting Θ̃ thus depends on the initial values of model
parameters and the procedure in which they are iteratively
improved in the search for maximal likelihood. While Fig. 2
shows results for one network realization, the same behavior
can be seen for all realizations of the input artificial network.
Inspection of the initial relevance values estimated for large
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FIG. 2. (Color online) Results of a constrained MLE procedure
where A and Θ are fixed at various values and log-likelihood is
thus maximized only with respect to the initial relevance of each
node. These results were obtained for one realization of the artificial
network model with z = 12 which corresponds to nF = 30 and
EF = 480.

Θ makes it clear that the lack of relevance decay is then
compensated by later nodes being assigned higher initial
relevance than earlier ones. As a result, MLE estimates then
do not reflect the true initial relevance values but rather the
order in which nodes are introduced in the network. This
is demonstrated by the second panel of Fig. 2 where r(I,Ĩ )
reaches maximum for Θ close to the true value of 50 and
then quickly drops to negative values for larger values of Θ .
The negative correlation values are observed here because
in this particular network realization, node arrival times are
negatively correlated with their initial relevance values. The
overall maximum of r(I,Ĩ ) lies at A = 0.94 and Θ = 51.

The problem of excessive estimated decay time Θ can be
solved by introducing an additional term in log-likelihood with
the aim to penalize solutions with high Θ . This is similar to
regularization schemes such as the least absolute shrinkage
and selection operator (LASSO) [24] which are often used
to constraint solutions in high-dimensional optimization prob-
lems [13]. We choose here to maximize

1

E
lnLi(D|Ii,A,Θ) − ωr(τ,Ĩ )g[r(τ,Ĩ )], (5)

where g(x) = x for x > 0 and 0 otherwise; the additional
term penalizes positive correlation between nodes’ arrival
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FIG. 3. (Color online) Impact of the log-likelihood penalization
term given in Eq. (5) as a function of ω for various values of z. Mean
values and their standard errors were obtained by estimation in 1000
independent network realizations (the same applies to Table I and
Fig. 4). Estimates of Θ are large for z = 10 and thus missing in the
inset.

times and their estimated initial relevances. As shown in
Fig. 3, MLE estimates with the correlation term r(τ,Ĩ ) are
superior to the original ones over a broad range of ω. The
difference is particularly large for sparse networks where
standard MLE strongly overestimates Θ . Note that unlike for
large parts of Fig. 2(b), the average correlation value r(I,Ĩ )
in Fig. 3 is positive even when Θ̃ is large. This is because
while Fig. 2 presents outcome for a single network realization,
Fig. 3 averages over many of them and the resulting average
correlation is positive.

We proceed now to a direct comparison of the discussed
estimation methods. As can be seen in Table I, all methods
produce log-likelihood of a comparable magnitude but their
parameter estimates (only Ã and Θ̃ are shown here) differ.
Notably, while Θ̃ is close to the true value, the error of Ã is
substantial. One can say that MLE tends to overestimate the
tendency to random connections (as A grows, the influence
of preferential attachment vanishes) in this artificial system.
We found no signs of this error vanishing with the data size
which can be probably attributed to the network growth which
constantly injects new nodes with zero degree in the system.
The highest correlation between I and Ĩ is achieved with
penalized MLE estimation when ω = 1. Performance of the
methods is further illustrated in Fig. 4 as a function of z.
As expected, r(I,Ĩ ) increases with z for both exact MLE
methods and penalized estimations always outperform the
unpenalized ones. The behavior is different for results obtained
with the mean-field MLE whose quality slowly deteriorates as

TABLE I. Estimates obtained with respective methods for z = 14
(which corresponds to nF = 80, EF = 1120). Numbers in brackets
report uncertainty of the last digit given by the standard error of the
mean.

Method lnL/E Ã Θ̃ r(I,Ĩ )

MLE, ω = 0 −1.350(5) 2.86(2) 54.4(1) 0.767(5)
MLE, ω = 1 −1.350(5) 2.85(2) 51.8(1) 0.835(3)
MF-MLE −1.381(5) 6.09(9) 65.2(2) 0.722(2)
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FIG. 4. (Color online) Performance of estimation methods vs
mean degree z of artificial networks.

z increases. Obviously, further improvements are necessary to
make this otherwise promising method applicable in practice.

V. ANALYSIS OF REAL DATA

To illustrate the potential of high-dimensional statistical
analysis of network data, we finally apply it to real data
and compare the level of support which it gives to various
network models. The analyzed data originates from the
interdisciplinary physics community web site Econophysics
Forum (see Ref. [25]) which is run by the research group of
Yi-Cheng Zhang at the University of Fribourg since 1998. We
parsed server web log files collected from 6th July 2010 until
31st March 2013 (a time span of 1000 days). Activities of web
bots and other automated access were removed from the data.
While web logs contain all user actions on the web site, we
kept only entries corresponding to downloads of papers posted
on the Econophysics Forum. The corresponding user-paper
bipartite network consists of 844 paper-nodes and their 24 581
links [26]. As expected, the degree distribution of paper-nodes
is broad (the maximal degree of 741 is much greater than the
average degree of 29), making this data a good candidate for
being explained by preferential attachment or related models.

We use this data to evaluate two low-dimensional and
four high-dimensional models. The low-dimensional models
are random attachment to an existing node (RAND) and the
standard preferential attachment (PA). The high-dimensional
models are preferential attachment with heterogeneous (node-
dependent) additive term (PA-H), preferential attachment with
heterogeneous and decaying additive term (PA-HD) which

has been introduced in Ref. [18], preferential attachment
with constant relevance (PA-R; such constant relevance is
usually referred as fitness in past works [27]), and finally
preferential attachment with relevance decay (PA-RD). The
functional form of the probability of a new link attaching to
an existing node at time t , Pi(t), is shown in Table II for each
model. The form of Ai(t) suggested for PA-HD in Ref. [18] is
generalized to Ai(t) = Ii(t) exp{−[(t − τi)/Θ]β} which in our
case performs better than the original form without β. Note that
Ref. [28] reports a similar behavior in the popularity growth of
stories in digg.com. For simplicity, we assume a similar form
of Ri(t) in PA-RD, Ri(t) = Ii(t) exp{−[(t − τi)/Θ]β} + R∞,
which in fact roughly corresponds to the empirical relevance
decay results presented in Ref. [16]. A nonvanishing absolute
term R∞ is needed here to allow for links occasionally
attaching to old nodes. The log-normal decay form reported
in Refs. [20,29] does not yield better fit in our case, perhaps
as a result of immediate response of the Econophysics Forum
users which makes the increasing relevance phase provided
by log-normal curves unfitting. For PA-RD, we report results
obtained with the penalization term (ω = 1) which, however,
differ little from the results obtained with ω = 0.

To maximize the likelihood functions we use the iterative
extrapolating approach described in Sec. III A. This procedure
is run ten times with independent random initial configura-
tions; the best result obtained with each method is reported in
Table II. In addition, the table shows also the number of model
parameters kM and the corrected Akaike information criterion

CAIC(M) = −2 ln[maxL(D|M)] + 2kME

E − kM − 1
, (6)

where the maximum is taken over the whole parameter space
of model M . CAIC(M) measures how well model M fits the
data and corrects for a finite sample size [30]. It can be used
to construct model weights [31] in the form

wM ∼ exp
{[

min
M ′

CAIC(M ′) − CAIC(M)
]
/2

}
, (7)

where the proportionality factor is obtained by requiring the
sum of all model weights to equal one. Finally, we report
the values of global model parameters that maximize data
likelihood for each model.

Our comparison of models contains several notable out-
comes. First, both low-dimensional models are clearly insuf-
ficient to explain the data. In fact, preferential attachment
yields only marginally better fit than random attachment.
Second, high-dimensional models without time decay perform
significantly worse than their counterparts with time decay.

TABLE II. Maximum likelihood estimates and model selection results for the Econophysics Forum data. Model weights wM defined by
Eq. (7) show that there is overwhelming evidence in favor of the model with decaying relevance (PA-RD).

Model M Pi(t) kM lnL/E CAIC(M) wM Ã R̃∞ Θ̃ β̃

RAND 1 0 −5.805 285 364 0
PA ki(t) + A 1 −5.767 283 519 0 137
PA-H ki(t) + Ai N −4.641 229 931 0
PA-HD ki(t) + Ai(t) N + 2 −4.111 203 872 0 1.9 0.42
PA-R [ki(t) + A]Ri N + 1 −4.641 229 905 0 1108
PA-RD [ki(t) + A]Ri(t) N + 4 −4.043 200 536 1 60 0.0088 3.2 0.64
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This is not surprising because we fit the models to an
information network where, as argued in Ref. [16], aging of
nodes is of prime importance. Third, while the log-likelihood
values obtained with PA-HD and PA-RD are both substantially
better than those obtained for other models, the difference
between them is big enough for the Akaike information
criterion to assign an overwhelming weight to PA-RD. (The
resulting weight of PA-HD, which has been truncated to zero
in Table II, is around 10−724.)

For PA-RD, the effective lifetime corresponding to the
obtained relevance decay parameters is

〈t〉 :=
∫ ∞

0 tR(t)dt∫ ∞
0 R(t)dt

= Θ̃�(2/β̃)

β̃�(1 + 1/β̃)
≈ 8 days, (8)

where we neglect R∞ which is small, yet it formally causes the
above-written expression to diverge. This lifetime well agrees
with the fact that papers typically spend one week on the front
page of the Econophysics Forum. The value of the additive
term Ã ≈ 60 is relatively high in comparison with the average
node degree of 29 which suggests that in the studied dataset,
the influence of preferential attachment (i.e., attachment
probability proportional to node degree) is relatively weak. An
alternative explanation is that our assumed relevance decay
function R(t) disagrees with the data and thus an increased
proportion of “random” connections is necessary to model the
data. A more detailed analysis is necessary to establish what
is the real reason behind this apparent randomness.

Since likelihood computation is costly and during its
maximization in numerous variables it needs to be carried
out many times, obtaining the results presented in Table II
on a standard desktop computer takes several hours. It is thus
natural to ask whether significant evidence in favor of one of
the models cannot be obtained by analyzing subsets of the
data which would save considerable computational time. To
this end, we evaluated weights of three representative models
(PA, PA-HD, and PA-RD) on data subsets corresponding to
time spans (which we refer to as subset lengths, L) ranging
from 4 to 100 days. We generated 1000 subsets for each
L by choosing their starting day at random. Results shown
in Fig. 5 demonstrate that while particularly short subsets
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FIG. 5. (Color online) Model weights as a function of subset
length for PA, PA-HD, and PA-RD. Lines show the mean weights
and shaded areas mark their standard deviation based on 1000 random
subsets drawn for each subset length.

favor the low-dimensional PA model, the situation quickly
changes and this model is virtually eliminated as soon as L �
30. Two high-dimensional models, which enjoy comparable
support until L � 30, are clearly distinguished at L = 60 and
above. Meanwhile, evaluation of multiple small-scale subsets
is fast: the computational time required for one likelihood
maximization of PA-RD drops from 10 minutes for the whole
1000-day data spanning to 2 seconds for a 100-day subset.
We can conclude that this approach allows us to efficiently
discriminate between models even when no particularly
efficient approach to likelihood maximization is available.

VI. DISCUSSION

We studied the use of maximum likelihood estimation in
analysis of high-dimensional models of growing networks.
Artificially created networks with preferential attachment
and decaying relevance [16] were used to show that a
near-flat likelihood landscape makes the standard likelihood
maximization rather unreliable and sensitive to the initial
choice of model parameters. Introducing a penalization term
effectively modifies the landscape and helps to avoid “wrong”
solutions. The resulting MLE-based scheme outperforms the
standard likelihood maximization for a wide range of model
networks. On the other hand, both original and modified MLE
overestimate the additive parameter A which is crucial in the
early stage of a node’s degree growth. How to improve on that
remains an open question.

We then tested the previously developed methods on real
data where both preferential attachment and relevance decay
are expected to play a role. In this part, the focus is on com-
paring various competing network models that may be used to
explain the data. We show that the data shows overwhelming
evidence in favor of one of the models and that sufficiently
strong evidence can be achieved by studying small subsets of
the data. Model evaluation by such subset sampling is of partic-
ular importance to large-scale datasets where straightforward
likelihood maximization is prohibitively time consuming.

Up to now, models of complex networks have been
appraised mostly by comparing aggregate characteristics
of the produced networks (degree distribution or clustering
coefficient, for example) with features seen in real data. The
caveat of this approach is that many network characteristics
are computed on static network snapshots and are thus of little
use for the measurement of growing networks. Empirical node
relevance [16] is designed especially for growing networks
but more metrics, targeted at specific situations and questions,
are needed.

Despite potential improvements in this direction, to gain
real evaluative and discriminative power over network models,
robust statistical methods such as maximum likelihood estima-
tion need to be relied on. We have made a step in this direction
which, hopefully, will contribute to consolidating and further
developing the field of network models. Open issues include
estimates of parameter uncertainty in the case of real data by
bootstrap methods [32,33], identification of situations where
maximum likelihood estimates converge to true parameter
values (including model misspecification as in Ref. [21] which
is of particular importance to parameter estimates in complex
systems), and improvements of the mean-field likelihood
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estimation which was introduced in Sec. III B. It needs to
be stressed that the potential impact of parameter estimation
far exceeds the academic problem of model validation: Model
parameters, once known, can be directly useful in practice.
In the case of preferential attachment with relevance decay,
for example, the overall rate of relevance or interest decay is
closely connected to the most successful strategy in the compe-
tition for attention [28]. On the other hand, the initial, current,
or total relevance values of individual items can be used to
detect which items deserve to be examined more closely.
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APPENDIX : ON THE SHAPE OF THE
LIKELIHOOD FUNCTION

Greedy sequential optimization is possible because the
likelihood function in our case does not have a large number

of disparate local minima. We explain this fact for the PA-RD
model which is parametrized by the initial node relevances Ii

and global parameters A and Θ . Reference [16] shows that the
expected final degree of node i grows with Ii which implies
that L(D|I,A,Θ) has a unique maximum in Ii when all other
parameters are fixed. Likelihood of the data thus has a unique
maximum in the space of all initial relevance values. Similar
behavior can be observed for A. When A → ∞, likelihood
of the artificial data is small because the model simplifies
to random attachment which is obviously at odds with the
data. As A decreases, the likelihood grows but it eventually
saturates and decreases when A becomes so small that new
nodes cannot attract their first links. The case is different for
Θ . Its extremely small values can be easily refuted by the
data as they would imply links always arriving at the latest
node. On the other hand, large Θ can be accommodated by
an appropriate choice of the initial relevance values which is
demonstrated by Fig. 2. To prevent the sequential updating
of parameters from converging to a wrong solution, one can
for example add a suitable penalization term as we do in
Eq. (5).
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