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Supplemental Materials and Methods 6 

Materials. FM4-64 was from Molecular Probes, 5’-Fluoroorotic Acid (FOA) from Toronto Research 7 

Chemicals, cycloheximide, phytosphingosine, 2,4-dinitrophenylhydrazine and Lucifer Yellow from 8 

Sigma. [14C]serine was from ARC, St. Louis, MO; monomethylamine (33% in ethanol) was from 9 

Fluka AG, Buchs, Switzerland. Anti-DNP antibodies were from Dako. Protease inhibitors were from 10 

Roche Diagnostics GmbH, Mannheim, Germany. 3,3'-dihexyloxacarbocyanine iodide was from 11 

AnaSpec.  12 

Synthetic Genetic Array. SGA analysis was performed as described previously (Collins et al., 2010). 13 

Briefly, the query strains (Y7092, FBY5162, FBY5173) were robotically crossed against an array of 14 

4978 individual MATa knockouts of nonessential genes to generate double or triple mutant arrays. The 15 

resulting double and triple mutants were then screened for genetic interactions affecting cell growth. 16 

When selecting for triple mutants, the plates were further replicated in parallel on plates containing 17 

also Aureobasidin A at a concentration, which did not give visible growth inhibition of WT cells (0.03 18 

µg/ml). They also were replicated onto plates containing 25 µM PHS, or 100 mM Ca2+, or onto 19 

inositol free medium at 37°C and at 37°C in normal medium. The measurement of growth and 20 

following analysis and visualization of the high-throughput screen data were conducted with the help 21 

of the ScreenMill software (Dittmar et al., 2010). Additionally, the interactions pointed by the screen 22 

were verified by independent crosses, tetrad dissection or random sporulation and by serial dilution 23 

plating to assess colony sizes, cloning efficiency and growth rates. 24 

Metabolic labeling of cells with [14C]serine, lipid extraction, mild base treatment and thin-layer 25 

chromatography. Cells were grown in synthetic minimal medium. 3.0 OD600 units of exponentially 26 

growing cells (i.e. 3 ml of a culture having an OD600 of 1.0) were harvested, resuspended in 250 µl of 27 

the same medium supplemented with 10 µg/ml of cycloheximide (CHX). After 10 min of 28 

preincubation, 4 µCi of [14C]serine were added and cells were incubated for 40 min at 30°C. Then the 29 

samples were diluted with 750 μl of fresh minimal medium supplemented with CHX and labeling was 30 

continued for a further 120 min. Labeling was terminated by adding NaN3 and NaF (10 mM final 31 

concentrations) and chilling cells on ice. Cells were resuspended in chloroform:methanol (2:1) and 32 

broken with glass beads in the cold. The extract was kept apart and the pellet was re-extracted 33 

sequentially with chloroform:methanol (1:1) and EtOH:H2O:Et2O:Pyridin: 25% NH4OH 34 

(15:15:5:1:0.018), which achieves quantitative extraction of all complex sphingolipids (Hanson and 35 



Lester, 1980). Extracts were combined and solvent was evaporated under vacuum in a rotary 36 

evaporator. Incorporation into lipids usually amounted to 5 % of added radioactivity. Where indicated, 37 

lipids were subjected to mild base hydrolysis with mono-methylamine (MMA). Lipids were 38 

resuspended in 400 µl of MMA (33% in ethanol) or, as a negative control, in methanol, and incubated 39 

at 53°C for 1 hour. Then, solvents were evaporated under vacuum. All lipids were resolved by 40 

ascending TLC on silica gel plates after having been desalted by Folch partitioning as described (Folch 41 

et al., 1957). Extracts from metabolically labeled cells were resolved with chloroform/methanol/glacial 42 

AcOH (90:1:9) or CHCl3:MeOH:KCl (55:45:5) solvent systems. When the untreated and deacylated 43 

lipid extract was run side by side, material from an equivalent number of cells was spotted. 44 

Radioactivity was detected and quantified by one- and two-dimensional radioscanning using a 45 

Berthold radioscanner and visualized by fluorography or radioimaging using the Bio-Rad Molecular 46 

Imager FX.  47 

Isolation of detergent resistant membranes and Triton X-100 solubilization assay. For the 48 

isolation of detergent resistant membranes, published protocols were used (Bagnat et al., 2000; 49 

Malinska et al., 2004). Crude membranes corresponding to 200 µg protein were incubated in 300 µl 50 

cold TNE buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA) containing protease 51 

inhibitors (Roche Diagnostics GmbH, Mannheim, Germany) and 1% Triton X-100 for 30 min on ice. 52 

Subsequently, the samples were overlaid with an Optiprep (Nycomed) step gradient and centrifuged 53 

for 3 h at 208,000 × g in a Beckman SW60 rotor at 4°C. After centrifugation, six equal fractions were 54 

collected, and the proteins were immunodetected on Western blots. 55 

FM4-64 staining to monitor endocytosis. FM4-64 was used to stain vacuoles and endosomes as 56 

described previously (Baggett et al., 2003). Yeast cells were cultured at 24˚C. Five separate aliquots of 57 

1 ml each were centrifuged and cooled on ice. Each pellet was resuspended in 50 µl of ice cold FM4-58 

64 (20 µg/ml). Tubes were incubated for 20 min in an ice-water bath to allow the dye to label the 59 

plasma membrane. For the time point zero, 1 ml ice-cold rich medium without any carbon source was 60 

added, cells were centrifuged 3 min at 300 × g, 4°C and washing was repeated. The pellet was 61 

resuspended in 50 µl of rich medium with no carbon source and kept on ice from this point onward. 62 

Remaining tubes were washed two times with cold rich medium containing a carbon source and finally 63 

resuspended in 1 ml of the same.   These tubes were placed into a water bath at 26˚C with shaking. 64 

Tubes were removed after 5, 10, 20, and 45 min. When tubes were removed, the cells were washed 65 

twice with ice-cold rich medium without a carbon source and resuspended in 50 µl of rich medium 66 

with no carbon source and kept on ice. For fluorescent visualization, cells were mounted onto 67 

Concanavalin A (ConA)–coated cover slips and observed with a rhodamine/TRITC filter. 68 

Lucifer yellow (LY) accumulation in the vacuole. Fluid-phase endocytosis was assayed using the 69 

dye LY as described previously (Baggett et al., 2003). Yeast cells were cultured in YPD medium 70 

overnight to an OD600 of ∼ 0.1 at 30˚C. One ml aliquots of cell suspension were sedimented by 71 

centrifuging 2 min at 800 × g at room temperature. The cell pellet was resuspended in 90 μl of YPD 72 



and then 10 μl of 40 mg/ml of LY was added. Holes were pierced through the top of the tubes to allow 73 

aeration of the cells during the LY uptake step. Tubes were incubated at 24°C for 1.5 hrs in the dark. 74 

Next, 1 ml of ice-cold phosphate buffer with 10 mM of NaN3 and NaF was added and the tubes were 75 

centrifuged. Washing was repeated three times, resuspending the pellet between washes. Cells were 76 

mounted on ConA–coated cover slips and viewed by fluorescence microscopy using a FITC filter. 77 

CPY secretion assay. Cells were grown overnight to OD600 1-2. 10 OD600 units were collected, 78 

washed and resuspended in 1 ml of water. Tenfold dilutions of the various strains were deposited onto 79 

YPD plates, incubated for 3 days at 30°C and the next day overlaid with nitrocellulose. After 12 h of 80 

incubation at 30˚C, the nitrocellulose filter was washed with water and processed for Western blotting 81 

using anti-CPY antibodies.  82 

Protein carbonylation assay. The level of protein carbonylation was assessed as described before 83 

(Dirmeier et al., 2002). 84 

 85 

Supplemental Figure legends 86 

Fig. S1. The localization of mtGFP, Vph1p, Sec63p, Sec7p and Sed5p is normal in yy∆∆ cells. 87 

WT and yy∆∆ cells expressing either mtGFP, VPH1-GFP, SEC63-GFP, SEC7-DsRed or GFP-SED5 88 

from single copy vectors were grown to exponential phase at 30°C, using galactose as a carbon source 89 

for the mtGFP and Vph1p expression. mtGFP contains GFP fused to the first 69 amino acids of the 90 

subunit 9 of the F0 ATPase from Neurospora crassa, under control of the GAL1 promoter 91 

(Westermann and Neupert, 2000).  92 

Fig. S2. yy∆∆ cells show normal kinetics of endocytosis. a, WT and yy∆∆ cells were grown to early 93 

log phase on YPD medium at 24°C. Cells were incubated with FM4-64 (20 μg/ml final concentration) 94 

in an ice bath for 20 min, washed and then further incubated at 26°C. After 0, 5, 10, 20 and 45 min 95 

cells were visualized under the fluorescence microscope. b, exponentially growing cells were 96 

incubated for 1.5 h at 24°C in rich YPD medium containing lucifer yellow (LY, 4 mg/ml), washed and 97 

viewed under the fluorescent microscope. 98 

Fig. S3. CPY and Gas1p are targeted normally in yy∆∆. a, tenfold dilutions of the various strains 99 

were deposited onto YPD plates, incubated for 3 days at 30°C and overlaid with nitrocellulose. The 100 

nitrocellulose filter was processed for Western blotting using anti-CPY antibodies. vps4∆ cells are 101 

deficient in vacuolar targeting and serve as positive control. b, cell membranes of WT and yy∆∆ cells 102 

containing either CAN1-GFP, GAS1-GFP, or SEC63-GFP were incubated with 1% of Triton X-100 on 103 

ice for 30 min and then loaded at the bottom of a step-density Optiprep gradient (Bagnat et al., 2000). 104 

After centrifugation, six fractions were collected and analyzed in a Western blot for the presence of the 105 

GFP-marked proteins, the SEC63-GFP serving as a detergent sensitive control. Fractions 1-2 contain 106 

the detergent resistant membranes floating on top of the gradient, fractions 4 – 6 the soluble proteins 107 



not associated with detergent resistant membrane domains.  108 

Fig. S4. Serine incorporation into lipids in yy∆∆ cells is qualitatively normal. a, WT and yy∆∆ 109 

cells were cultured with or without 3 μg/ml of AbA for 1 h. Then the cells were labeled with 110 

[14C]serine for 160 min at 30°C in the same medium as used for preincubation. The extracted lipids 111 

were deacylated or not with MMA, therewith leaving sphingolipids intact but hydrolyzing labeled 112 

glycerophospholipids. Lipids were resolved by TLC in chloroform:methanol:glacial AcOH (90:1:9). b, 113 

the same as in A but the lipids were resolved in CHCl3:MeOH:0.25% KCl in H2O (55:45:5), with IPC-114 

C, IPC-D and MIPC highlighted with a red asterisk. Cers = ceramides. 115 

Fig. S5. a, hydroxylation or desaturation of fatty acids decreases their affinity for Ypc1p. 116 

Reverse ceramidase activity of microsomal detergent extracts of 1∆.YPC1 cells were assayed in 117 

presence of various concentrations of unlabeled fatty acids (0 – 300 nmol) as described in Fig. 5C. b, 118 

long chain base specificity of Ypc1p-dependent microsomal reverse ceramidase activity. The 119 

Ypc1p-dependent ceramide synthase activity was assayed under standard conditions but replacing 120 

PHS by LCBs that are not normally present in yeast cells. The amounts of ceramide-[3H]C16 are 121 

indicated as a percentage of the amounts obtained in the standard assay (5 nmol PHS). Result of a test 122 

done in duplicate is indicated.  123 

Fig. S6. Growth of ypc1∆, ydc1∆ and yy∆∆ cells on non-fermentable carbon sources. Ypc1∆, 124 

ydc1∆, yy∆∆ cells and their isogenic WT were grown to exponential phase, collected and resuspended 125 

at OD600 of 1.0 in media with different carbon sources, such as dextrose (2%, YPD), ethanol (3%, 126 

YPEthanol), glycerol (2%, YPGlycerol) and lactate (2%, YPLactate). Cell density was measured at 127 

indicated times by measuring OD600. 128 

Fig. S7. Protein carbonylation in the presence of H2O2. yy∆∆ and WT strains were grown to 129 

exponential phase in YPD medium, cultures were supplemented with 1 mM H2O2 and further grown 130 

for 24 hours at 30˚C. After culturing, cells had reached densities of OD600 ≈ 10 and were harvested, 131 

spheroplasts were prepared and lysed in hypotonic medium. ER-derived microsomes and 132 

mitochondrial membranes were isolated by sedimentation at 12,100 × g, remaining cellular 133 

membranes by subsequent centrifugation at 100’000 × g yielding also the cytosolic supernatant 134 

fraction. 5 µg of the proteins from each fraction were derivatized with 2,4-dinitrophenylhydrazine. The 135 

derivatized proteins were separated by SDS-PAGE and probed with anti-DNP antibodies on a Western 136 

blot.  137 

Fig. S8. Chronological life span of ypc1∆ and ydc1∆ cells. Ypc1∆::kanMX and ydc1∆::kanMX 138 

deletions in the BY background (EUROSCARF collection) were grown to stationary phase (OD600 ≈ 139 

15) in YPD and then transferred to sterile water (day 0). Cells were kept at 25°C without shaking and 140 

CFUs were determined by plating cells at the indicated days onto YPD onto 4 plates at different 141 

dilutions. Viability is given as percent of colonies counted at day 0 (=100%), which was > 400 CFUs 142 

for all strains. (Due to caloric restriction and to the possibility to feed on dying cells, the CFUs drop 143 



relatively slowly.)  144 

Fig. S9. Localization of Ypc1p-GFP in exponentially growing and stationary cells. 145 

FY1679.YPC1-GFP cells were viewed after having been grown at 30°C in complete synthetic medium 146 

to late log phase viewed (OD600 = 0.9) and stationary phase (OD600 of 10). Cells were analyzed using a 147 

Delta vision Deconvolution microscope (Applied Precision, Issaquah, WA) with 100x oil objective 148 

and individual Z stacks are shown. (This microscope is different from the one used for Fig. 6B). 149 

Diffuse cytosolic fluorescence comes from other Z stacks and is due to amplification. Comparison 150 

with Nomarski pictures shows that vacuoles are spared. The white bar represents 6.4 µm. Two 151 

consecutive Z stacks of the same cells are shown in the red box.  152 
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 156 

Table S1. Yeast Saccharomyces cerevisiae strains. 157 

Strains Genotype Reference 

WT (BY4742) MATα his3∆1 leu2∆0 lys2∆0 ura3∆0 EUROSCARF, 
(Frankfurt, GE) 

yy∆∆ (FBY2182) BY4742, but ypc1∆::kanMX 
ydc1∆::kanMX∆::natMX4 This study 

ypc1∆  BY4742, but ypc1∆::kanMX EUROSCARF 
ydc1∆ BY4742, but ydc1∆::kanMX  EUROSCARF 

Y7092 MATα can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ  
ura3Δ0 met15Δ0 C. Boone 

ypc1∆ (FBY5162) Y7092, but ypc1Δ::LEU2 This study 
yy∆∆ (FBY5173) Y7092, but ypc1Δ::LEU2 ydc1Δ::natMX4  This study 

WT.URA3 (FBY5319) 
MATα can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 
leu2Δ0::loxP-LEU2-loxP ura3Δ0 met15Δ0 
containing pNP302 

This study 

WT.YPC1 (FBY5320) MATα can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 
leu2Δ0::loxP-LEU2-loxP ura3Δ0 met15Δ0 This study 

yy∆∆.GAL-YPC1 (FBY5179) As FBY2182, but containing pBF842 This study 
yy∆∆.GAL-HIS3 (FBY5181) As FBY2182, but containing pBF841 This study 
yy∆∆.YPC1 (FBY5182) As FBY2182, but containing pYPC1-URA3 This study 
yy∆∆.URA3 (FBY5180) As FBY2182, but containing pRS316 This study 
WT.Fus-Mid (FBY5280) As BY4742, but containing pTPQ55 This study 
yy∆∆.Fus-Mid (FBY5290) As FBY2182, but containing pTPQ55 This study 

FY1679.YPC1-GFP 
MATa/α ura3-52/ura3-52 trp1Δ63/TRP1 
leu2Δ1/LEU2 his3Δ200/HIS3 containing pYPC1-
GFP  

(Natter et al., 
2005) 

yy∆∆.CAN1-GFP (FBY5171) As FBY2182, but containing pCAN1-GFP This study 
WT.CAN1-GFP (FBY5172) As BY4742, but containing pCAN1-GFP This study 
yy∆∆.GAS1-GFP (FBY5187) As FBY2182, but containing Yep24-GAS1.GFP This study 
WT.GAS1-GFP (FBY5186) As BY4742, but containing Yep24-GAS1.GFP This study 

yy∆∆.FUR4-GFP (FBY5197) As FBY2182, but containing YCplac33-
FUR4.GFP This study 

WT.FUR4-GFP (FBY5204) As BY4742, but containing YCplac33-FUR4.GFP This study 
yy∆∆.PMA1-GFP (FBY5274) As FBY2182, but containing pPMA1-GFP This study 
WT.PMA1-GFP (FBY5273) As BY4742, but containing pPMA1-GFP This study 
yy∆∆.SEC63-GFP (FBY5165) As FBY2182, but containing pSEC63-GFP This study 
WT.SEC63-GFP (FBY5166) As BY4742, but containing pSEC63-GFP This study 

ypc1∆vps4∆ (FBY5293) 
MATa can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 
leu2Δ0 ura3Δ0 met15Δ0 ypc1Δ::LEU2 
vps4Δ::kanMX 

This study 

vps4∆ MATa his3Δ1, leu2Δ0, met15Δ0, ura3Δ0 
vps4∆::kanMX EUROSCARF 

yy∆∆.PHM5-GFP As FBY2182, but containing pPHM5416 This study 



WT.PHM5-GFP As BY4742, but containing pPHM5416 This study 
yy∆∆.SNC1-GFP As FBY2182, but containing pGS416-SNC1 This study 
WT.SNC1-GFP As BY4742, but containing pGS416-SNC1-GFP This study 
yy∆∆.SSO1-GFP As FBY2182, but containing pSSO1416-GFP This study 
WT.SSO1-GFP As BY4742, but containing pSSO1416-GFP This study 
yy∆∆.STE2-GFP As FBY2182, but containing pSTE2416 This study 
WT.STE2-GFP As BY4742, but containing pSTE2416 This study 
yy∆∆.mtGFP (FBY5184) As FBY2182, but containing pYES-mtGFP This study 
WT.mtGFP (FBY5183) As BY4742, but containing pYES-mtGFP This study 
yy∆∆.VPH1-GFP (FBY5169) As FBY2182, but containing pVPH1-GFP This study 
WT.VPH1-GFP (FBY5170) As BY4742, but containing pVPH1-GFP This study 
yy∆∆.SEC7-RFP (FBY5193) As FBY2182, but containing pTQ128 This study 
WT.SEC7-RFP (FBY5195) As BY4742, but containing pTQ128 This study 
yy∆∆.SED5-GFP (FBY5201) As FBY2182, but containing pSED5-GFP This study 
WT.SED5-GFP (FBY5202) As BY4742, but containing pSED5-GFP This study 
YPK9 MATa ade2-101ochre his3-∆200 leu2-∆1 lys2-

801amber trp1-∆63 ura3-52 
(Jiang et al., 
1998) 

1∆.YPC1 YPK9 lag1∆::TRP1 containing pPK183 This study 
2∆.YPC1  YPK9 lag1∆::TRP1 lac1∆::URA3 containing 

pPK183 
(Jiang et al., 
2004) 

FBY7478 MAT a/α his3Δ1/his3Δ1, leu2Δ0/leu2Δ0, 
lys2Δ0/LYS2, ura3Δ0/ura3Δ0, met15Δ0/met15Δ0, 
LYP1/lyp1Δ, CAN1/can1Δ::STE2pr-Sp_his5  

 

FBY7479 MAT a/αhis3Δ1/his3Δ1, leu2Δ0/leu2Δ0, 
lys2Δ0/LYS2, ura3Δ0/ura3Δ0, met15Δ0/met15Δ0, 
LYP1/lyp1Δ, CAN1/can1Δ::STE2pr-Sp_his5 
ypc1::kanMX4/YPC1 
ydc1::kanMX4::natMX/YDC1 

This study 

FBY7480 MAT a/α his3Δ1/his3Δ1, leu2Δ0/LEU2, 
lys2Δ0/LYS2, ura3Δ0/ura3Δ0, met15Δ0/met15Δ0, 
LYP1/lyp1Δ, CAN1/can1Δ::STE2pr-Sp_his5, 
ypc1::kanMX4/ypc1::kanMX::ura3::LEU2, 
ydc1::kanMX4::natMX/ydc1::natMX  

This study 

 158 
159 



 160 

Table S2. Plasmids. 161 

pNP302 CEN ARS URA3, ADH1 promoter C. De Virgilio 
pYPC1-URA3 YPC1 in pNP302  This study 
pBF841 2µ HIS3, GAL promoter N. Ramachandra 
pBF842 YPC1 in pBF841 N. Ramachandra 
pSTE2416 STE2-GFP in pRS416 CEN URA3, TPI1 promoter F. Reggiori 

pPHM5416 GFP-PHM5 in pRS416 CEN URA3, TPI1 promoter (Reggiori and Pelham  
2001) 

pSSO1416 GFP-SSO1 in pRS416 CEN URA3, TPI1 promoter F. Reggiori 

pGS416-SNC1 GFP-SNC1 in pRS416 CEN URA3, TPI1 promoter (Lewis et al., 2000) 
H. Pelham 

pSED5-GFP GFP-SED5 CEN URA3 
http://www2.brc.riken.jp/cache/dna/8658 A. Nakano 

pTQ128 SEC7-DsRed in CEN LEU2, ADH1 promoter K. Simons 

pYES-mtGFP mtGFP in 2µ URA3, GAL promoter (Westermann and 
Neupert, 2000) 

pVPH1-GFP VPH1-GFP CEN URA3  R. Schneiter 
pSEC63-GFP SEC63-GFP in 2µ URA3 R. Schneiter 
pCAN1-GFP CAN1-GFP in 2µ URA3, ADH1 promoter W. Tanner 
pFUR4-GFP YCplac33-FUR4-GFP CEN URA3, endogenous promoter W. Tanner 
pPMA1-GFP PMA1-GFP CEN URA3, endogenous promoter R.Schneiter 
YEp24-GAS1.GFP GAS1-GFP in 2µ URA3, endogenous promoter L. Popolo 
pTPQ55 Fus-Mid-GFP in CEN URA3, GAL promoter K. Simons 
pYPC1-GFP YPC1-GFP in pRS416 URA3 TEF1 promoter (Natter et al., 2005) 
pPK183 YPC1 in 2µ with endogenous promoter LEU2 (Jiang et al., 2004) 
 162 
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