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Abstract. Lipschitz and horizontal maps from an n-dimensional space into the
(2n + 1)-dimensional Heisenberg group H

n are abundant, while maps from higher-
dimensional spaces are much more restricted. DeJarnette-Haj�lasz-Lukyanenko-Tyson
constructed horizontal maps from Sk to H

n which factor through n-spheres and
showed that these maps have no smooth horizontal fillings. In this paper, however,
we build on an example of Kaufman to show that these maps sometimes have Lip-
schitz fillings. This shows that the Lipschitz and the smooth horizontal homotopy
groups of a space may differ. Conversely, we show that any Lipschitz map Sk → H

1

factors through a tree and is thus Lipschitz null-homotopic if k ≥ 2.

1 Introduction

DeJarnette, Haj�lasz, Lukyanenko, and Tyson recently initiated a study of smooth
horizontal homotopy groups πH

k (X) and Lipschitz homotopy groups πLipk (X) when
X is a sub-Riemannian manifold [DHLT11]. By definition, πH

k (X) (and πLipk (X))
consist of classes of smooth horizontal (respectively Lipschitz) maps Sk → X, where
two maps lie in the same class if there is a homotopy Sk × [0, 1] → X between them
which is also smooth horizontal (resp. Lipschitz).

The groups πH
k (X) and πLipk (X) capture more of the geometry of sub-Riemannian

manifolds than the usual homotopy groups πk(X). For example, if X = H
n is the

nth Heisenberg group with its standard Carnot-Caratéodory metric, it is homeo-
morphic to R

2n+1, so its homotopy groups πk(Hn) are trivial. Lipschitz maps to
H

n, however, are more complicated. If f : Dk → H
n is Lipschitz, it must be

a.e. Pansu differentiable [Pan89]. In particular, the rank of Df is a.e. at most n.
Ambrosio-Kirchheim [AK00] and Magnani [Mag04] showed that, as a consequence,
if k > n, then Hk

cc(f(Dk)) = 0. Therefore, if α : Sn → H
n is a smooth horizontal

(and thus Lipschitz) embedding, it cannot be extended to a Lipschitz map of a ball
[Gro96,BF09,RW10], so πH

n (Hn) and πLipn (Hn) are non-trivial. In fact, these groups
are uncountably generated [DHLT11].

The second author was supported by a Discovery Grant from the Natural Sciences and Engi-
neering Research Council of Canada and a grant from the Connaught Fund, University of Toronto.
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The behavior of πH
k (Hn) and πLipk (Hn) when k > n is just starting to be explored.

DeJarnette, Haj�lasz, Lukyanenko, and Tyson [DHLT11] showed that if β ∈ πk(Sn)
is nontrivial, then α ◦β : Sk → H

n is a nontrivial element of πH
k (Hn) (their theorem

is stated for a particular smooth embedding α, but their methods generalize to
arbitrary smooth embeddings). Their proof relies on Sard’s theorem, however, so it
does not generalize to Lipschitz maps. They asked:

Question 1 ([DHLT11, 4.6]). Is the map πH
k (Hn) → πLipk (Hn) an isomorphism?

Question 2 ([DHLT11, 4.17]). If α : Sn → H
n is a bilipschitz embedding, is the

induced map πLipk (Sn) → πLipk (Hn) an injection?

In this paper, we will show that even if β ∈ πk(Sn) is nontrivial, α ◦ β may be
Lipschitz-null homotopic, answering both of these questions in the negative. More
precisely, we prove the following theorems.

Theorem 1. If α : Sn → H
n and β : Sk → Sn are Lipschitz maps and n + 2 ≤

k < 2n − 1, then α ◦ β can be extended to a Lipschitz map Dk+1 → H
n.

Since this extension is Lipschitz, it is almost everywhere Pansu differentiable,
and the Pansu differential has rank ≤ n wherever it is defined. Another version of
our construction proves:

Theorem 2. If n + 1 ≤ k < 2n − 1, then any Lipschitz map β : Sk → Sn can be
extended to a Lipschitz map Dk+1 → R

n+1 whose derivative has rank ≤ n almost
everywhere.

Our constructions build on Kaufman’s construction of a Lipschitz surjection from
the unit cube to the unit square whose derivative has rank 1 almost everywhere
[Kau79].

In the time since the writing of this paper, several related results have appeared.
Haj�lasz, Schikorra, and Tyson used a generalization of the Hopf invariant to prove
that πLip4d−1(H

2d) is nontrivial [HST13]. Indeed, they show that, if

β : S4d−1 → S2d ⊂ R
2d+1

is a Lipschitz map with nonzero Hopf invariant, then any extension of β to a Lipschitz
map D4d → R

2d+1 must have rank 2d + 1 on a set of positive measure. If α : S2d →
H
2d is a Lipschitz embedding, then α ◦ β is a nontrivial element of πLip4d−1(H

2d).
This implies that Theorems 1 and 2 need not hold when k = 2n − 1. Note that the
theorems may still hold when k ≥ 2n−1. In Section 3, we will prove a generalization
(see Theorem 7 below) of Theorem 1 that holds, for instance, when k ≥ n + 2 and
β is a suspension of a map Sk−1 → Sn−1.

Guth [Gut12] has also published results which complement the results in this
paper. He considers the d-dilation of C1 maps. The d-dilation of a map bounds the
amount that the map stretches d-dimensional surfaces in its domain. If d = 1, this is
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the Lipschitz constant of the map, and if the d-dilation of a map is zero, its derivative
has rank < d at every point. Among other results, Guth shows that if m > n and
β : Sm → Sn, is the suspension of a map Sm−1 → Sn−1, then there is a C1 map a′

homotopic to a such that a′ has arbitrarily small n-dilation [Gut12, Prop. 1.1].
When a : Sm → Sn is a double suspension, we can construct a similar map. In

fact, if a is a double suspension, then there is a Lipschitz map a′ homotopic to a such
that a′ has rank n − 1. By Theorem 8 below, if β : Sm−1 → Sn−1 is a suspension,
there is a Lipschitz extension γ : Dm → Dn with rank n − 1. By gluing two copies
of γ together, we obtain a Lipschitz map a′ : Sm → Sn which has rank n − 1 and is
homotopic to the suspension of β. In Section 13.2 of [Gut12], Guth asks whether any
such maps exist; this answers his question positively. Guth also proves a number of
other results about the existence and nonexistence of topologically non-trivial maps
with low d-dilation, and whether these other results can also be modified to give
maps with low rank is an open question.

In view of the results above it is natural to ask whether πLipk (Hn) is trivial when
n+2 ≤ k < 2n−1. This may be hard to answer, since general Lipschitz k-spheres in
H

n may be more complicated. While the spheres we consider in Theorems 1 and 2
have image with Hausdorff dimension n, the methods we use to prove the theorems
can be adapted to produce Lipschitz maps of k-spheres to H

n whose image has
Hausdorff dimension arbitrarily close to k.

When n = 1, however, things are much simpler. We will show:

Theorem 3. If k ≥ 2, then any Lipschitz map f : Sk → H
1 factors through a

metric tree. That is, there is a metric tree Z and there are Lipschitz maps ψ : Sk → Z
and ϕ : Z → H

1 such that f = ϕ ◦ ψ.

Recall that a metric tree or R-tree is a geodesic metric space such that every geodesic
triangle is isometric to a tripod. Note that these trees may still have large images;
for instance, Haj�lasz and Tyson [HT] have adapted Kaufman’s construction [Kau79]
to produce a C1 horizontal surjection R

5 → H
1. As a consequence of Theorem 3 we

obtain:

Corollary 4. If k ≥ 2 and α : Sk → H
1, then α is Lipschitz null-homotopic. Fur-

thermore, for any ε > 0, α is ε-close to a map whose image has Hausdorff dimension
1.

Proof. For the first statement, since Z is a metric tree, it is contractible by a Lipschitz
homotopy h : Z × [0, 1] → Z. Composing this with ψ and ϕ gives a Lipschitz
homotopy contracting α to a point.

For the second statement, let λ = Lip(α) and let E be a finite ε/λ net of points
in Sk. Let T be the convex hull of ψ(E) in Z; this is a finite tree. The closest-point
projection p : Z → T is Lipschitz and moves each point of ψ(Sk) a distance at most
ε, so ϕ ◦ p ◦ ψ is a Lipschitz map which is ε-close to α. Its image is ϕ(T ), which has
Hausdorff dimension 1. �	
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Consequently, πLipk (H1) = {0} for all k ≥ 2. In general, a Lipschitz map α :
X → H

n need not be ε-close to a map whose image has Hausdorff dimension n; the
homotopies constructed in Theorem 1 cannot be approximated by such maps.

Theorem 3 is a special case of the following theorem. Recall that a metric space
(X, d) is said to be quasi-convex if there exists C such that any two points x, x′ ∈ X
can be joined by a curve of length at most Cd(x, x′). Furthermore, a metric space
(Y, d) is called purely k-unrectifiable if Hk(
(C)) = 0 for every Lipschitz map 
 from
a Borel subset C ⊂ R

k to Y . It was shown in [AK00,Mag04] that the Heisenberg
group H

n, endowed with a Carnot-Carathéodory metric, is purely k-unrectifiable for
k ≥ n + 1.

Theorem 5. Let X be a quasi-convex metric space with πLip1 (X) = 0. Let fur-
thermore Y be a purely 2-unrectifiable metric space. Then every Lipschitz map from
X to Y factors through a metric tree.

Theorem 5 will be proved in Section 4. If C is the quasi-convexity constant and
ψ and ϕ are as above, then ψ can be chosen to be C Lip(f)-Lipschitz and ϕ to be
1-Lipschitz. As a corollary, we find that πLipk (Y ) = {0} for all k ≥ 2 and every purely
2-unrectifiable space Y .

2 Preliminaries

In this section we briefly collect some of the basic definitions and properties of
the Heisenberg groups. We furthermore recall the necessary definitions of metric
derivatives in metric spaces which will be needed for the proof of Theorem 5.

2.1 Heisenberg groups. The nth Heisenberg group H
n, where n ≥ 1, is the Lie

group given by H
n := R

2n+1 = R
n × R

n × R endowed with the group multiplication

(x, y, z) 
 (x′, y′, z′) =
(
x + x′, y + y′, z + z′ + 〈y, x′〉) ,

where 〈·, ·〉 is the standard inner product on R
n. A basis of left invariant vector fields

on H
n is defined by

Xj =
∂

∂xj
+ yj

∂

∂z
and Yj =

∂

∂yj
, j = 1, . . . , n,

and Z = ∂
∂z . The subbundle HH

n ⊂ TH
n generated by the vector fields Xj , Yj , j =

1, . . . , n, is called the horizontal subbundle. A C1-smooth map f : M → H
n, where

M is a smooth manifold, is called horizontal if the derivative df of f maps TM to
the horizontal sub bundle HH

n.
(There are many equivalent ways to define the Heisenberg group and its hori-

zontal subbundle. For example, for any symplectic form ω on R
2n, one may define

H
n := R

2n+1 = R
2n × R and let

(v, z) 
 (v′, z′) = (v + v′, z + z′ + ω(v, v′)).

4

ht
tp

://
do

c.
re

ro
.c

h



The group defined this way is isomorphic to the group defined above, and if H ′ is
any left-invariant subbundle of TH

n which is complementary to the bundle Z = ∂
∂z ,

there is an isomorphism which takes H ′ to HH
n.)

The Heisenberg group H
n is naturally equipped with a family (sr)r>0 of dilation

homomorphisms sr : H
n → H

n defined by

sr(x, y, z) := (rx, ry, r2z).

Let g0 be the left-invariant Riemannian metric on H
n such that the Xj , Yk, Z

are pointwise orthonormal. The Carnot-Carathéodory metric on H
n corresponding

to g0 is defined by

d(x, y) := inf{lengthg0
(c) : c is a horizontal C1 curve from x to y},

where lengthg0
(c) denotes the length of c with respect to g0. The metric d on H

n is
1-homogeneous with respect to the dilations sr, that is,

d(sr(w), sr(w′)) = rd(w, w′)

for all w, w′ ∈ H
n. Throughout this paper, H

n will always be equipped with the
Carnot-Carathéodory metric d defined above or any metric which is biLipschitz
equivalent to d.

2.2 Metric derivatives. We recall the definition of the metric derivative of
a Lipschitz map from a Euclidean to a metric space, as introduced and studied
by Kirchheim in [Kir94]. For this, let (X, d) be a metric space and f : U → X
a Lipschitz map, where U ⊂ R

n is open. The metric derivative of f at x ∈ U in
direction v ∈ R

n is defined by

md fx(v) := lim
r→0+

d(f(x + rv), f(x))
r

if the limit exists. It was shown in [Kir94,AK00] that for almost every x ∈ U the
metric derivative md fx(v) exists for all v ∈ R

n and defines a semi-norm on R
n. It

can be shown (see for instance [BBI01, Thm. 2.7.6]) that for any Lipschitz curve
c : [a, b] → X we have

length(c) =

b∫
a

md ct(1)dt.

3 Constructing Extensions

In this section we prove Theorems 1 and 2. The restriction in these theorems that
k < 2n − 1 can be weakened somewhat. To state the theorems in full generality, we
will need to recall some facts about the homotopy groups of wedges of spheres.

If X = Sn ∨ Sn is a wedge of n-spheres, let ιi : Sn → X, i = 1, 2, be the map
into the ith factor of X. In what follows, addition will be taken in πk(Sn) or πk(X),
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so ι1 + ι2 represents a sphere which wraps once around each factor of the wedge
product.

If β : Sk → Sn, then (ι1 + ι2) ◦β and ι1 ◦β + ι2 ◦β are not homotopic in general.
The Hilton-Milnor theorem describes the difference between these two maps:

Theorem 6 (cf. [Whi78, Thm. 8.3]). If n ≥ 2, there is an isomorphism

πk(X) ∼= πk(Sn) ⊕ πk(Sn) ⊕
∞⊕

j=0

πk(Sqj(n−1)+1),

with qj a sequence of integers going to ∞ with qj ≥ 2.
There are homomorphisms hj : πk(Sn) → πk(Sqj(n−1)+1), j = 0, 1, 2, . . . , such

that if β ∈ πk(Sn), then

(ι1 + ι2) ◦ β = (ι1 ◦ β) + (ι2 ◦ β) +
∞∑

j=0

wj ◦ hj(β)

where

wj : Sqj(n−1)+1 → X

is an iterated Whitehead product of ι1 and ι2 with qj terms.

These hj(β)’s are invariants of β known as the Hopf-Hilton invariants. By the
theorem, the Hopf-Hilton invariants vanish if and only if

(ι1 + ι2) ◦ β = ι1 ◦ β + ι2 ◦ β. (1)

In fact, the Hopf-Hilton invariants are the obstruction to the distributive law holding
for compositions of the form (α1 + α2) ◦ β. For any based space Y and any based
maps α1, α2 : Sn → Y , we can define a map α : Sn ∨ Sn → Y which is α1 on one
wedge factor and α2 on the other. If (1) holds, then

(α1 + α2) ◦ β = α ◦ (ι1 + ι2) ◦ β

= α ◦ (ι1 ◦ β + ι2 ◦ β)
= α ◦ ι1 ◦ β + α ◦ ι2 ◦ β

= α1 ◦ β + α2 ◦ β,

so the distributive law holds for β.
The main application of the Hopf-Hilton invariants in this paper involves maps

to m-fold wedges of spheres. Let Y = Sn ∨ · · · ∨ Sn be an m-fold wedge of n-spheres
and let ij : Sn → Y , j = 1, . . . , m be the map into the jth factor of Y . If β ∈ πk(Sn)
is a map whose Hopf-Hilton invariants vanish, then( m∑

j=1

ij

)
◦ β =

m∑
j=1

(ij ◦ β). (�)
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That is, the map that first sends Sk to Sn by β, then wraps Sn around all the wedge
factors of Y can be homotoped into a sum of maps, each with image lying in a single
wedge factor.

A notable case where the Hopf-Hilton invariants of β vanish is when β ∈ πk(Sn)
is a suspension of a map β0 ∈ πk−1(Sn−1). This is easiest to see if we write β in
“cylindrical” coordinates. That is, we write points of Sn as points in Sn−1 × [0, 1],
identifying Sn−1×{0} and Sn−1×{1} with the poles of Sn. In these coordinates, we
can write β(x, t) = (β0(x), t). Note that this map takes the northern and southern
hemispheres of Sk to the northern and southern hemispheres of Sn, respectively.

We can likewise view Sn ∨ Sn in “cylindrical” coordinates by identifying it with
Sn−1 × [0, 1]. In this case, we identify Sn−1 × {0} and Sn−1 × {1} with the poles of
Sn and identify the equator Sn−1 × {1/2} with the basepoint of the wedge. Then
we can represent ι = ι1 + ι2 by the quotient map Sn → Sn ∨ Sn which collapses the
equator of Sn to the basepoint of the wedge and write

(ι ◦ β)(x, t) = (β0(x), t) ∈ Sn ∨ Sn.

The map ι ◦ β wraps the northern hemisphere of Sk around one of the factors of
Sn ∨ Sn, sends the equator to the basepoint of the wedge, and wraps the southern
hemisphere around the other factor. If we collapse the equator of Sk to a point to
get Sk ∨ Sk, then ι ◦ β induces a map Sk ∨ Sk → Sn ∨ Sn that sends each Sk to one
of the Sn’s by a map homotopic to β. We thus have

ι ◦ β = ι1 ◦ β + ι2 ◦ β

as desired.
We can then generalize Theorems 1 and 2 as follows:

Theorem 7. Let n ≥ 2 and n + 2 ≤ k. Let α : Sn → H
n be a Lipschitz map

and let β : Sk → Sn be a Lipschitz map such that (�) holds. (For example, if
β is a suspension.) Then α ◦ β : Sk → H

n can be extended to a Lipschitz map
r : Dk+1 → H

n.

Theorem 8. Let n ≥ 2 and n + 1 ≤ k. Let β : Sk → Sn be a Lipschitz map such
that (�) holds. Then β can be extended to a Lipschitz map γ : Dk+1 → R

n+1 whose
derivative has rank ≤ n a.e.

In particular, if n ≥ 2 and k < 2n − 1, then for all j, we have qj ≥ 2, so hj(β) ∈
πk(Sqj(n−1)+1) = 0, and (�) holds. (Alternatively, one can note that β is a suspension
by the Freudenthal suspension theorem [Fre38].) Theorems 1 and 2 thus follow from
Theorems 7 and 8.

The proof of Theorem 7 is based on that of Theorem 8, so we will prove it first.
Proof of Thm. 8. Let In = [0, 1]n be the unit n-cube. It suffices to consider the case
that β : ∂Ik+1 → ∂In+1 and construct an extension of β to all of Ik+1.

Our construction is based on a construction of Kaufman [Kau79]. We will con-
struct a map on a cube by defining a Lipschitz map h on a cube with holes in it,
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then filling each of the holes with a scaling of h. Repeating this process defines a
Lipschitz map on all of the cube except a Cantor set of measure zero, so we finish
by extending the map to the Cantor set by continuity.

Let ε > 0 be such that (2ε)−(k+1) > ε−(n+1) and 1
ε ∈ N. Subdivide In+1 into a

grid of N = ε−(n+1) cubes of side length ε and let J be the n-skeleton of this grid.
Number the subcubes 1, 2, . . . , N and let Ji be the ith subcube.

Subdivide Ik+1 into (2ε)−(k+1) cubes of side length 2ε and choose N of these
subcubes, numbered 1, . . . , N . For i = 1, . . . , N , we let Ki be a cube of side length
ε, centered at the center of the ith subcube and let

K = Ik+1
�

N⋃
i=1

Ki.

We will define a Lipschitz map h : K → J that sends the boundaries of cubes
in K to the boundaries of cubes in J . Since the image is an n-complex in R

n+1, the
derivatives of h will have rank ≤ n a.e. First, we define h on ∂K. The boundary
of K is ∂Ik+1 ∪ ⋃

∂Ki; let h = β on ∂Ik+1, and define h on ∂Ki as a scaling and
translation βi of β which sends ∂Ki to ∂Ji. So far, this definition is Lipschitz.

Next, we extend h. Choose basepoints x ∈ ∂Ik+1 and xi ∈ ∂Ki and a collection
of non-intersecting curves λi connecting x to xi. We can give K the structure of
a CW-complex, with vertices x, x1, . . . , xN ; edges λi; k-cells ∂Ik+1, ∂K1, . . . , ∂KN ;
and a single (k + 1)-cell. We have already defined h on all of the vertices and k-cells,
and since J is connected, we can extend h to the edges of K. It only remains to
extend it to the (k + 1)-cell.

Consider the map g : Sk → J coming from the boundary of the (k + 1)-cell. The
complex J is homotopy equivalent to ∨NSn, because J and ∨NSn are both homotopy
equivalent to an (n + 1)-ball with N punctures. Furthermore, if ιi : ∂In+1 → ∂Ji

is the scaling and translation that sends the boundary of the cube to the boundary
of the ith subcube, we can choose the homotopy equivalence so that the inclusions
into each factor of ∨NSn are homotopic to the ιi’s.

Thus πn(J) = Z
N , with generating set {ιi}N

i=1. Given a map f : Sn → J , we can
write f as a linear combination of the ιi’s by considering f as a map Sn → In+1 and
calculating the winding numbers of f . For each i, let zi be the center of the subcube
Ji and let wi(f) be the winding number of f with respect to zi, i.e., the image of
the generator of Hn(Sn) in Hn(Rn+1 \ {zi}) = Z. Then

f =
N∑

i=1

wi(f) · ιi.

If ι : ∂In+1 ↪→ J is the inclusion of the boundary of the entire unit cube, then ι
winds once around each point in the interior of In+1. Therefore, wi(ι) = 1 for all i,
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and ι is homotopic to
∑N

i=1 ιi. We can write

g = ι ◦ β −
N∑

i=1

βi

=
( N∑

i=1

ιi

)
◦ β −

N∑
i=1

(ιi ◦ β)

where the above equation is taken in πk(J). By hypothesis, this is null-homotopic, so
h can be extended continuously to a map K → J . In fact, by a smoothing argument,
this extension can be made Lipschitz.

We can construct an increasing sequence

X0 = K ⊂ X1 ⊂ X2 ⊂ . . .

by gluing together scaled copies of K as follows. Let X0 = K. To construct Xi+1

from Xi, we glue a copy of K, scaled by εi+1, to each of the cubical holes of Xi. This
replaces a hole of side length εi+1 by N holes of side length εi+2, so for each i, Xi

is the complement of N i+1 cubes of side length εi+1 in In+1. The union
⋃∞

i=0 Xi is
the complement in In+1 of a Cantor set of measure zero.

For each i, we will construct a map ri : Xi → In+1 such that,

• ri+1 extends ri,
• Lip ri ≤ Lip h,
• the derivative of ri has rank ≤ n a.e., and
• the restriction of ri to the boundary of one of the holes of Xi is a copy of β scaled

by εi+1.

Let r0 = h on X0. This satisfies all the above conditions. For any i, we construct
Xi+1 from Xi by gluing copies of K to holes in Xi. On each new copy of K, we let
ri+1 be a copy of h scaled by εi+1. This agrees with ri on the boundary of the copy
of K, and since we scaled the domain and the range by the same factor, we still have
Lip ri+1 = Lip h.

The direct limit of the ri is a map

r :
∞⋃
i=0

Xi → In+1

defined on the complement of a Cantor set in Ik+1 with Lip r ≤ Lip h. If we extend
r to all of Ik+1 by continuity, we get a Lipschitz extension of β whose derivative has
rank ≤ n a.e. �	

The construction in the Heisenberg group is similar. Note that because fillings
of n-spheres in the n-th Heisenberg group have Hausdorff dimension at least n + 2
[Gro96, 3.1.A], we need k ≥ n + 2 rather than k ≥ n + 1. (Gromov showed that
sets of topological dimension ≥ n + 1 must have Hausdorff dimension at least n + 2,
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and a filling of an embedded n-sphere must have topological dimension > n.) We
will also need the following theorem about low-dimensional Lipschitz extensions to
Heisenberg groups:

Theorem 9 ([Gro96, 3.5.D], [WY10]). For any n, there is a c > 0 such that
if X is a cube complex of dimension ≤ n, and if f0 : X(0) → H

n is a Lipschitz map
defined on the vertices of X, then there is a Lipschitz extension f : X → H

n of f0
such that Lip f ≤ c Lip f0.

The proof of this theorem involves repeatedly extending a map defined on the bound-
ary ∂Ik of a unit k-cube to the entire k-cube. One first extends f0 to a Lipschitz
map on the 1-skeleton of X, then inductively to higher-dimensional skeleta. It is
important that the original map f0 is defined on every vertex of X; without this
condition, c would have to depend on the complex X as well.

Proof of Thm. 7. As before, we may replace Sk and Sn with ∂Ik+1 and ∂In+1. We
will start by constructing an n-complex J which is homotopy equivalent to a wedge
of spheres, a subset K of Ik+1, and a Lipschitz map h : K → J . The main difference
between this construction and the previous one is that J will be a complex equipped
with a map ᾱ : J → H

n rather than a subset of H
n.

For any ε > 0 such that 1/ε ∈ N, consider the complex ((∂In+1) × [0, 1/ε]) ∪
(In+1×{0}). This has 2n+2 faces of the form In × [0, 1/ε] and one of the form In+1

and we can tile it with a total of

N(ε) = (2n + 2)ε−(n+2) + ε−(n+1)

cubes of side length ε. Let J(ε) be the n-skeleton of this tiling. We identify ∂In+1

with ∂In+1 × {1/ε} ⊂ J(ε).
We claim that there is some c > 0 such that if f : ∂In+1 → H

n is a Lipschitz
map, then for any ε > 0, there is a Lipschitz extension f̄ : J(ε) → H

n with Lipschitz
constant Lip f̄ ≤ c Lip f . Recall that there is a family of dilations st : H

n → H
n

such that st(0) = 0 for all t and d(st(u), st(v)) = td(u, v). After composing f with
a dilation of H

n and translating it so that its image contains the identity, we may
assume that Lip(f) = 1 and that f(∂In+1) is contained in the ball B ⊂ H

n around
the identity of radius n + 1. Define f̄ : J(ε) → H

n on the vertices of J(ε) as

f̄(v, t) =

{
sεt(f(v)) t > 0
1 t = 0

where v ∈ In+1, t ∈ [0, 1/ε] and where st : H
n → H

n is dilation by a factor of t. We
claim that this is Lipschitz on the vertices with Lipschitz constant independent of
ε; then, by Theorem 9, we can extend it to a c-Lipschitz map on all of J(ε).

It suffices to show that the distance between the images of any two adjacent
vertices is O(ε), with implicit constant depending only on n. If the two vertices are

10

ht
tp

://
do

c.
re

ro
.c

h



(v, 0) and (v′, 0), the map sends both of them to the identity. If v is adjacent to v′

in ∂In+1 and t ∈ (0, 1/ε], then

d(f̄(v, t), f̄(v′, t)) = d(sεt(f(v)), sεt(f(v′))) ≤ d(v, v′) = ε.

If the vertices are of the form (v, t), (v, t′), with |t − t′| = ε, let f(v) = (x, y, z)
for x, y ∈ R

n and z ∈ R. On any compact set,

dHn((a, b, c), (a′, b′, c′)) = O(
√

‖a − a′‖ + ‖b − b′‖ + ‖c − c′‖),

and since f̄(v, t), f̄(v, t′) ∈ B,

dHn(f̄(v, t), f̄(v, t′)) = O(
√

ε|t − t′|‖x‖ + ε|t − t′|‖y‖ + ε2|t2 − t′2|‖z‖) = O(ε)

as desired.
Choose ε > 0 such that

N(ε) ≤
⌊

1
2cε

⌋k+1

(this is possible because k ≥ n + 2) and let J = J(ε), N = N(ε). Label the cubes of
J by 1, . . . , N .

Next, we construct K. We can subdivide Ik+1 into at least N subcubes, each
with side length at least 2cε. Number N of these subcubes 1, . . . , N , and for each
i, let Ki be a cube of side length cε centered at the center of the ith subcube. Let
K = Ik+1

�
⋃N

i=1 Ki. As in the proof of Theorem 8, construct a Lipschitz map
h : K → J such that for each i, ∂Ki is mapped to ∂Ji by a scaling of β.

Define X0 = K ⊂ X1 ⊂ . . . as before, so that Xi consists of Ik+1 with N i+1

cubical holes of side length (cε)i+1. Let Y0 = J . This consists of N cubical holes of
side length ε. For each i, we let Yi+1 be Yi with a scaled copy of J glued to each
cubical hole, so that for each i, Yi is an n-complex consisting of the boundaries of
N i+1 cubes of side length εi+1. We construct maps γi : Xi → Yi inductively. We
start by letting γ0 = h. By induction, if C is the boundary of one of the holes in Xi,
γi sends C to the boundary D of a hole in Yi. To construct Xi+1 from Xi, we glue
a scaled copy of K to C, and to construct Yi+1 from Yi, we glue a scaled copy of J
to D. We extend γi to γi+1 by sending each scaled copy of K to the corresponding
scaled copy of J by a scaled copy of h. Note that since the scaling factors in the
construction of Xi and Yi are different, the Lipschitz constant of γi varies from point
to point; if Z is a connected component of Xi \ Xi−1, then

Lip γi|Z ≤ c−i Lip h.

Finally, we construct maps σi : Yi → H
n. We proceed inductively. As noted

above, any Lipschitz map f : ∂In+1 → H
n can be extended to a Lipschitz map

f̄ : J → H
n with Lip f̄ ≤ c Lip f . We will construct a sequence of maps σi : Yi → H

n

with Lip σi ≤ ci+1 Lip α. Let σ0 = ᾱ : Y0 → H
n; we have Lip σ0 ≤ c Lip α. For

each i, the complex Yi+1 consists of Yi with N i+1 copies of J glued on, so we can
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extend σi to Yi+1 by constructing an extension over every copy of J . By induction,
Lip σi ≤ ci+1 Lip α, so Lip σi+1 ≤ ci+2 Lip α as desired.

Let ri = σi ◦ γi. If Z is a connected component of Xi \ Xi−1, then

Lip ri|Z ≤ c−i(Lip h)ci+1(Lip α) ≤ c(Lip h)(Lip α),

so the ri are uniformly Lipschitz. Their direct limit is a Lipschitz map from the
complement of a Cantor set to H

n which extends α◦β. Extending this to all of Ik+1

by continuity, we get the desired r. �	

4 Factoring Through Trees

The aim of this section is to prove Theorem 5. For this, let X and Y be metric
spaces as in the statement of the theorem and let f : X → Y be a Lipschitz map.
Roughly, the idea of the proof is to pull back the metric of Y by f and show that
the resulting metric space is a tree.

Define a pseudo-metric on X by

df (x, x′) := inf{length(f ◦ c) : c Lipschitz curve from x to x′}
and note that

df (x, x′) ≤ C Lip(f)d(x, x′) (2)

for all x, x′ ∈ X, where C is the quasi-convexity constant of X. Let Z be the
quotient space Z := X/∼ by the equivalence relation given by x ∼ x′ if and only if
df (x, x′) = 0. Endow Z with the metric

dZ([x], [x′]) := df (x, x′),

where [x] denotes the equivalence class of x, and define maps ψ : X → Z and
ϕ : Z → Y by ψ(x) := [x] and ϕ([x]) := f(x), so that f = ϕ ◦ ψ. It follows from (2)
that ψ is C Lip(f)-Lipschitz. Since

d(f(x), f(x′)) ≤ length(f ◦ c)

for all Lipschitz curves c from x to x′ we moreover infer that ϕ is well-defined and
1-Lipschitz.

Furthermore, for any Lipschitz curve γ : [0, 1] → X,

length(ψ ◦ γ) ≤ length(f ◦ γ). (3)

In particular, Z is a length space.
For any Lipschitz closed curve γ = (γ1, γ2) : S1 → R

2, let

A(γ) =
∫
S1

γ1(t) · γ′2(t) dt

be the signed area of γ. We will show:
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Lemma 10. For every Lipschitz curve α : S1 → Z and every Lipschitz map π =
(π1, π2) : Z → R

2, we have

A(π ◦ α) = 0. (4)

Proposition 3.1 of [Wen08] implies that any geodesic metric space satisfying
Lemma 10 is in fact a metric tree.

Proof. We first show that A(π ◦ ψ ◦ β) = 0 for every Lipschitz curve β : S1 → X.
Fix β and π. By the hypotheses on X, there is some Lipschitz map 
 : D2 → X
which extends β. We first claim that the metric derivative md(ψ ◦ 
)z is degenerate
for almost every z ∈ D2. For this, let 0 < ε < 1/2 and let {v1, . . . , vk} ⊂ S1 be a
finite ε

λ -dense subset, where λ = Lip(f ◦ 
). For i ∈ {1, 2, . . . , k} define

Ai := {z ∈ D2 : md(f ◦ 
)z exists, is a seminorm, and md(f ◦ 
)z(vi) ≤ ε}.

It is not difficult to show that ∣∣∣∣∣D2\
k⋃

i=1

Ai

∣∣∣∣∣ = 0, (5)

where | · | denotes the Lebesgue measure on R
2. Indeed, for almost every z ∈ D2

the metric derivative md(f ◦ 
)z exists and is a seminorm. Since Y is purely 2-
unrectifiable it follows from the area formula [Kir94, Thm. 7] that md(f ◦ 
)z is
degenerate for almost every z ∈ D2. Thus, given such z, there exists v ∈ S1 such
that md(f ◦ 
)z(v) = 0. Choose i such that |v − vi| ≤ ε/λ. It follows that

md(f ◦ 
)z(vi) ≤ md(f ◦ 
)z(vi − v) ≤ ε.

This proves (5). Now, fix i ∈ {1, 2, . . . , k} and let z ∈ Ai be a Lebesgue density
point. Let r0 > 0 be such that B(z, 2r0) ⊂ D2 and

|B(z, r)\Ai|
|B(z, r)| ≤ 100−1ε2 (6)

for all r ∈ (0, 2r0). Let v⊥i ∈ S1 be a vector orthogonal to vi and let r ∈ (0, r0).
For each s ∈ (0, εr) let Cs denote the set Cs := {t ∈ [0, r] : z + sv⊥i + tvi �∈ Ai}.
It follows from Fubini’s theorem and (6) that there exists a subset Ω ⊂ (0, εr) of
strictly positive measure such that H1(Cs) ≤ εr for every s ∈ Ω. Let s ∈ Ω and
denote by γ the piecewise affine curve in R

2 connecting z with z + rvi via z + sv⊥i
and z + sv⊥i + rvi. It now follows that

length(f ◦ 
 ◦ γ) ≤ 2sλ

+

r∫
0

md(f ◦ 
)z+sv⊥
i +tvi

(vi)dt ≤ 2sλ + εr + λ|Cs| ≤ (3λ + 1)εr
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and hence that for every r ∈ (0, r0)

1
r
dZ(ψ ◦ 
(z), ψ ◦ 
(z + rvi)) =

1
r
df (
(z), 
(z + rvi)) ≤ (3λ + 1)ε.

In particular, if md(ψ ◦ 
) exists at z and is a seminorm then md(ψ ◦ 
)z(vi) ≤
(3λ + 1)ε. Since ε > 0 was arbitrary this shows that md(ψ ◦ 
)z is degenerate for
almost all z ∈ D2, as claimed. It now follows that det (∇(π ◦ ψ ◦ 
)) = 0 almost
everywhere on D2 and hence, by a smoothing argument and Stokes’ theorem, that

A(ψ ◦ β) =
∫
D2

det (∇(π ◦ ψ ◦ 
)) = 0.

Now, let α : S1 → Z be a Lipschitz curve. We identify S1 with the interval [0, 2π]
with its endpoints glued together. We will construct a sequence of Lipschitz curves
βn : S1 → X, n = 1, 2, . . . , such that ψ ◦ βn converges uniformly to α and such that
length(ψ ◦ βn) ≤ 2 Lip(α) for every n ∈ N. Namely, for every t ∈ S1, let xt ∈ X be a
representative of the equivalence class α(t). Then for every t, u ∈ S1 with t < u, we
have df (xt, xu) ≤ Lip(α)|t − u|, so there is a Lipschitz curve γt,u : [0, 2π] → X from
xt to xu such that length(f ◦ γt,u) ≤ 2 Lip(α)|t − u|. By (3), we have

length(ψ ◦ γt,u) ≤ length(f ◦ γt,u) ≤ 2 Lip(α)|t − u|.
Let βn be the concatenation γ0,2π/n . . . γ2π(n−1)/n,2π. Since ψ ◦ γt,u stays within dis-
tance 2 Lip(α)|t − u| of α(t), we have ψ ◦ βn → α uniformly. In addition, since
length(ψ ◦ βn) is uniformly bounded, we have

A(π ◦ α) = lim
n→∞A(π ◦ ψ ◦ βn)

for every Lipschitz map π : Z → R
2. Since A(π ◦ ψ ◦ βn) = 0 for all n, this proves

(4). �	
Furthermore, any curve satisfying (4) for every π is non-injective.

Lemma 11. Let (Z ′, d) be a metric space and γ : S1 → Z ′ be an injective Lipschitz
curve. Then there exists a Lipschitz map π = (π1, π2) : Z ′ → R

2 such that

A(π ◦ γ) �= 0.

Proof. We identify S1 with [0, 2π] with the endpoints identified. Let 0 < a < b < 2π
and let 0 < ε < (2 Lip(γ))−1d(γ(b), γ(a)) be so small that 0 < a − ε < b + ε < 2π.
Since γ is a homeomorphism onto its image there exists U ⊂ Z ′ open with

γ((a − ε, b + ε)) = U ∩ γ(S1).

Let δ > 0 be so small that the open δ-neighborhood of γ([a, b]) is contained in U .
Define π1 : Z ′ → R by

π1(z) := max
{

0, 1 − δ−1d(z, γ([a, b]))
}

.

14

ht
tp

://
do

c.
re

ro
.c

h



Clearly, π1 is δ−1-Lipschitz with π1 = 1 on γ([a, b]) and π1 = 0 on U c. Define
furthermore a 1-Lipschitz function π2 : Z ′ → R by π2(z) := d(z, γ(a)). Since (π1 ◦
γ)(t) = 1 for all t ∈ [a, b] it follows that

b∫
a

(π1 ◦ γ)(t) · (π2 ◦ γ)′(t)dt = π2(γ(b)) − π2(γ(a)) = d(γ(b), γ(a)).

From this and the fact that γ(t) �∈ U for all t ∈ (a − ε, b + ε) we finally obtain

2π∫
0

(π1 ◦ γ)(t) · (π2 ◦ γ)′(t)dt =

b+ε∫
a−ε

(π1 ◦ γ)(t) · (π2 ◦ γ)′(t)dt

≥ d(γ(b), γ(a)) − 2ε Lip(γ)
> 0.

This completes the proof of the lemma. �	
It remains to show that Z is geodesic. Since Z is a length space, there is an

injective Lipschitz curve α : [0, 1] → Z connecting z to z′. If α′ is another such
curve, we claim that α([0, 1]) = α′([0, 1]). Indeed, if this were not true we would find
subintervals (s1, s2) and (t1, t2) of (0, 1) such that

α((s1, s2)) ∩ α′((t1, t2)) = ∅
and such that the endpoints of α|[s1,s2] agree with those of α′|[t1,t2]. We would thus
obtain an injective Lipschitz curve γ : S1 → Z. This is impossible by Lemma 10 and
Lemma 11. Consequently, there is a unique simple path between any two points, and
Z is geodesic. Thus, by [Wen08, Proposition 3.1], Z is a metric tree. This concludes
the proof of Theorem 5.

Acknowledgments

We would like to thank Piotr Haj�lasz, Larry Guth, and the anonymous referee for
several helpful discussions and comments.

References

[AK00] L. Ambrosio and B. Kirchheim. Rectifiable sets in metric and Banach spaces.
Math. Ann. (3)318 (2000), 527–555.

[BBI01] D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry, Graduate
Studies in Mathematics, Vol. 33. American Mathematical Society, Providence
(2001).
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