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Well-conditioned, stable and infinitely smooth interpolation in arbitrary nodes is by no
means a trivial task, even in the univariate setting considered here; already the most im-
portant case, equispaced points, is not obvious. Certain approaches have nevertheless expe-
rienced significant developments in the last decades. In this paper we review one of them,
linear barycentric rational interpolation, as well as some of its applications.

1. Introduction

The infinitely smooth interpolation of smooth functions between equispaced or arbitrarily spaced points on a finite
interval is a very natural problem. It is not an easy one, though. Many approaches, such as the simplest, the interpolating
polynomial, are unstable or even ill-conditioned: several suffer from Runge’s phenomenon, i.e., the interpolant of many
functions diverges in the vicinity of the interval’s boundary. Among themost efficient methods are Fourier continuation and
radial basis functions; an extensive review is being prepared by R. Platte.

In 2005, the first author, togetherwith R. Baltensperger andH.Mittelmann, published an overviewon barycentric rational
interpolation [1] which classified rational methods in two classes: on one hand the (classical) nonlinear ones, in which,
among other features, the denominator of the interpolant is allowed to depend on the interpolated function f , and on the
other hand the linear ones, in which the denominator depends on the nodes but not on f ; in the latter case, as the name
tells, the interpolant is linear in f , which is necessary, e.g., in cases when one wishes to use it as an ansatz for the solution
of equations.

The linear methods presented by the first author in [2] are extremely stable, but converge too slowly for arbitrary
interpolation nodes and, unfortunately, for the most important case of equispaced nodes. However, when one may choose
the nodes, the second linear rational interpolant introduced in [2], when combined with nodes which are conformal maps
of Chebyshev points, provides a very efficient means (in the sense that it is as simple as the polynomial interpolant and
exponential convergence occurs) of solving various kinds of differential equations with steep solutions [3–6].

Shortly after the publication of [1], the paper [7] dramatically changed the situation by giving linear rational interpolants
which, in principle, converge with an arbitrary high order for most sets of interpolation points, in particular equispaced
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ones. Despite its short existence, this paper has already led to several extensions and applications, some of which we intend
to summarize in the present paper.

In Section 2,we review the steps leading frompolynomial to rational interpolation in their barycentric forms; in Section 3,
we present the linear case addressed in this work. Section 4 describes the example of the Floater and Hormann family
of linear rational interpolants, while Section 5 summarizes the extension by the second author of the present article.
Then applications are described: approximation of derivatives in Sections 6 and 7, rational finite differences in Section 8,
quadrature and approximation of antiderivatives in Section 9.

2. From polynomial to rational interpolation

In this section we review some facts about polynomial and rational interpolation in barycentric form, concentrating on
the linear case. Let n + 1 distinct points (or nodes) x0, x1, . . . , xn, a ≤ xj ≤ b, and fj := f (xj) corresponding values of
a function f be given. Then there exists a unique polynomial pn[f ] of degree at most n which interpolates f , i.e., satisfies
pn[f ](xj) = fj, j = 0, 1, . . . , n. Its Lagrange form is given by

pn[f ](x) :=
n∑

j=0

fj�j(x), �j(x) :=
∏
k�=j

(x − xk)

(xj − xk)
. (2.1)

The leading factors of the �j,

νj :=
∏
k�=j

1

xj − xk
, j = 0, 1, . . . , n,

which in the context of barycentric interpolation are called weights and do not depend on f , may be computed beforehand.
(Note that there have recently been some advances in this calculation [8].) Setting

�(x) :=
n∏

k=0

(x − xk),

one may rewrite the polynomial in its first barycentric form

pn[f ](x) = �(x)
n∑

j=0

νj

x − xj
fj,

which enjoys several advantages over Lagrange’s formula (2.1), among them

– evaluation in O(n) operations, once the νj have been computed;
– ease of adding new data (xn+1, fn+1) and, above all,
– backward stability of the evaluation of pn[f ] [9].
A classical result says that the interpolating polynomial is very ill-conditioned for equispaced nodes. With linear inter-

polation operators L, the condition is measured by the Lebesgue constant, i.e., the norm

sup
f∈ C\{0}

‖Lf ‖
‖f ‖

of the linear operator which to every f associates its interpolant. (In this work ‖ ‖ denotes the maximum norm.)
When the interpolation operator may be written in Lagrange form

Lf (x) =
n∑

j=0

fjLj(x), Lj(xi) = δij,

the Lebesgue constant, often denoted by Λn, turns out to be the maximum of the Lebesgue function [10]

Λ(x) :=
n∑

j=0

∣∣Lj(x)∣∣ .
For pn (Lj := �j) and equispaced points, one hasΛn ∼ 2n+1

en ln n
[11], andΛ showsmuch larger localmaximanear the extremities

than in the middle of the interval. Fig. 1 displays the Lebesgue function associated with polynomial interpolation in 11
equispaced nodes.

The unicity implies that the constant function f ≡ 1 is represented exactly by its polynomial interpolant:

pn[1](x) = �(x)
n∑

j=0

νj

x − xj
= 1.
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Fig. 1. Lebesgue function associated with polynomial interpolation in 11 equispaced nodes.

Dividing pn[f ] by pn[1] and canceling � gives the (true) barycentric form of the polynomial interpolant,

pn[f ](x) =
n∑

j=0

νj

x − xj
fj

/ n∑
j=0

νj

x − xj
. (2.2)

This formula has some advantages: besides the fact that � does not appear any longer, the quotient leads to a cancellation
of common factors and thus to simplified weights, which diminish the risk of overflow: for equispaced nodes,

ν∗
j = (−1)j

(
n

j

)
;

such closed formulas also exist for Chebyshev nodes [12] and in a certain sense for Gauss–Legendre nodes [13].
Moreover, the interpolation property is extremely stable with respect to the weights: as noticed in [14], with (2.2),

lim
x→x�

n∑
j=0

vj

x − xj
fj

/ n∑
j=0

vj

x − xj
= f� ∀ v� �= 0. (2.3)

Multiplying back by � shows that (2.3) now generically is a rational interpolant of f . Conversely, the following lemma
guarantees that every rational interpolant may be written in barycentric form.

Lemma 2.1 ([15]). Let {xj}, j = 0, 1, . . . , n, be n+ 1 distinct nodes, {fj} corresponding real numbers. Then every rational inter-
polant of the fj with numerator and denominator degrees both at most n may be written in barycentric form, for some weights vj.

3. Linear rational interpolation

In the barycentric form (2.2) of the polynomial interpolant, the weights νj are chosen in such a way that

�(x)
n∑

j=0

νj

x − xj
= 1.

The idea behind linear rational interpolation, as introduced in [2], is to choose (through its weights vj) for any given set
of nodes a denominator that depends on the nodes but still not on the function, so as to maintain the linearity of the inter-
polation. Following [16], we will denote the resulting interpolant by rn[f ]. It requires the nodes to be strictly ordered, i.e.,
x0 < x1 < x2 < · · · < xn.

When the numerator does not have common factors x − x∗ with the denominator, the weights must alternate their sign
for the rational function to have no poles in [a, b]. For this reason, the most simple weights, given in [2], are vj = (−1)j, i.e.,
the Lagrange basis functions are

�j(x) = (−1)j

x − xj

/ n∑
k=0

(−1)k

x − xk
. (3.1)
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This choice has several nice features:

– rn[f ] does not have any real poles (for every distribution of the nodes);
– rn[f ] is extremelywell conditioned, as conjectured in [2]. For equispaced points, Bos, DeMarchi andHormann [17] proved
that

2n

4 + nπ
ln(n + 1) ≤ Λn ≤ 2 + ln n.

This result has been improved in [18,19], butwith a similar logarithmic pattern; it has also been extended tomore general
nodes in [20].

The only (but major) drawback of the weights in (3.1) is the slow convergence; it was conjectured in [2], and proved
in [7], that it is O(h), where

h := max
0≤i≤n−1

(xi+1 − xi).

A study of the rational trigonometric case in [2] led the author to the introduction of a second set of weights, which for
a closed interval read

vj = (−1)jδj, δj =
{
1/2, j = 0 or j = n,
1, otherwise.

The corresponding rn[f ] again shows certain remarkable features:
– it does not have any poles in [a, b];
– numerical results in [2] led to the conjecture of an extremely good condition;
– the conjecture in [16] of an O(h2)-convergence has been proved for equispaced nodes in [7];
– it converges exponentially when the xj are the Chebyshev points of the second kind, as it then coincides with the
polynomial interpolant; this property is conserved with any conformal map of such nodes [16].

First numerical examples with large n are given in Table 1 of [2].

4. The family of Floater and Hormann interpolants

For a set of n + 1 strictly ordered nodes and d ∈ N
0, d ≤ n, Floater and Hormann give a denominator such that, for the

corresponding rn[f ],
‖f − rn[f ]‖ = O(hd+1).

They obtain this property by considering n − d + 1 polynomials pj, each of which interpolates d + 1 consecutive values of
f ; more precisely, pj is the polynomial of degree at most d interpolating fj, fj+1, . . . , fj+d. The original form of the rational
interpolants (one for every d) then is

rn[f ](x) =
n−d∑
j=0

λj(x)pj(x)

/n−d∑
j=0

λj(x), where λj(x) = (−1)j

(x − xj) · · · (x − xj+d)
.

Theorem 4.1 ([7]). For every admissible d, rn[f ] interpolates f at the given nodes and has no poles in R.

The zeros and the poles of rational interpolants can be computed from their barycentric form through companion
matrices, see, e.g., [21].

Following Lemma 2.1, Floater and Hormann give the barycentric weights of their interpolant for general nodes,

vj =
∑
i∈Jj

(−1)i
i+d∏

k=i, k�=j

1

xj − xk
, Jj := {i ∈ {0, . . . , n} : j − d ≤ i ≤ j}.

The vj oscillate in sign; for equispaced nodes, their absolute values are

1, 1, 1, 1, 1, . . . , 1, 1, 1, 1, 1 d = 0 [2]

1

2
, 1, 1, 1, 1, . . . , 1, 1, 1, 1,

1

2
d = 1 [2]

1

4
,

3

4
, 1, 1, 1, . . . , 1, 1, 1,

1

4
,

3

4
d = 2 [7]

1

8
,

4

8
,

7

8
, 1, 1, . . . , 1, 1,

7

8
,

4

8
,

1

8
d = 3 [7].

Notice that the second interpolant coincides with the one given in [2] for equispaced points only: otherwise the weights
differ.
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The convergence is algebraic with power d + 1:

Theorem 4.2 ([7]). Let 1 ≤ d ≤ n and f ∈ Cd+2[a, b]. Then
– if n − d is odd,

‖rn[f ] − f ‖ ≤ (b − a)
‖f (d+2)‖
d + 2

hd+1;
– if n − d is even,

‖rn[f ] − f ‖ ≤
(

(b − a)
‖f (d+2)‖
d + 2

+ ‖f (d+1)‖
d + 1

)
hd+1.

Much is already known about the condition of this Floater–Hormann scheme: for equispaced points, Bos, De Marchi,
Hormann, and the second author [22] have shown that

2d−2

d + 1
ln

(
n

d
− 1

)
≤ Λn ≤ 2d−1(2 + ln n) : (4.1)

the Lebesgue constant grows logarithmically with n, but exponentiallywith d.
In practice, one may choose an arbitrarily high order d + 1 of convergence only with nmuch larger than d. The choice of

the optimal d for a given finite n is not a trivial task. Güttel and the second author [23] have cleared up the case when f is
analytic in a domain containing the interval of interpolation.

Suppose that the parameter d(n) is a variable nonnegative integer such that d(n)/n → C as n → ∞, for C ∈ (0, 1] fixed.
In practice, e.g., d(n) = round(Cn).

Theorem 4.3 ([23]). Let f be a function analytic in an open neighborhood of [a, b] and R > 0 the smallest number such that f
is analytic in the interior of a certain contour CR determined by C and the distribution of the nodes. Then

lim sup
n→∞

‖f − rn‖1/n ≤ R.

The authors have also suggested a procedure for the practical choice of C (which automatically leads to a choice of d) as
a function of n in order to balance the growth of Λn. They notice that

effective numerical error ≈ interpolation error in exact arithmetic + imprecision × condition number

� DRn + ε‖f ‖Λn

=: predicted error,
where D is a constant depending on f and ε the unit roundoff. Then, given n and the singularity of f closest to [a, b] with
respect to CR, they determine d(n) ∈ {0, . . . , n} such that the predicted error is minimal.

Fig. 2 displays the results in an example, the interpolation of the function Γ (x + 2) on the interval [−1, 1], with the
closest singularity at x = −2. All curves are functions of n: the top right picture gives C , the bottom right d(n) and the
left displays the obtained errors. The latter also shows the predicted error curve as a dashed line, as well as ε times Λn (or,
rather, its bound as a function of d and n given in (4.1)) as a dotted line. One notices the initial exponential convergence for
small n (for which d = n, meaning that the interpolating polynomial is used) and the almost uniform decay of the error up
to about n times machine precision.

5. An extended family of barycentric rational interpolants

Consider equispaced points again, and a fixed d. By looking at the plots of the Lebesgue functions for the first values of
d, some of which are given in Fig. 3 for n = 40, the second author has observed an interesting feature: the maxima of the
downward opening curves between two consecutive nodes are large in at most d subintervals near each extremity. The idea
has then germinated to try to eliminate these unstable stretches by extending the interpolation interval by dh on each side
of [a, b], constructing an interpolant on [a − dh, b + dh]while still using it on [a, b] only.

More precisely, 2d extra nodes x−d, . . . , x−1 and xn+1, . . . , xn+d are considered, d on each side of the interval, and
approximate values f̃j of f at these nodes are computed by a discrete Taylor polynomial with derivatives approximated
by (linear rational) finite differences (see Section 8) using only the given values of f in [a, b]. These finite differences are the
derivatives of a member of the Floater–Hormann family with parameter d̃ in the nodes x0, . . . , xñ, resp. xn−ñ, . . . , xn, for an
ñmuch smaller than n. At the original nodes xj, j = 0, . . . , n, the given fj are used.
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Fig. 2. Relative errors for the interpolation of f (x) = Γ (x + 2) with 2 ≤ n ≤ 250 equispaced nodes in [−1, 1], d(n) = round(Cn) and nearly optimal
values of d.
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Fig. 3. Lebesgue functions for Floater–Hormann interpolation with equispaced nodes in [−1, 1], d = 2, 3, 5 and n = 40.

The new interpolant is then computed from the global data with the Floater–Hormann weights for the extended set of
nodes,

r̃n[f ](x) :=
n+d∑
j=−d

ṽj

x − xj
f̃j

/ n+d∑
j=−d

ṽj

x − xj
,

and evaluated only in [a, b].
Theorem 5.1 ([24]). Suppose n, d, ñ and d̃ are positive integers, d̃ ≤ ñ < n, and assume that f ∈ Cd+2[a− dh, b+ dh] ∩ C2d̃+1

([a, a + ñh] ∪ [b − ñh, b]) is sampled at n + 1 equispaced nodes in [a, b]. Then
(i) r̃n[f ] has no real poles;
(ii) for a constant K independent of n,

‖̃rn[f ] − f ‖ ≤ Khmin{d,d̃}+1;
(iii) the associated Lebesgue constant Λ̃n grows logarithmically with n and d:

Λ̃n ≤ 2 + ln(n + 2d).

The error with the extended family is often smaller than with the original one. Fig. 4 shows a comparison of the interpo-
lation of Runge’s function 1/(1 + x2) with the spline of order 5, the original Floater and Hormann interpolant with d = 4
and the member of the extended family with d = 4, ñ = 11 and d̃ = 7, for 20 ≤ n ≤ 1000.

At the extremities, the Lebesgue functions associated with the extended family are spectacularly better than those of the
original family given in Fig. 3. As an example, the function Λ̃ with 51 nodes and d = 3 is given on the left of Fig. 5, where
it is compared with the excellent ones of polynomial interpolation between Chebyshev nodes: Λ̃n is even smaller than the
polynomial Λn of Chebyshev points! (The rightmost Λ is deceptive, as its extremal parts coincide with the verticals at ±1:
in fact, Λn is larger for the points of the first kind than for those of the second, see [11, p. 8].)
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Fig. 4. Error comparison of spline, FH and EFH interpolation of 1/(1 + x2)with d = 4 and 20 ≤ n ≤ 1000.
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Fig. 5. Lebesgue functions with n = 50 associated with extended FH interpolation for equispaced nodes and d = 3 (left), polynomial interpolation with
Chebyshev points of the second kind (center) and first kind (right).

Fig. 6. Error comparison of spline, FH and EFH interpolation of 1/(1 + x2)with sign alternating 10−12-perturbation, n = 1000 and 1 ≤ d ≤ 50.

This nicer behavior of the Lebesgue constant has a decisive influence on the condition of the interpolation. In Fig. 6, the
example of Fig. 4 is slightly modified by perturbing the fj by a constant sequence of 10

−12 with alternating signs; for a con-
stant n = 1000, the figure displays themaximal error as a function of d, resp. of the order of the spline used as a comparison.
In deep contrast with the two other tested interpolants, the perturbation has virtually no effect on r̃n[f ]!

As a conclusion to the description of these recent linear barycentric rational interpolants, we conjecture that they likely
are very close to optimal for equispaced nodes. We have seen in Theorem 4.3 that for analytic functions the approximation
error may decrease rapidly as a function of increasing, but still small, values of n. However, the schemes presented above
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Table 1

Error in the rational interpolation and the approximation of derivatives of f (x) = 1/(1+ x2) in [−5, 5] for d = 3 and equispaced nodes.

n Interpolation First derivative Second derivative

Error Order Error Order Error Order

10 6.9e −02 3.9e −01 1.5e +00
20 2.8e −03 4.6 3.1e−02 3.7 2.6e−01 2.5
40 4.3e −06 9.4 7.8e−05 8.6 1.5e−03 7.4
80 5.1e −08 6.4 1.2e−06 6.0 6.1e−05 4.6
160 3.0e −09 4.1 1.0e−07 3.6 9.4e−06 2.7
320 1.8e −10 4.0 1.2e−08 3.1 1.2e−06 2.9
640 1.1e −11 4.0 1.5e−09 3.0 3.0e−07 2.0

all converge merely algebraically in the limit n → ∞. One cannot expect much better approximations, at least for ana-
lytic functions. Indeed, Platte, Trefethen and Kuijlaars [25] have proved that an approximation of analytic functions from
equispaced samples cannot be simultaneously exponentially convergent and well-conditioned.

6. Differentiation of barycentric rational interpolants

We now turn to some applications of the linear barycentric rational interpolants studied so far, starting with the ap-
proximation of derivatives. It has been known since the paper [26] by Schneider and Werner in 1986 that derivatives of
rational interpolants written in barycentric form have very simple differentiation formulas. For the first derivative of rn[f ],
for instance, one has

rn[f ]′(x) =
n∑

j=0

vj

x − xj

rn[f ](x) − fj

x − xj

/ n∑
j=0

vj

x − xj
, x not a node,

rn[f ]′(xi) = −
n∑

j=0
j�=i

vjf [xi, xj]/vi, i = 0, . . . , n.

For x ∈ [a, b], we denote the error by
e(x) := f (x) − rn[f ](x).

Some results require themesh ratio

β := max

{
max

1≤i≤n−1

|xi − xi+1|
|xi − xi−1| , max

1≤i≤n−1

|xi − xi−1|
|xi − xi+1|

}
.

Equipped with this, we are in the position of stating the following results.

Theorem 6.1 ([27]). For the Floater–Hormann interpolants, rn[f ]′ → f ′ as follows:

– if d ≥ 1 and if f ∈ Cd+3[a, b], then
‖e′‖ ≤ Khd, if d ≥ 2,

‖e′‖ ≤ K(β + 1)h, if d = 1;
– if d ≥ 2 and if f ∈ Cd+4[a, b], then

‖e′′‖ ≤ K(β + 1)hd−1, if d ≥ 3,

‖e′′‖ ≤ K(β2 + β + 1)h, if d = 2.

In the above estimates, the constants K depend only on f , d and the interval length.

These theoretical orders are beautifully confirmed in practical computations. Table 1 displays errors obtained with
Runge’s function and d = 3 for various values of n, as well as the corresponding experimental convergence orders.

In [27], the derivatives obtained from these linear rational interpolantswere also comparedwith those gathered from the
cubic spline interpolantwith not-a-knot end conditions. In Fig. 7, the errors delivered by the rational interpolant are given as
solid lines, those corresponding to the spline as dashed lines. For each of the two, the error is smallest with the interpolant,
and increases with the order of the derivatives (the lines corresponding to the latter are higher). The figure shows that the
error with the spline is smaller up to about n = 15, which is not surprising in view of the damped oscillations of the spline,
but for larger n the error becomes smaller with the rational interpolant.
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Fig. 7. Error comparison for f as in Table 1 and its first and second derivatives approximated by spline and linear rational interpolation.

7. Higher order derivatives at the nodes

Results have also been obtained for the convergence rate of higher order derivatives of rn[f ] at equispaced and quasi-
equispaced nodes. By quasi-equispaced nodeswe mean points whose minimal spacing hmin obeys

hmin ≥ ch,

where c is a constant.

Theorem 7.1 ([28]). Suppose that d ≤ n, k ≤ d and f ∈ Cd+1+k[a, b]. If the nodes are equispaced or quasi-equispaced and if f
is approximated by the linear barycentric rational interpolant with Floater and Hormann weights, then

|e(k)(xj)| ≤ Khd+1−k, 0 ≤ j ≤ n,

where K only depends on d, k and derivatives of f .

8. Differentiation matrices and rational finite differences

Differentiation matrices are important in several contexts, such as the solution of boundary value problems [1]. They
may be obtained from the Lagrange representation

rn[f ] =
n∑

j=0

fj�
(v)
j (x) with �

(v)
j (x) := vj

x − xj

/ n∑
k=0

vk

x − xk
(8.1)

of linear barycentric interpolants:

rn[f ]′(x) =
n∑

j=0

fj�
(v)
j

′
(x), rn[f ]′′(x) =

n∑
j=0

fj�
(v)
j

′′
(x)

and

f ′(xi) ≈
n∑

j=0

D
(1)
ij fj with D

(1)
ij := �

(v)
j

′
(xi),

f ′′(xi) ≈
n∑

j=0

D
(2)
ij fj with D

(2)
ij := �

(v)
j

′′
(xi).

It turns out that the elements of the matrices D(k) satisfy a very simple recursion formula, starting with [16]

D
(1)
ij :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vj

vi

1

xi − xj
, i �= j,

−
n∑

�=0
��=i

D
(1)
i� i = j,

D
(2)
ij :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2D

(1)
ij

(
D

(1)
ii − 1

xi − xj

)
, i �= j,

−
n∑

�=0
��=i

D
(2)
i� , i = j,

(8.2)
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Fig. 8. Relative errors in the approximation at x = 0 of the second and fourth order derivatives of 1/(1 + x2) sampled in [0, 5].

and pursuing with [29,5]

D
(k)
ij :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k

xi − xj

(
vj

vi

D
(k−1)
ii − D

(k−1)
ij

)
, i �= j,

−
n∑

�=0
��=i

D
(k)
i� , i = j.

With f := (f0, . . . , fn)
T , the product D(k)f returns the vector of the kth derivative of rn[f ] at the nodes.

Derivatives of linear barycentric rational interpolants can also be used to construct rational finite differences for the
approximation, at a node xi, of the kth derivative of a function in Cd+1+k,

f (k)(xi) ≈ r (k)
n [f ](xi) =

n∑
j=0

fj�
(v)
j

(k)
(xi),

where, again,

�
(v)
j

(k)
(xi) = D

(k)
ij .

These differentiation weights, as well as the relation from the largest to the smallest of them, turn out to be much smaller
than those of polynomial finite differences, in particular for one-sided derivatives; see [28]. The computation of derivatives
by centered differences does not profit from this; but the approximation of one-sided derivatives by one-sided differences is
more stable with rational ones thanwith their polynomial counterparts. Fig. 8 documents an examplewith Runge’s function
(FD designates polynomial finite differences, RFD rational ones).

9. Linear barycentric rational quadrature

When approximating the integral I := ∫ b

a
f (x)dx of a real smooth function f sampled at n+1 points by a linear quadrature

rule
∑n

k=0 wkfk, one encounters two main situations:

– if the points may be chosen, Gauss or Clenshaw–Curtis quadrature can be used;
– if f is sampled at equispaced points, the Newton–Cotes rule is a viable solution for small n but, as it consists in the exact
integration of the interpolating polynomial, becomes useless for n large: to staywith polynomial rules, one usually resorts
to composite ones such as the trapezoidal rule, Simpson or Boole.

We now show how the replacement of polynomial by linear rational interpolation leads to quadrature formulas which
allow arbitrarily large numbers of equispaced nodes. Clearly, every linear interpolation formula trivially yields a linear
quadrature rule. For a barycentric rational interpolant, we have:

I =
∫ b

a

f (x)dx ≈
∫ b

a

rn[f ](x)dx =
∫ b

a

n∑
k=0

vk
x−xk

fk

n∑
j=0

vj

x−xj

dx =
n∑

k=0

wkfk =: Qn,

10

ht
tp

://
do

c.
re

ro
.c

h



Table 2
Error in the interpolation and the rational quadrature of f (x) = sin(100x) + 100 for d = 5 with equispaced points in [0, 1].
n Interpolation DRQ IRQ

Error Order Error Order Error Order

20 2.0e +00 6.8e −03 2.7e−03
40 1.8e+00 0.2 1.4e−03 2.3 5.5e−02 −4.3
80 2.8e −02 6.0 9.0e−05 4.0 7.7e−04 6.2
160 6.6e−04 5.4 1.8e−07 9.0 5.7e−05 3.7
320 9.6e−06 6.1 5.7e−09 5.0 1.6e−06 5.2
640 1.3e−07 6.3 4.8e−11 6.9 3.4e−08 5.5
1280 1.1e−09 6.9 3.0e−13 7.3 7.3e−10 5.6

where

wk :=
∫ b

a

vk
x−xk

n∑
j=0

vj

x−xj

dx =
∫ b

a

�
(v)
k (x)dx.

For true rational interpolants whose denominator degree exceeds 4, there is no straightforward way of computing the inte-
gralswk. Two ideas for going around this difficulty are described in [30], a direct and an indirect one, which avoid expensive
partial fraction decompositions and algebraic methods.

The direct rational quadrature rule (DRQ) is based on the stability of the rational interpolant and computes the wk by
well-behaved rules such as Gauss–Legendre or Clenshaw–Curtis. To fix the notation, letwD

k , k = 0, . . . , n, be so computed
approximations of thewk; then the direct rational quadrature rule reads

I =
∫ b

a

f (x)dx ≈
n∑

k=0

wD
k fk

instead of Qn.

Theorem 9.1 ([30]). Suppose d ∈ N, d ≤ n/2 − 1, f ∈ Cd+3[a, b] and rn[f ] is the dth member of the Floater–Hormann family
of linear rational interpolants with equispaced nodes. Assume further that the quadrature weights wk in Qn are approximated by
a rule converging at least as O(hd+2). Then∣∣∣∣∣

∫ b

a

f (x)dx −
n∑

k=0

wD
k fk

∣∣∣∣∣ ≤ Khd+2,

where K is a constant depending only on d, on derivatives of f and on the interval length b − a.

Indirect quadrature approximates an antiderivative in the interval [a, b] by a linear rational interpolant. For x ∈ [a, b],
one writes the problem

rn[u](x) ≈
∫ x

a

f (y)dy

as an ordinary differential equation

r ′
n[u](x) ≈ f (x), rn[u](a) = 0

and collocate at the interpolation points.
As mentioned in Section 8, the first derivative of a rational interpolant at its nodes is

u′ = Du, uj := rn[u](xj),
where u = (u0, . . . , un)

T and Dij := D
(1)
ij is given in Eq. (8.2).

We then again set f = (f0, . . . , fn)
T and solve the system

Du = f, i.e.,
n∑

j=1

Dijuj = fi, i = 1, . . . , n.

The approximation un of the integral, which is called the indirect rational quadrature formula (IRQ), can be given by Cramer’s
rule; see [30].

Table 2 reports on computations with DRQ and IRQ for the function f (x) = sin(100x) + 100 on the interval [0, 1]; it also
includes the accuracy of rn[f ] itself for the sake of comparison. The underlying linear rational interpolant uses d = 5, the
weights in DRQ are computed by means of the Gauss–Legendre quadrature rule with 125 nodes. The experimental error of
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Fig. 9. Error comparison with five quadrature rules for f as in Table 2.

convergence of DRQ is about the d+ 2 to be expected from the theorem, that of IRQ d+ 1/2, half a unit less than that of the
interpolant.

The same f is used for another comparison in Fig. 9, which gives the error as a function of n in a log–log representa-
tion. Besides the Newton–Cotes rules, which unsurprisingly yield disastrous results for n larger than about 20, DRQ and IRQ
are compared with the two classical rules based on piecewise polynomial interpolation, composite Simpson and compos-
ite Boole. For small to moderate values of n, composite Simpson turns out to be the best rule. From about n = 100, it is
surpassed by composite Boole and DRQ, which behave very similarly until n = 1000. However, DRQ eliminates the require-
ment inherent to composite Boole, that n = 4k + 1 for some k ∈ N. This is an advantage, at least an aesthetic one, in some
applications, so for instance the solution of Volterra integral equations by the quadrature method [31]. IRQ is the slowest
converging rule, but one should remember that it is the only one giving not merely the value of I , but also the antiderivative
of f at x1, . . . , xn−1, as u1, . . . , un−1, and at all other x ∈ [a, b], as the interpolant

rn[u](x) =
n∑

j=0

vj

x − xj
uj

/ n∑
j=0

vj

x − xj
≈

∫ x

a

f (y)dy, x ∈ [a, b].

This approximate antiderivative is infinitely smooth.
We should point to another way of using linear rational interpolants in the approximation of antiderivatives and other

calculations originating from an equispaced – or arbitrary – sample of a function [32]: one may approximate the rational
interpolant rn[f ] to those equispaced values by a chebfun and use the Chebfun system [33] to solve the problem at hand,
e.g., find the antiderivative of rn[f ]. The solution is then given as a polynomial interpolant in Chebyshev points of the second
kind, which can be easily evaluated in arbitrary points by the barycentric formula [34].

10. Conclusion

In this paper we have aimed at introducing the reader to linear barycentric rational interpolation and the various
applications it has led to in recent years. We have pointed to its advantages over other infinitely smooth interpolants on
a finite interval, mainly its simplicity, its proven good condition and its stability. The Ph.D. Thesis of the second author [32]
provides further details. Our examples should also have made clear that there basically is no limit to the number of nodes

that can be accommodated. As a final remark, we wish to emphasize the simple Lagrange representation
∑

j fj�
(v)
j (x) with

the �
(v)
j of (8.1): it allows for its straightforward use as an ansatz in the solution of functional equations and constitutes one

further reason why we are confident that these interpolants will have a bright future in the solution of various problems in
numerical analysis and scientific computing (see the very recent example in [35]).
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