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ABSTRACT

Durbachites—Vaugnerites are K-Mg-rich magmatic rocks
derived from an enriched mantle source. Observed throughout
the European Variscan basement, their present-day geograph-
ical distribution does not reveal any obvious plate-tectonic
context. Published geochronological data show that most
durbachites—vaugnerites formed around 335-340 Ma. Plotted
in a Visean plate-tectonic reconstruction, the occurrences of
durbachites—vaugnerites are concentrated in a hotspot like
cluster in the Galatian superterrane, featuring a distinctive
regional magmatic province. Reviewing the existing local
studies on Variscan durbachite-vaugnerite rocks, we interpret
their extensive appearance in the Visean in terms of two

factors: (i) long-term mantle enrichment above early Variscan
subduction systems; and (ii) melting of this enriched subconti-
nental mantle source during the Variscan collision stage due
to thermal anomalies below the Galatian superterrane, possi-
bly created by slab windows and and/or the sinking of the
subducted Rheic slab into the mantle. The tectonic reorgani-
zation of Europe in the Late Palaeozoic and during the Alpine
orogeny has torn apart and blurred this marked domain of
durbachites—vaugnerites.

Introduction

The term ‘Durbachit’ (Sauer, 1893)
was first used for a biotite- and
amphibole-rich border facies of lam-
prophyric  character  recognized
around a granite body near Dur-
bach, in the Central Black Forest.
Petrographically similar rocks
became known in early work as vau-
gnerites (Mts. de Lyonnais, Fournet
1833, Lacroix, 1917), or as redwitz-
ites (Marktredwitz, Fichtelgebirge,
NE Bavaria, Willmann, 1920).

The mineral assemblage of these
rocks is, in general, K-feldspar,
quartz, plagioclase, Mg-rich biotite,
actinolitic hornblende, + clinopyrox-
ene, + rare orthopyroxene, titanite,
apatite, allanite, zircon and pyrite.
Not always, but very often, durbach-
ites—vaugnerites exhibit a granitoid
texture with phyric K-feldspars and
the term melagranite is commonly
used for such varieties in the litera-
ture. Geochemically, the rocks are
characterized by a metaluminous
composition at mostly intermediate
SiO, contents (55-70 wt.%), and the
unusual combination of very high
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K,O contents (4-9 wt.%) with rela-
tively high Mg numbers — formerly
corresponding to De La Roche
et al.’s (1980) sub-alkaline trend. The
trace element signature of the rocks
typically involves very high Ba
(1000-3000 ppm) and Sr contents
(500-1000 ppm) and elevated con-
tents of Th (Holub, 1977; Gerdes
et al., 2000; Ferré and Leake, 2001;
Finger et al., 2007; Janousek and
Holub, 2007). There is wide agree-
ment from geochemical studies and
experimental work that igneous rocks
of the durbachite—vaugnerite type
represent magmas from an enriched
mantle source, variably modified by
fractionation, magma mixing and
crustal contamination (Holub, 1997;
Gerdes et al., 2000; Solgadi et al.,
2007; Parat et al., 2010).
Durbachites/Vaugnerites seem to
represent a rock type that is particu-
larly characteristic for the Variscan
belt. They are reported from many
of the European Variscan basement
areas (Fig. 1), but their mere geo-
graphical distribution cannot satisfy
any large-scale model for their for-
mation (c.f. Von Raumer et al.,
2012). Linear arrangements of such
magmatic bodies have been noted in
a regional context (Rossi et al., 1990;
Rossi and Cocherie, 1995; Ferré and
Leake, 2001; Finger et al., 2007).
Schaltegger (1997) discussed for the

first time a possible genetic relation
with a palaeosuture; a model involv-
ing partial melting of an enriched
mantle at the transition from
thickening to collapse of the Vari-
scan orogenic belt was presented by
Solgadi et al. (2007). Von Raumer
(1998) discussed a possible belt-like
arrangement of these plutons along
the whole Variscan orogen, relating
the durbachite-bearing  basement
areas of the Tauern Window and the
Alpine External Massifs with those
of Corsica, the French Central Mas-
sif, Black Forest, Vosges and the
Bohemian Massif. New palinspastic
reconstructions of the Variscan
domain (Stampfli ez al., 2011, 2013)
may help to better understand the
palaecogeographic  distribution  of
these distinctive magmatic rocks and
the geodynamic background of
magma formation.

Occurrences of durbachites—
vaugnerites in central Europe —
a review

Figure 1 shows localities from where
rocks of the durbachite-vaugnerite
type have been as yet reported. At
first sight, the rocks seem to be irreg-
ularly distributed all over Variscan
Europe. They have been found in the
Bohemian Massif, Black Forest,
Vosges (Moldanubian Zone), in the
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Fig. 1 Geographical distribution of durbachite-vaugnerite localities (red dots, con-
sult references in Tab. 1 for precise localities) and their pre-Mesozoic hosts in Cen-
tral Europe (map modified after Stampfli ez al., 2006), R — Redwitzite locality;
Grey — Subdivision of the European pre-Mesozoic basement areas (light grey) into
Geodynamic Units (GDU’s, first time Stampfli et al., 2006, Hochard 2008) inspired
by Franke (1989). For a better understanding and identification, the contours of
the specific geodynamic units are used: AM: Armorica; Aq: Aquitaine; BM: Bohe-
mian Massif; CIb: Central Iberian basement; Ca: Cantabrian terrane; M: Moldanu-
bian basement (Bohemian Massif, Black Forest, Vosges); MC: French Central
Massif; Mo: Moesian platform; OM: Ossa Morena; Py: Pyrenees; SP: South Portu-
guese zone; Sx: Saxothuringian zone; Ti: Tisia unit; WL: West Asturian—Leonese

zone. Dark contours: geographical limits.

Massif Central and Corsica, but also
within the Alpine domain (External
Massifs, Hohe Tauern). Further-
more, we find these rocks some
2000 km to the west in north-western
Spain and far to the east in Bulgaria.

Bohemian massif

This massif hosts several large durba-
chite-type plutons, mostly located in
the Moldanubian Zone. They have
been extensively studied during the
past years and a wealth of high-
quality petrographic, geochemical,
isotopic and geochronological data
are available (Central Bohemian
Pluton, Holub, 1977, 1997; Triebic
Massif, Holub et al., 1997; Knizeci
Stolec pluton, Verner et al., 2008;
Rastenberg Pluton, Klotzli and Par-
rish, 1996; Gerdes et al., 2000). All
workers agree that the Moldanubian
durbachite magmas contain compo-
nents from an enriched mantle
source perhaps contaminated by sub-
ducted crust, and experienced
variable later modification by crustal
contamination, admixing of lower
crustal melts or fractional crystalliza-
tion. Another important finding is

that all these plutons intruded almost
contemporaneously around 338 Ma
(c.f. Table 1). New papers (Finger
et al., 2007; Janousek and Holub,
2007; Janous$ek et al., 2012) hold
unanimously the view that the petro-
genesis of the Moldanubian durba-
chite magmas must be seen in the
context of collision of the various
Bohemian terrane fragments. The
idea is that processes subsequent to
subduction led to a significant tem-
perature increase below the orogen,
triggering the melting of metasoma-
tized and contaminated mantle
domains. A special feature of the
Moldanubian durbachite intrusions
is that they are temporally and spa-
tially related to the exhumation of
HP-HT rocks (Finger et al., 2007;
JanousSek and Holub, 2007).

A few Durbachite plutons occur
also in the Saxothuringian and Lu-
gian part of the Bohemian massif
(Niemcza area, Polish Sudetes:
Leichmann and Gaweda, 2001;
Mazur et al., 2007; Meissen Massif:
Wenzel et al., 1997, 2000; Nasdala
et al., 1999). These plutons show
basically the same compositions and
ages as the Moldanubian ones.

The redwitzites (Troll, 1968; Siebel
et al., 2003) of the western Bohemian
Massif (R in Fig. 1) have a slightly
different  petrogenesis.  Although
representing also relatively mafic
magmas with melt components from
an enriched mantle source, they can-
not be directly correlated with the
Bohemian durbachite plutons due to
their significantly younger age of
~322 Ma (Kovatikova et al., 2007).
These redwitzite magmas intruded at
a time, when the whole south-
western  Bohemian  massif was
invaded by numerous, mainly crus-
tally derived granitic magmas (for-
mation of the Saxo-Danubian
Batholith — Finger et al., 2009). Min-
gling phenomena between the felsic
granites and the mafic redwitzite
magmas are ubiqitous. The redwitz-
ites often appear as comagmatic
enclaves in the granites.

Black Forest

The durbachites of the Black Forest
(Schwarzwald) form only relatively
small bodies that appear to be con-
nected to late Variscan granitoid
intrusions dated at around 333 Ma
(Schaltegger, 2000). The durbachite
rocks themselves have as yet not
been precisely dated by geochrono-
logical methods. Although the dur-
bachites of the Black Forest are
name given for this rock type, they
resemble the Bohemian redwitzites at
least in the point that they intrude
contemporaneously with large vol-
umes of Variscan crustal granites, in
which they appear as magmatic
enclaves (Oberkirch granite, Otto,
1974). Durbachite plutons of a larger
size, like those from the Bohemian
Massif are not known from the
Black Forest area.

Vosges

In the southern Vosges, durbachitic
magmas occur in the form of Visean
Mg-K volcanics or as monzonitic—
granodioritic intrusions (e.g. Granite
des Crétes, Granite des Ballons),
dated at 342 + 1 to 339.5 + 2.5 Ma
(Schaltegger et al., 1996). In the cen-
tral Vosges, durbachite-type magma-
tism occurred coeval with the
formation of migmatites and late
Variscan granitoid intrusions at
around 332 Ma (Schaltegger et al.,



/ldoc.rero.ch

http

Table 1 Durbachite-Vaugnerite age data.

Terrane

Locality

Ages (Ma)

References

Bohemian Massif

Saxothuringian

French Central Massif

Vosges
Black Forest

Massif de Maures
External Massifs

Tauern Window
Corsica
Central Iberia

Tisia Massif
Moesian Platform

Central Bohemian Pluton

Rastenberg Pluton
Knizeci Stolec Pluton

Trebic Massif
Jihlava Massif

Marktredwitz
Slavkovsky les

Meissen

Guéret massif

Livradois

Velay, related to
coarse granitoids

Reverdit Tonalite
Aar-Massiv
Aiguilles Rouges
Belledonne
Pelvoux, Rochail
Argentera Massif

Ahorn Gneiss

Bayo — Vigo region
Mecsek Mountains
Svoge region

343 + 6 Zmn ev

337 + 1 Zm, Rt
338 +2

341 + 8 CHIME

340 + 8 Zm ev

338-335

342 + 3 SHRIMP
348 + 18 CHIME
335 + 1 Ma

324-321 Zrn ev
323-326 Zrn ev

340 + 16 U/Pb

350-340 Rb/Sr
<360 + 4 mnz
>335-315 Ma?

340 + 2 U/Pb
332 + 3/-2 U/Pb
~330

334 + 3 U/Pb
334 + 2 U/Pb
332 £ 2 U/Pb
335 + 13 U/Pb
343 + 11 U/Pb
337 £ 8 U/Pb
~ 340 SHRIMP
334 +£ 5 U/Pb
~337

342 + 1 U/Pb
~349 U/Pb

339 + 10 Zm ev
337-338 U/Pb

Holub et al., 1997
Janousek & Gerdes 2003
Klotzli and Parrish, 1996
Verner et al., 2008

Holub et al., 1997
Kotkova et al., 2003
Kusiak et al., 2010
Kusiak et al., 2010
Kotkova et al., 2010
Janousek et al., 2010
Siebel et al., 2003
Kovarikova et al., 2007;
Kovarikova et al., 2010
Nasdala et al., 1999
Wenzel et al., 1997
Galan et al., 1997
Gardien et al., 2011
Ledru et al., 2001

Schaltegger et al., 1996
Schulmann et al., 2002
Hegner et al., 1996
Moussavou, 1998

Schaltegger and Corfu, 1992

Bussy et al., 1998
Debon et al., 1998
Guerrot and Debon, 2000
Debon & Lemmet 1999
Eichhorn et al., 2000
Vesela et al., 2011
Ménot et al., 1996
Rossi and Cocherie, 1995
Rossi et al., 2009
Gallastegui, 2005

Klotzli et al., 2004
Buzzi et al., 2010

1997; Schulmann et al., 2002), closely
resembling the situation in the Black
Forest.

French Massif Central

In the French Massif Central, the
appropriate rocks are traditionally
termed vaugnerites and are mainly
observed in the eastern part of the
massif, in the neighbourhood of the
Late Variscan anatectic—granitic Ve-
lay dome. As shown in the classical
papers by Sabatier (1980, 1991), these
vaugnerites appear in most cases as
rounded enclaves in late Variscan
granitoid bodies. Larger intrusive
bodies as well as dikes of vaugnerites
are rare. Ledru et al. (2001, their
fig. 5a,b) mention irregular shaped
monzodiorite xenoliths — ‘durbach-
ites’ — narrowly related to porphyric

granitoids (335-315 Ma) emplaced
before the cordierite—granites of the
Velay dome (Ledru, oral comm.).

Central Ibherian domain

In the Central Iberian domain, Gil 1b-
arguchi (1980, 1981, 1982) described
occurrences of vaugnerite-type mag-
matic rocks from the western coastal
areas. Comparable rocks have been
discovered in the anatectic Tormes
Dome of the autochthonous base-
ment (Lépez-Moro and Loépez-Plaza,
2004). Many localities are situated
along the border zone of the allo-
chthonous domain in north-western
Spain (Gallastegui, 1993, 2005; her
fig. 2.6). In particular, the Bayo-Vigo
zone contains many outcrops of
‘early granodiorites’ with a presumed
Lower Carboniferous age, which

host rounded enclaves of vaugnerites
(Gallastegui, 2005).

Corsica

In Corsica, vaugnerites form either
independent bodies of up to 500 m
diameter, enclaves of >10 m within the
high-K granites, or they appear as syn-
plutonic dikes. Dated around 337 Ma,
the rocks were interpreted as early oro-
genic, mixed high-K crustal and man-
tle melts (Orsini, 1976; Rossi and
Cocherie, 1995; Ménot et al., 1996;
Ferré and Leake, 2001; Rossi et al.,
2012). Rossi et al. (2009) proposed
that the vaugnerites of Corsica follow
a sinistral transpressional fault zone,
sealing the contact of former
Armorica-derived (Corsica) and
Gondwana-derived (Sardinia) base-
ment terranes (cf. Laporte et al., 1991).
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Alpine domain

In particular in the external massifs,
several gneisses and metagranitoids
with durbachitic affinities and Viséan
formation ages have been found
(Aar: Schaltegger, 1994; Schaltegger
and Corfu, 1992, 1995; Aiguilles

Rouges: Bussy et al., 1998, 2000;
Von Raumer and Bussy, 2004;
Belledonne: Debon et al., 1998;

Guillot et al., 2009; Argentera: Lom-
bardo et al., 1997, 2011). ‘K-feldspar
amphibolites’ (meta-durbachites)
with actinolitic lumps and layers
(former ultramafic layers) in the
Mont-Blanc/Val Ferret area have
comparable ages (Von Raumer and
Bussy, 2004), and vaugnerite—durba-
chite magmatic enclaves and intru-
sive bodies of Visean age were
observed in the Pelvoux area (Le

Fort, 1973; Banzet, 1987; Vittoz
et al., 1987; Guerrot and Debon,
2000). Le Fort’s (1973) Gneiss

d’Olan is likely to be a volcanic—
subvolcanic durbachitic complex of
Visean age (cf. Von Raumer, 1998).
Finally, the basement of the Tauern
Window (Eastern Alps) comprises a
series of variably gneissified high-K
granitoids of Visean age that can be
included into the durbachite group
(Finger et al., 1993; Eichhorn et al.,
2000; Ahorn-Gneiss, Veseld et al.,
2011).

Tisia domain

In the Hungarian Tisia domain
(Méragy unit of the Mecsek Mou-
tains), K-Mg-rich granitoids of
Tournaisian to early Visean age
show features of durbachitic magmas
(Klotzli et al., 2004).

Variscan axial zone of Bulgaria

Syenitic-monzodioritic rocks from
the Svoge region (Cortesogno et al.,
2004) with an age of 337-338 Ma
were recently described by Buzzi
et al. (2010). These rocks have strong
similarities to the durbachite-vaugnerite
rocks of central Europe.

Plate-tectonic background

The ideas about the Variscan orogeny
in Central Europe and their plate-
tectonic reconstructions have consid-
erably evolved. If considering recent

reconstructions (Stampfli ez al., 2011,
2013), the Variscan orogen is seen as a
collage of three terranes, Armorica,
Ligeria and Galatia (Fig. 2B). These
terranes split off from the Gondwana
margin in the Devonian, when the
Palaeotethys opened, and drifted in
the shape of an elongate magmatic arc
system in the direction of Laurussia.
This new concept involves a longlast-
ing and orogen-wide Andean type
evolution in the Devonian. Numerous
occurrences of Devonian HP pressure
rocks give clear evidence for this early
Variscan subduction stage and are
aligned in the model along the northern
margin of the Armorican—Ligerian—
Galatian arc system. In the Carbonif-
erous, the three individual terranes
Armorica, Ligeria and Galatia col-
lided and were dragged along each
other to form a new thick superterra-
ne, which, in turn, collided with the
Laurussian continent margin and terr-
anes derived therefrom (e.g. Hanseatic
Terrane, former part of Avalonia).
Note that, during the collision of Gal-
atia and Ligeria, the intra-Alpine
Variscan units moved into the south
of the Moldanubian domain. At about
the same time, the Armorican base-
ment units moved in a position north
of the former Ligerian Cordillera.

In Late Visean times (Fig. 2C), we
observe a cluster of durbachite-vau-
gnerite rocks in the centre of the
Galatian superterrane. This plutonic
province seems to straddle the suture
between the Armorican terrane and
the Ligerian—Galatian terrane amal-
game. Thereby, most of the durbach-
ites—vaugnerites are positioned in
Ligerian—Galatian basement units,
i.e. in the upper plate of the collison
zone. Only a few (the Saxothuringian
and Moesian occurrences of dur-
bachites) are situated within Armori-
ca-derived basement massifs.

Discussion

Many durbachites/vaugnerites are, in
a broad sense, granitoid rocks. How-
ever, in most of the large granite areas
on earth, they appear to be insignifi-
cant. For instance, durbachites—vau-
gnerites play, to our knowledge, no
role in the granite-rich Lachlan fold
belt (Bruce Chappell, pers. comm.).
Neither they appear to play a role in
the voluminous Cordilleran I-type
granite belts along the North and

South American west coast. This
implies that large-scale processes of
granite formation normally do not
produce such rocks. In fact, descrip-
tions of igneous rocks similar to durb-
achite—vaugnerite rocks exist only
sporadically in the literature, with the
exception of the Variscan fold belt,
where they definitely reach their high-
est concentrations. Monzonitic rocks
associated with syenites and high Sr—
Ba granites reported by Anderson
et al. (2006) from a distinct zone in
the Fennoscandian Shield could be
equivalent to the Variscan durbach-
ites—vaugnerites. These 1.8 Ga old
rocks are post-collisional with respect
to the Svecofennian orogeny and are
thought to be derived from an
enriched mantle source heated up
through slab break-off or a plume.
From the viewpoint of geochemistry,
but less with regard to rock textures
and modal compositions, the durba-
chite—vaugnerite rocks show affinities
to post-collisional ultrapotassic, mafic
to intermediate mantle magmatism
in Tibet (Miller et al., 1999; Guo
et al., 2013), North Korea (Peng
et al., 2008) or eastern China
(Yang et al., 2005; Wang et al., 2007).
However, potassium enrichment is on
the whole much stronger in these
Asian rocks.

Accepting the common view that
magmas of the durbachite—vaugnerite
family are extracted from enriched
mantle sources (Holub, 1997; Gerdes
et al., 2000; Janousek and Holub,
2007), we conclude that at least two
prerequisites must have existed in the
Variscan regions where the rocks
formed. First, these regions must have
been underlain by fertile enriched
mantle material. Second, a proper tec-
tonothermal trigger must have
appeared in the Visean to get this
source melted.

The common scenario for building
up an enriched mantle reservoir is
subduction (Fitton et al., 1991; Haw-
kesworth et al., 1995; Wilson et al.,
1997). Aqueous fluids derived from
the downgoing slab infiltrate the
mantle wedge and bring along water-
soluble chemical elements. Where the
thermal conditions are appropriate,
this fluid input will cause peridotite
melting and arc magmatism. Where
the melting curve of the peridotite is
not overstepped, the mantle will be
successively hydrated. The formation
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Frasnian

Fig. 2 Durbachites/Vaugnerites in the context of their Late Devonian to Carboniferous plate-tectonic environment. A — Frasnian
reconstruction after Stampfli ez al. (2011) for location of B. B — Distribution of durbachites/vaugnerites in their Frasnian context,
modified after Stampfli (2012). Red dots: Location of durbachites in their future geodynamic unit (Fig 2C), indicating a certain
proximity to the Ligerian suture (Stampfli ef a/., 2013) and to basement areas (yellow polygons) with Late Devonian HP
evolution (compare Stampfli ez al., 2011; Von Raumer ez al., 2013; their Fig. 6B). C — Late Visean distribution of durbachites/
vaugnerites (red dots) with contours of the main Variscan basement areas (grey) and Visean rift-basins (light blue). Heavy
contours correspond to geographical limits. Modified from Stampfli e al. (2013). A-B: location of cross-section models in Fig. 3.
Identification of basement areas: AA — Austroalpine; Ad — Adria and Sardinia; An — Anatolic; AP— Aquitaine Pyrenees and
Corsica; Ar — Armorica; Br — Brunswick; BRK — Betics-Rif-Kabbilies; Ca — Cantabrian and West Asturian-Leonese zones; CC —
Caucasus; Ch — Channel; Cr — Carpathian; Ct — Catalunia; cI and All — Central Iberian basement with allochthonous units; Db —
Dobrogea; D-B — Dacides—Bucovinian; eM — Eastern Moroccan Meseta; He — External Alpine massifs; HI — Hellenidic; Is —
Istambul; Md — Moldanubian (Bohemian Massif, Black Forest, Vosges); MC — Massif Central; Me — Moroccan Meseta; Mg —
Meguma; MM — Montagne Noire-Maures and Tanneron; Mo — Moesia; MR — Mid-German Rise; OM — Ossa Morena; Po —
south Portuguese; Pt — Pontides (Karakaya); Sh — Sehoul block; Sx — Saxothuringia; TW — Tauern Window; Tz — Tizia.

of phlogopite in such mantle lithospheric mantle (Chung ef al., rite-bearing basement areas show a

domains causes an increased fertility
with reference to a possible later
melting event. Elements compatible
for phlogopite, mainly K, Ba, Rb,
will then be strongly enriched in par-
tial melts derived from such a source.
Good examples for such a scenario
are the late-Pliocene high K-Mg vol-
canic rocks from the Taiwan region,
which are supposed to be derived
from a metasomatized phlogopite-
bearing harzburgitic source in the

2001; Wang et al., 2006).

Turning back to the Variscan situ-
ation, we propose that long-lasting
Devonian subduction of the Rheic
Ocean has created a strongly enriched
mantle underneath the northern half
of the Armorican—Ligerian—Galatian
terrane chain. A genetic context
between durbachite—vaugnerite for-
mation and these earlier subduction
processes is supported by the fact
that almost all durbachite-vaugne-

record of Devonian/early Carbonifer-
ous HP-metamorphism or arc mag-
matism (see Fig. 2 and our earlier
review section).

A crucial point is the geological
situation in the Visean. It has long
been recognized that this was the
time of fast post-collisional basement
exhumation in many parts of the
Variscides, which 1is reflected not
only in the geochronological data of
the exhumed rocks but also in a high
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sedimentation rate in coeval basins
(Zwart and Dornsiepen, 1978; Matte,
1986). In particular along the suture
between the Ligerian and the Armor-
ican terrane, high-pressure, high-tem-
perature granulites, initially about
1000 °C hot (O’Brien and Carswell,
1993; Krenn and Finger, 2010), were
exhumed from mantle depth (ca.
60 km) to the surface within a few
million years (O'Brien, 2000; Friedl
et al., 2011). These HP-HT granu-
lites witness anomalously high tem-
peratures underneath the collision
zone, which are commonly explained
in terms of rising astenosphere fol-
lowing a process of slab break-off
(Finger et al., 2007; Janousek and
Holub, 2007).

Considering the new tectonic mod-
els of Stampfli e al. (2011, 2013), the
high heat flow during the Visean
could be explained in terms of a
detachment of a relatively cold mafic
underplate, representing the com-
pletely subducted oceanic crust of
the Rheic Ocean. Figure 3 shows
that most durbachite-vaugnerite
occurrences are situated at that time
right above this presumed zone of
slab sinking. Note that the model of
Stampfli et al. (2011, 2013) involves
a subduction of the Rheic Ocean on
either side, i.e. subduction to the
south below the Galatian superterra-
ne and to the north below the Han-
seatic terrane. The latter represents a
ribbon-like  continental  fragment
detached from Laurussia and consist-
ing mainly of pieces of Avalonia.
The slab roll-back of the Rheic was
responsible for the early-to-middle
Devonian opening of the Rhenoh-
ercynian Ocean along Laurussia,
and of the Palaeotethys along the
Gondwana margin  (Fig. 3). In
the Late Devonian, the collision of
the Hanseatic and Galatian terranes
corresponds to the disappearance of
the Rheic Ocean that triggered sub-
duction reversal on both sides of the
amalgamating terranes, i.e. the Rhe-
nohercynian started to subduct
southward, whereas the Palacotethys
subducted northward. The passive
margins of both terranes were then
changed into active margins and this
is well expressed by the apparition of
flysch-like deposits followed by vol-
canism at the turn of the Devonian.
After subduction reversal in the
Early Carboniferous, slab windows

may have developed beneath the
Galatian/Hanseatic terrane collage
due to the subduction of mid-ocean
ridges on both sides (Fig. 3). We
consider it possible that these slab
windows have given a particular
important impetus for the formation
of the durbachites—vaugnerites. Other
models for the Variscides involve
only a southward subduction of a
single Rheic Ocean (e.g. Schulmann
et al., 2009; Nance et al., 2010).
However, also in that case, a high
heat flow scenario can be constructed
similar to that in Fig. 3, if a process
of slab break-off, slab retreat, or a
slab window is invoked (e.g. the
model of Vanderhaeghe and Duch-
éne, 2010, which involves crust/man-
tle decoupling combined with slab
retreat).

Conclusion — the general picture of
an evolving orogen

Visean magmatic rocks of the durba-
chite-vaugnerite type characterize the
Variscan basement areas of the Helv-
etic domain, the Tauern Window, as
well as the entire Moldanubian Zone
between the Bohemian Massif and
the French Central Massif and Cor-
sica. Notably, other Variscan base-
ment areas of central Europe as for
instance, in the Carpathians, are
completely devoid of these rocks
(e.g. Broska et al., 2013). Because
the respective magmas are most
likely derived from an enriched man-
tle source, we propose a supra
subduction position for the durba-
chite-vaugnerite-bearing ~ basement
units. The significance of these
K-Mg-rich rocks as markers of a
suture zone was discussed already by
Schaltegger (1997). Edel (2001)
related their formation to an envi-
ronment of wrenching and orogen
parallel extension. The hotspot-like
distribution of the durbachites—vau-
gnerites above the suture between the
Armorican terrane (lower plate) and
the Ligerian—Galatian terrane amal-
game (Fig. 3) probably reflects large-
scale thermal anomalies in the man-
tle underneath, for which various
late-collisional  tectonic  processes
could have been responsible (slab
sinking or slab break-off, slab win-
dows, slab retreat). Following that
logic, magmatic rocks of the durba-
chite-vaugnerite type should also be

discovered in the allochthonous units
of the Central Iberian basements
(Ferndndez-Sudrez et al., 2007) and
in the Limousin area, which resem-
bles in its tectonic situation the allo-
chthonous wunits of the Central
Iberian basements (c.f. Berger ef al.,
2012). Indeed, we may infer from
rock descriptions given in Gallastegui
(2005) that the ‘older granodiorites’
from Central Iberia correspond
widely to the melagranitic, K-feld-
spar-phyric durbachite types known
from the Bohemian Massif (e.g. the
Rastenberg  granodiorite, Gerdes
et al., 2000), and a comparable rela-
tionship may have existed between
angular durbachite xenoliths and
their  K-feldspar-phyric  granitoid
hosts of the Velay area (see above).
The gradual post-Visean juxtaposi-
tion of terrane assemblages (e.g.
Giorgis et al., 1999; Guillot et al.,
2009; Schulmann et al., 2009) led to
a general narrowing of the orogen,
the disappearance of the Rheic
Ocean and the subduction of the
Palaeotethys ridge (Fig. 3). Parts of
the Variscides were affected by inten-
sive crustal melting at that time and
large batholiths formed. We find, for
instance, widespread migmatization
(since about 330 Ma) in the Bavarian
zone of the Bohemian Massif (Finger
et al., 2007) or the Velay dome in
the Massif Central, with the intru-
sion of late Variscan (about 310 Ma)
cordierite-bearing peraluminous
granitoids (Montel ef al., 1992;
Ledru et al., 2001). Equivalents of
these late Variscan migmatites and
cordierite-bearing peraluminous
granitoids also occur in the External
domain (Bussy et al., 2000; Olsen
et al., 2000; Lombardo et al., 2011),
and are followed there by slightly
younger intrusions (around 300 Ma)
of Fe—K-type granitoids emplaced in
a pull-apart system (e.g. Mont-Blanc
granite, Von Raumer and Bussy,
2004). This late magmatic evolution
has to be seen in the frame of the
collapsing Carboniferous cordillera
(roll-back of the Palacothethys slab
after the closure of the Rhenohercy-
nian Ocean). Observations in the
intra-Alpine and Carpathian base-
ment show that magmatism changed
during the Permian to a bimodal
type, with gabbros on one hand, and
felsic A-, I- and S-type granites and
rhyolites on the other hand (e.g.
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Fig. 3 Model of Stampfli ez al. (2013) showing the Variscan evolution (370-330 Ma) from Devonian subduction to Visean con-
tinental collision. Map: Distribution of durbachites/vaugnerites (compare Fig. 2B) above a supposed double slab window (dark
grey) formed by the subducted ridges of the Palacotethys and the Rhenohercynian oceans with relics of a former slab of Rheic
Ocean at depth and its Variscan orogenic framework evolving from the Devonian to the Late Visean (cf. cross-sections). Num-
bers: supposed depth (km) of slab. Cross-section models: Section A—B across the Variscan domains of the Devonian Galatian—
Hanseatic Rheic Ocean section (370 Ma) with subduction of the Rheic slab and the subsequent collisional evolution during
350 Ma and 330 Ma and subduction reversal. The former Galatian blocks: Helvetic (He), Moldanubian (Md), Saxothuringian
(Sx) and the former Hanseatic block: Mid-German Cristalline Rise (MGR) basement, separated from the Laurussian domain
in the North by the Rhenohercynian Ocean (RH).

Finger et al., 2003; Veselda et al.,
2011), and evolves, during the Perm-
ian, into bimodal magmatism, gab-
bros included, as observed in the
Alpine domain (Von Raumer et al.,
2013).

In conclusion, the durbachite-vau-
gnerite magmatic assemblage is inter-
preted as a geodynamic marker for a
prominent late-collisional melting
event within the enriched subconti-
nental mantle underneath the Vari-
scan orogen and we consider slab
windows as a possible trigger. This
orogenic configuration of the Visean
was then strongly overprinted during
the Upper Carboniferous and Perm-
ian extension (Stampfli ez al., 2013),
leading to a wide post-Variscan basin

and range system and the opening of
Meliata-type back-arc basins. The
final lithospheric re-equilibration to
sea level conditions was attained dur-
ing Triassic times and affected nearly
the entire orogene, before Alpine tec-
tonics led to the formation of the
present-day puzzle.
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