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Abstract — In classical mechanics the theory of non-linear dynamics provides a detailed framework
for the distinction between near-integrable and chaotic systems. Quite in opposition, in quantum
many-body theory no generic microscopic principle at the origin of complex dynamics is known.
Here we show that the non-equilibrium dynamics of homogeneous Gaudin models can be fully
described by underlying classical Hamiltonian equations of motion. The original Gaudin system
remains fully quantum and thus cannot exhibit chaos, but the underlying classical description
can be analyzed using the powerful tools of the classical theory of motion. We specifically apply
this strategy to the Tavis-Cummings model for quantum photons interacting with an ensemble of
two-level systems. We show that scattering in the classical phase space can drive the quantum
model close to thermal equilibrium. Interestingly, this happens in the fully quantum regime, where
physical observables do not show any dynamic chaotic behavior.

Many aspects of the transition from regular dynamics
of an integrable system to erratic behavior of a complex
system are understood in classical mechanics. On the
one hand, there is the Kolmogorov-Arnold-Moser (KAM)
theorem [1], that proves the stability of weakly perturbed
integrable systems. On the other hand, a variety of mecha-
nisms leading to chaos and eventually to the ergodic explo-
ration of phase space have been found (see, e.g., [2]). For
quantum systems, the main paradigms for the description
of quantum chaotic phenomena are quasiclassical [3] and
random matrix [3,4] theories. Moreover, in a number of
specific model studies thermalization processes have been
observed (e.g., [5]). However, there remains an impor-
tant conceptual gap between regular and complex behav-
iors. In this letter we investigate a non-trivial integrable
quantum system without going to the quasiclassical limit
and gain microscopic insight into the emergence of irreg-
ularity when breaking integrability by driving an internal
parameter.

A good starting point to approach regular dynamics
of non-trivial quantum systems are Bethe ansatz (BA)
integrable models, which possess a complete set of inte-
grals of motion. The exact solutions of time-independent

BA many-body solvable systems played a crucial role in
the understanding of various fundamental phenomena and
concepts in physics. Famous examples are the solutions
for the Ising model, the Heisenberg spin chain, the one-
dimensional Hubbard model or the Lieb-Liniger gas [6,7].
Also certain aspects of quantum chromodynamics can be
described by the integrable quantum spin chain with com-
plex spin [8]. However, the non-equilibrium dynamics of
these models are rich [9-18] and much more difficult to
be calculated within the BA than the static properties.
Formulating a theory of integrability breaking for time-
dependent problems is thus not only a conceptual, but
also a technical challenge.

In this letter we restrict ourself to a certain class of
Gaudin-type models for which we can derive a description
in terms of a classical many-body interacting system. De-
viation from integrability for the quantum system can then
be understood in terms of the classical system, for which
powerful tools such as the KAM theorem are available. To
be specific, we consider the Tavis-Cummings model which
was introduced in the context of interaction of light and
matter in quantum optics [19]. It can be seen as a Dicke
model [20] in the rotating-wave approximation. The model
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is a representative for the first non-trivial members of BA
integrable systems [21]. An application is for instance the
description of the Bose-Einstein condensate in an optical
cavity [22]. Tt is important to note that our auxiliary clas-
sical representation is not connected to the quasiclassical
limit of the related Dicke model [23], but exact for the full
quantum model. We will derive this classical representa-
tion and analyze its dynamics under periodic driving of
the detuning.

Our results can be straightforwardly applied to arbi-
trary homogeneous Gaudin models, such as the Lipkin-
Meshkov-Glick model for phase transitions in nuclei [24].
The challenges one faces when extending our approach to
inhomogeneous models, for instance the Richardson or the
central spin model, will be discussed in the conclusions.

The quantum Hamiltonian of the Tavis-Cummings
model reads

Hp = AS* + g(bTS~ +bSH), (1)

S 28 6}
Whgere k?’ = 2213
ZM:1(S“)2

is a collective spin operator with
= S(S + 1), the single-mode bosonic field
(l; and ET, photon annihilation and creation operators) is
detuned by A. The total number of excitations M =
bth+S57+ 3 is a conserved quantity. Therefore, the relative
strength of the detuning A/g is the only free parameter
in the system in a given sector with well defined quantum
numbers M and S.

The Tavis-Cummings model belongs to the class
Gaudin-type models [25] and one can introduce the Bethe
wave function

{Aa}) = H (2)

The rapidities (or spectral parameters) Ao, « = 1,..., M,
are complex numbers, while the excitation creation oper-
ators B(\) and the vacuum |0) are defined as

. +

B(\) = b — gST, and b|0) = S7|0) = 0. (3)

The action of the Hamiltonian on the Bethe wave func-
tion is given by

M M
Hi{Aa}) = |Espu({Xa}) + D fal{Aa}) [[] B(a)IO)
M
Z {A b [T BOws)b'|0). (4)
a=1 BF#a

where fo({\o}) is defined as

falDah) =228 A+Za—. o)

fa

Equation (4) is known as the off-shell Bethe equation [26].
If the rapidities satisfy the Bethe equations fo({Aa}) =0,
then the Bethe wave function is an eigenstate with the
eigenenergy

M
Esar({Aa}) =AM = 8) = > Ao (6)
a=1
Indeed, it is possible to construct a basis of Bethe states,
and this is how the system is solved when the Hamiltonian
is time-independent. However, for the Tavis-Cummings
model, one can explicitly include the off-shell term in or-
der to describe the dynamics of the wave function under
a time-dependent detuning A(¢). The Bethe wave func-
tion including the off-shell part completely describes the
solution of the time-dependent Schréodinger equation with
rapidities {\,}) moving in time,

M
[W(t)) = exp[— H (7)

with a phase e(t) = 3, [1[Es,m(Aa () + fa(Aa)] — SA(t)
and where the rapidities are subject to the following set
of equations:

= Jo (Aa(t))- (8)

It can be verified that in the stationary case Ay (t) = 0 the
time-dependent wave function (7) reduces to the static
one (2) with a phase given by the eigenenergy (6).

The appeal of the representation (8) is its equivalence
to a integrable classical many-body problem. After the
change of variables

Aa(t) = 223, )
the dynamical Bethe equation (8) reads
. g2 At ,
To = ngQ—F 2( );va —ixd
1 1 1
_ [ + } . (10
4 e To+2Tg  To — T
BF#a
Therefore, it becomes apparent that the x, move ac-
2
cording to a classical Hamiltonian H; = Ziil Po +

Va({za}), with potential

Val{za}) = 162( JEpSE +<xa+1xﬁ>2>
ﬁ#a

L 6 A(t) 4 v(t) 2 9452 1
—r) — —= — — 11
+ 2xa 2 J"Oé + 2 xa + 8 xa? ( )
where
AZ A1)

y(t)= (M —1—58)g*> —2¢°S + 1 i



/ldoc.rero.ch

http

oo.—

h mm VHM I WW \H ‘( 120

Jt/h

510 15 20 25 30 35

(Eo = Eo)/g

(c) rapidities

0
Im A

Fig. 1: (Colour on-line) Dynamics of the Tavis-Cummings
model driven non-resonantly with the amplitude Ag/g = 5
and a frequency w = 3.57g/h, S = 6 and M = 4. (a) The
boson occupation number N, monitored over some interval of
time, (b) the weights of eigenstates (13) co and (c) the stro-
boscopic maps of all rapidities A\, m = 1,..., M after 4000
cycles.

This model is a complexified version of the BC-type In-
ozemtsev model [27] and belongs to the family of gener-
alizations of the Calogero model. It is integrable on the
classical level for time-independent parameters. We can
therefore interpret the full quantum dynamics and break-
ing of integrability in terms of the classical equations of
motion.

Here we break the integrability by the time-dependent
driving of the detuning. Namely, we consider the follow-
ing setup: at t = 0 the system is prepared in its ground
state at A = Ag. Then we evaluate numerically its time
evolution under the periodic detuning A(t) = Ag cos(wt).
We solve the time-dependent Schrodinger equation by us-
ing a Runge-Kutta integration scheme. The rapidities can
be obtained from the coefficients of the wave functions
by finding the roots of symmetric polynomials. For il-
lustration of the principle, we choose a small number of
excitations, M = 4, S = 6 and a strong amplitude of
the detuning Ag/g = 5, such that the bosonic modes are
highly occupied initially, N, = <?)T3> ~ 3.2, and the popu-
lation of excited spins is small. The high driving amplitude
causes strong dynamical redistribution of excitations be-
tween bosonic and spin degrees of freedom. If the driving
frequency is non-resonant, dynamics remain almost adi-
abatic and observables are expected to exhibit periodic
oscillations along the instantaneous ground-state values.

In fig. 1(a) the following example example is shown: At
frequency w = 3.57g/h, there are regular oscillations of
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Fig. 2: (Colour on-line) The Tavis-Cummings model driven
near-resonantly with amplitude Ag/g = 5 and frequency w =
3.68¢g/h. For explanations see caption of fig. 1.

the boson populations Ny(t) between 3.2 and 0.2. The
rapidities, which correspond to the position variables of
the classical model (11), are monitored stroboscopically
after each cycle (i.e. at time t, = 27p/w, p = 0,..., P,
where P = 4000 in the present case) by collapsing them
onto a single complex plane. Figure 1(c) shows that in this
non-resonant case the rapidities cluster on circles located
around the ground state positions. These circles indicate
the existence of stable KAM-tori in the 16-dimensional
phase space of the classical system and according to our
correspondence between dynamics of the quantum and the
auxiliary classical system, we can classify such behavior as
nearly integrable. In order to characterize the statistical
properties of this system we measure the distribution of
states averaged over all cycles

Ca PZ| 04|2

where [¢(tp)) is a state of the driven system at t = ¢,
and |a) are the eigenstates of the Hamiltonian H (t,) after
p cycles. In fig. 1(b), we found their distribution to de-
cay rapidly, which is expected in this nearly adiabatically
driven system. We compare this distribution to a Boltz-
mann distribution, ¢, = e™#F= /Z, with the same average
energy. It turns out that the Boltzmann distribution can-
not describe the weights. Figure 1(b) also shows that very
few energy is pumped into the system.

In fig. 2 we consider a slight increase of the frequency
with respect to non-resonant case to w = 3.68¢g/h. The
boson occupation, which starts to exhibit an additional
beating frequency (fig. 2(a)), suggests that a resonance

(13)
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Fig. 3: (Colour on-line) The Tavis-Cummings model driven
with amplitude Ao/g = 5 and frequency w = 3.75g/h. For
explanations see caption of fig. 1.

is approached in the quantum model. Interestingly, this
comes along with a scattering of the rapidities on the col-
lapsed 2-dimensional stroboscopic maps (fig. 2(c)). From
the point of view of the auxiliary classical system, these
dynamics rather strongly deviate from the integrable limit.
It has to be noted that despite the relatively dense explo-
ration of the phase space, we could not find an indication
of truly chaotic behavior. Nevertheless, and despite the
small number of degrees of freedom in the system, this
leads to a state distribution remarkably close to Boltz-
mann distribution (fig. 2(b)).

Further increasing the driving frequency to w = 3.75¢g/h
as in fig. 3 leads to strongly beating dynamics of boson oc-
cupancies. This resonance of the quantum model leads to
a new structured pattern in the stroboscopic map of the
classical variables. This hints that there are new emerging
quasiperiodic orbits, which reside on a topological struc-
ture different from the one of the near-adiabatic case. The
state distribution in fig. 3(c) shows that the weights devi-
ate considerably from the Boltzmann distribution. Unlike
in the non-resonant case (fig. 1(c)), a large amount of en-
ergy is absorbed by the system.

The cycle structure, well-localized rapidities in the non-
resonant cases, and a special pattern in a resonantly driven
cases, repeats when further increasing driving frequencies
or by modifying other parameters. A special case is the
two-particle problem, M = 1, where a ring-pattern is
transformed into a line and back to a ring upon chang-
ing the driving frequency.

In summary, we derived a correspondence between a
time-dependent quantum model and an auxiliary classical

system. The strength of this approach is illustrated by
an example of a driven Tavis-Cummings model with a fre-
quency tuned from a non-resonant to a resonant value.
The emerging dynamics can be interpreted in terms of
the classical underlying system, whose trajectories show
very different pattern in their stroboscopic maps. At the
point where one pattern is deformed into the other, irreg-
ularity in the classical dynamics is most pronounced and
time-averages of quantum observables approached thermal
equilibrium.

The Tavis-Cummings model belongs to the special class
of homogeneous Gaudin models. The fact that the rapidi-
ties can be used to describe the full quantum dynamics is
due to the completeness of the off-shell BA for the homo-
geneous model. Therefore, extending the approach to the
inhomogeneous Tavis-Cummings model [28] or Richard-
son models [11] is not straightforward. For these models,
it is impossible to describe an arbitrary state in terms of
a single off-shell Bethe state with time-dependent rapidi-
ties, and a linear superposition of these states would be
necessary to capture the dynamics of these systems. We
believe that the approach based on the separation of vari-
ables [29] could give an important insight into a further
development of our approach.

X K K

We acknowledge valuable discussions with B. ALT-
SHULER, D. BAERISWYL, J. S. CAauX, E. DEMLER,
A. PoLKOVNIKOV and A. TsVELIK. This work is sup-
ported by the Swiss National Science Foundation. PB
acknowledges hospitality of the University of Fribourg.

REFERENCES

[1] KOoLMOGOROV A. N., Dokl. Akad. Nauk SSSR, 98 (1954)
527; ArRNOLD V. 1., Russ. Math. Surv., 18 (1963) 13;
Moser J. K., Nachr. Akad. Wiss. Goettingen, Math.-
Phys. K., I, 1 (1962) 1.

[2] LorENZ E. N., J. Atmos. Sci., 20 (1963) 130; Bak P.,
Tanag C. and WIESENFELD K., Phys. Rev. Lett., 59
(1987) 381; Arnicoop K. T., SAUER T. and YORKE
J. A., Chaos: An Introduction to Dynamical Systems
(Springer-Verlag) 1997.

[3] GUTZWILLER M., Chaos in Classical and Quantum Me-
chanics (Springer) 1990.

[4] HAAKE F., Quantum Signatures of Chaos (Springer) 2010.

[5] FLAMBAUM V. V. and IZRAILEV F. M., Phys. Rev. E, 56
(1997) 5144; POLKOVNIKOV A., SENGUPTA K., SiLva A.
and VENGALATTORE M., Rev. Mod. Phys., 83 (2011) 863.

[6] KOorePIN V. E., BocoLuBov N. N. and IZERGIN A. G.,
Quantum Inverse Scattering Method and Correlation
Functions (Cambridge University Press) 1997.

[7] GAUDIN M., La fonction d’onde de Bethe (Masson, Paris)
1983.

[8] FADDEEV L. D. and KORCHEMSKY G. P., Phys. Lett. B,
342 (1995) 311; DERKACHOV S. E., KORCHEMSKY G. P.
and MANASHOV A. N., Nucl. Phys. B, 617 (2001) 375.



/ldoc.rero.ch

http

(9]
(10]
(11]
(12]
(13]

(14]

MANMANA S.;, WESSEL S., Noack R. M. and
MURAMATSU A., Phys. Rev. Lett., 98 (2007) 210405.
BARMETTLER P., PUNK M., GRITSEV V., DEMLER E.
and ALTMAN E., Phys. Rev. Lett., 102 (2009) 130603.
FARIBAULT A., CALABRESE P. and Caux J.-S., J. Stat.
Mech. (2009) P03018.

FARIBAULT A. and SCHURICHT D., Phys. Rev. Lett., 110
(2013) 040405.

MosseL J. and Caux J. S., New J. Phys., 14 (2012)
075006.

IYEr D. and ANDREI N., Phys. Rev. Lett., 109 (2012)
115304.

Pozscay B., J.
arXiv:1304.5374.
FacoTTt M. and ESsSLER F. H. L., J. Stat. Mech. (2013)
P07012, arXiv:1305.0468.

KorMmos M., SHASHI A., CHOU Y.-Z., CAUX J.-S. and
IMAMBEKOV A., arXiv:1305.7202.

CAUX J.-S. and EssLer F. H. L., Phys. Rev. Lett., 110
(2013) 257203.

Stat.  Mech. (2013) P07003,

[19]

[20]
[21]

22]

Tavis M. and CumMMINGS F. W., Phys. Rev., 170 (1968)
379; 188, (1969), 692.

DIckE R. H., Phys. Rev., 93 (1954) 99.

Ort1Z G., SOMMA R., DUKELSKY J. and ROMBOUTS S.,
Nucl. Phys. B, 707 (2005) 421.

BRENNECKE F., DoNNER T., RITTER S., BOUR-
DEL T., KOHL M. and ESSLINGER T., Nature, 450 (2007)
268.

EMARY C. and BRANDES T., Phys. Rev. E, 67 (2003)
066203.

LipkiN H. J.; MEsHKOV N. and GLICK A. J., Nucl. Phys.,
62 (1965) 188.

JUurco B., J. Math. Phys., 30 (1989) 1739.

BaBujiaN H. M., J. Phys. A: Math. Gen., 26 (1993)
6981.

INozEMTSEV V. I. and MESHCHERYAKOV D. V., Lett.
Math. Phys., 9 (1985) 13.

STRATER C., TSYPLYATYEV O. and FARIBAULT A., Phys.
Rev. B, 86 (2012) 195101.

SKLYANIN E. K., J. Sov. Math., 47 (1989) 2473.



