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Abstract. We show that every finitely generated nilpotent group of class 2 occurs as the
quotient of a finitely presented abelian-by-nilpotent group by its largest nilpotent normal
subgroup.

1 Introduction

Brookes showed in [2] that a finitely presented abelian-by-polycyclic group is vir-
tually an extension of a nilpotent group by a nilpotent group of class at most 2. In
this paper we show the following.

Theorem. Let Q be a finitely generated nilpotent group of class 2. Then there
exists a finitely presented group G with an abelian Fitting subgroup A so that the
quotient G=A is isomorphic to Q.

If Q were a finitely generated abelian group, then this result would be a very
straightforward one. But the arguments needed here cannot be a simple exten-
sion of those straightforward techniques. In [3], Brookes and the first author have
proved a theorem which implies, amongst other things, that if a finitely presented
abelian-by-nilpotent group is subdirectly irreducible, then the quotient by the
Fitting subgroup is virtually a central product of generalized Heisenberg groups.
(By a generalized Heisenberg group we mean a group which is torsion-free nilpo-
tent of class at most 2 and has cyclic centre; this includes the infinite cyclic group.)
Thus our arguments here will require groups which are subdirect products in a non-
trivial way.

The basic idea of the proof is straightforward. We express the nilpotent
group Q as a subdirect product of subdirectly irreducible groups Qi and for each
of those groups, we produce a module Bi so that the extension of this module
by Qi is finitely presented. The group G is then a split extension of Q by the
direct sum A of the modules Bi . The heart of the paper is in showing how to
choose these modules so that the groupG is finitely presented. We do this with the
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aid of a theory, developed by the second author, of † invariants for modules over
nilpotent groups.

2 Subdirect products of nilpotent groups

The following result is presumably well known.

Proposition 2.1. Let H be a finitely generated nilpotent group of class at most 2.

(i) H is a subdirect product of a finite group and a finite number of torsion-free
groups having infinite cyclic centre.

(ii) IfH has infinite cyclic centre then, for some k � 0, it has a presentation with
generators ¹x1; : : : ; xk; y1; : : : ; yk; zº and with relations

Œxi ; xj � D Œyi ; yj � D 1 for all 1 � i < j � k;

Œxi ; yj � D z
ıijmi for all 1 � i; j � k;

Œxi ; z� D Œyi ; z� D 1 for all 1 � i � k

(2.1)

for suitable non-zero integers mi .

A group which is presented as above will be called a generalized Heisenberg
group of rank k and the set ¹x1; y1; : : : ; xk; ykº will be called a symplectic basis
for H . Note that for k D 0, such groups are infinite cyclic.

Proof. (i) Because H is finitely generated nilpotent, it has a finite torsion sub-
group T and it is residually finite. Thus there is a normal subgroup N of finite
index which meets T trivially and so H is the subdirect product of the torsion-
free group Q D H=T and H=N . The centre Z of Q is torsion-free, hence free
abelian, say of rank r . There exist therefore r direct summands Ni of Z having
rank r � 1 and intersecting in ¹1º. Put Qi D Q=Ni . Then Q is a subdirect prod-
uct of the torsion-free quotient groups Qi . Since the Hirsch length of each Qi
is smaller than that of Q, we may assume inductively that each quotient Qi is
a subdirect product of subdirectly irreducible torsion-free quotient groups Qij .
So Q is the subdirect product of all the Qij whence H is the subdirect product of
the subdirectly irreducible torsion-free quotient groups Qij and the finite quotient
group H=N . Notice that the previous argument shows that the centre of a subdi-
rectly irreducible torsion-free quotient is infinite cyclic.

(ii) Suppose that H has cyclic centre Z generated by z. Then there is a sym-
plectic form on H=Z given by, for x; y 2 H ,

.xZ; yZ/ D m exactly when Œx; y� D zm:
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It is a standard result (see, for example, [1, Section 5]) that H=Z then has a sym-
plectic basis as Z-module. Lifting this symplectic basis to H , we arrive at exactly
the type of presentation described in the proposition.

Observe that there is room for choice of symplectic basis in the proof of the
second part of the proposition. We will make use of this later.

3 Modules for generalized Heisenberg groups

A similar construction to the one described here appears in the thesis of Dugal
Ure [5]. We have included details here both for completeness and because we
know of no easily accessible source. Suppose that H is a generalized Heisenberg
group of rank k � 0. Choose a generating set ¹x1; : : : ; xk; y1; : : : ; yk; zº for H
and suppose thatH then has presentation (2.1). We shall describe the construction
of a module A for H so that the split extension G of A by H is finitely presented
and A is the Fitting subgroup of G.

We, in fact, use HNN extensions to construct inductively groups G0; : : : ; Gk so
thatGk is the required groupG and we will recoverA D Ak as a normal subgroup
of Gk .

Let L be the free abelian group with basis ¹x1; : : : ; xkº; let A�1 be the free
ZL-module with basis B D ¹a1; a2º and let G�1 be the split extension of A�1
by L. Then G�1 has a presentation with generators ¹x1; : : : ; xk; a1; a2º and rela-
tions

Œxi ; xj � D 1 .1 � i < j � k/; Œa0; aw � D 1 .a; a0 2 B; w 2 L/: (3.1)

Using this presentation, it is easy to see that the assignments xi 7! xi , a1 7! a1a2,
a2 7! a1a

2
2 extend to an endomorphism ofG�1. It is equally simple to write down

an inverse for this endomorphism and so it is an automorphism �0 of G�1. Let G0
be the HNN extension (in this case, split extension) of G�1 corresponding to �0
and with stable letter z. Thus G0 has an extra generator z and extra relations

Œxi ; z� D 1 .1 � i � k/; az1 D a1a2; az2 D a1a
2
2: (3.2)

Suppose now that we have constructed, by a series of HNN extensions, a group
Gr�1 with the generators of G0 together with new generators y1; : : : ; yr�1 and
the relations of G0 together with new relations

Œxi ; yj � D z
ıijmi ; Œyj ; z� D 1; Œyj ; yl � D 1; ayj D aaxj (3.3)

where 1 � i � k, 1 � j; l � r � 1 and a 2 B.
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We now construct Gr . Consider the assignment �r that fixes z, y1; : : : ; yr�1
and each xi 2 L except xr , and satisfies xr 7! xrz

mr and a 7! aaxr for a 2 B.
It is easily verified that �r preserves the relations of Gr�1 as given in (3.1), (3.2)
and (3.3). Thus �r induces an endomorphism of Gr�1. To see that �r is injective,
observe firstly that Gr�1 is obtained by a series of ascending HNN extensions
with stable letter z or some yi , each of which is fixed by �r . Thus it will suffice
to establish that the restriction of �r to G�1 is injective. Now �r induces an au-
tomorphism of the group L, hence a ring automorphism of the group ring ZL; on
the other hand, since ZL is an integral domain, the assignments a1 7! a1a2 and
a2 7! a1a

2
2 induce an injective endomorphism of the L-module A�1. It follows

that �r WGr�1 ! Gr�1 is injective.
Thus we can again construct an HNN extensionGr corresponding to the assign-

ment �r and with stable letter yr . This groupGr has a presentation with generators
¹x1; : : : ; xk; y1; : : : ; yr ; z; a1; a2º and relations (3.1) and (3.2) together with (3.3),
but with r � 1 replaced by r . Repeating this process, we eventually arrive at the
group Gk with the generating set ¹x1; : : : ; xk; y1; : : : ; yk; z; a1; a2º and relations
given by (3.1) and (3.2) together with (3.3), but with r � 1 replaced by k. Let
A D Ak denote the normal closure of B in G D Gk . The group A contains the
subgroup A�1 which is abelian; as A is obtained from A�1 by a sequence of
localizations, A itself is abelian. From the presentation, it is easy to verify that
G=A Š H . Also, if there were a nilpotent normal subgroup of G larger than A,
then some non-trivial element of the centre of H would have to act nilpotently
on A. But it is clear from the definition that no non-trivial power of z acts nilpo-
tently on A. Thus A is the Fitting subgroup of G. The final step, the justification
that G is finitely presented, will be deferred to the next section.

4 Geometric invariants for modules over nilpotent groups

4.1 Definition of the invariants

We shall give only a very brief description of the invariants here. The subject is
treated in detail and with proofs in a paper of the second author [4].

Let Q be a finitely generated group. By a character of Q we mean a homo-
morphism Q! R; that is, an element of the dual Q� of Q. Then Q� is a finite
dimensional real vector space.

The usual version of the invariant we want to use is obtained by identifying
characters which differ by multiplication by a positive real and so replacing the
vector space Q� by a sphere. Most of the arguments in this paper will require
a vector space, however, and so we will translate results and terminology from [4]
accordingly.
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Let A denote a finitely generated ZQ-module. The subset�.QIA/ ofQ� con-
sists of the equivalence classes of the complement S.G/ X†0.QIA/ of the set
†0.QIA/ defined in [4]. More directly, if � 2 Q�, then � 2 �.QIA/ if and only
if, either A is not finitely generated as ZQ�-module, or � D 0. Here Q� is the
submonoid of Q consisting of the elements with non-negative �-value.

In [4], the term tame is defined with respect to an arbitrary central series of
a group. We shall use it, however, only for the very simple case of the lower central
series of a group of class 2. We therefore define it only in this special case.

Definition 4.1. Suppose thatQ is a nilpotent group of class 2 and A is a ZQ-mod-
ule with finite generating set A. We say thatA is tame (for the lower central series)
if both �.QIA/ and �.Q0IA � ZQ0/ contain no lines (equivalently, no diametri-
cally opposite points).

The key theorem we shall use is the following, which is a special case of a much
more general result appearing as [4, Theorem 4.1].

Theorem 4.2. With the notation above, if A is tame, then the split extension of A
by Q is finitely presented.

4.2 Calculating the invariant of the examples

We now turn to showing that the group G, constructed in the previous section, is
finitely presented. Clearly, by Theorem 4.2, it suffices to show that the module A
constructed there for the subdirectly irreducible group H is tame. We begin with
the trivial cases. IfH is finite or infinite cyclic, thenA is finitely generated as abel-
ian group and so �.H IA/ consists only of ¹0º. (In fact, in this case, the extension
of A by H is polycyclic.)

We shall use the following criterion for calculating � which has been adapted
from the more general situation of [4].

Let A be a cyclic module with generator a. Then � … �.QIA/ if and
only if there exists ˛ 2 ZQ so that a D a˛ and �.q/ > 0 for each q in
the support of ˛.

In the case when H is a generalized Heisenberg group of rank k > 0, then we
observe that either element a of ¹a1; a2º is a generator for A as ZQ-module and
that the defining relations ofH imply that a is annihilated by each of the elements

1C x1 � y1; 1C x2 � y2; : : : ; 1C xk � yk : (4.1)

(Note that we regard A as right ZQ-module.) These annihilating elements and
the previously quoted criterion allow us to find an upper bound for �.H IA/ as
follows.
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Fix an index i 2 ¹1; : : : ; kº and let �WH ! R be a character that assumes
its minimum only once on the support ¹1; xi ; yiº of 1C xi � yi . If the mini-
mum occurs at 1, then we rewrite the equation a � .1C xi � yi / D 0 in the form
a D a.�xi C yi / and deduce from the criterion that � … �.H IA/ if �.xi / > 0
and �.yi / > 0. If the minimum is taken on xi , we use that a is annihilated by
.1Cxi �yi / �x

�1
i D 1Cx

�1
i �yix

�1
i and infer that � … �.H IA/ if �.x�1i / > 0

and �.yix�1i / > 0; if it is taken on yi , we argue similarly. We conclude that � can
only belong to �.H IA/ if it assumes its minimum at least twice on the support of
each of the elements 1C xi � yi .

It follows that �.H IA/ is contained in the union of 3k subsets. To describe
these sets concisely, we introduce characters �i ,  i , �i 2 H� defined by

�i .xi / D 1;  i .yi / D 1; �i .xi / D �i .yi / D �1;

all values on other generators xj or yj being zero. The subsets are then as described
by the first statement of the next proposition; the second statement is a simplified
version of the first which will be used later.

Proposition 4.3. Let H and A be as defined in Section 2 and let �i ,  i and
�i D ��i �  i in H� be as before. Then:

(i) �.H IA/ lies in the union of the 3k sets, each defined as the convex cone
generated by a set of the form ¹�1; : : : ; �kº where each �i is an element
of ¹�i ;  i ; �iº.

(ii) �.H IA/ lies in the union of the 3k subspaces each spanned by a set of the
form ¹�1; : : : ; �kº where each �i is an element of ¹�i ;  i ; �iº.

4.3 The invariant for the module in the theorem

The Q-module A occurring in the statement of our theorem will be obtained by
combining three constructions. To begin with, the given group Q is expressed
as a subdirect product of a finite group Q1 and generalized Heisenberg groups
Q2; : : : ;Qm. For each factor Qi one constructs a tame Qi -module Bi , pulls its
action back to Q and then chooses A to be the direct sum B1 ˚ � � � ˚ Bm. To cal-
culate �.Q;A/, one then uses the direct sum formula

�.QIA1 ˚ A2/ D �.QIA1/ [�.QIA2/I (4.2)

it is valid for every couple A1, A2 of finitely generated Q-modules (cf. [4, Lem-
ma 2.2]). This leaves us with the calculation of the invariants �.QIBi /. Each
projection �i WQ � Qi induces an injective linear map ��i WQ

�
i � Q� and

�.QIBi / D �
�
i .�.Qi IBi //I (4.3)
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(cf. [4, Lemma 2.5]). The calculation of �.QIA/ can thus be reduced to that of
the subsets �.Q1IB1/; : : : ; �.QmIBm/.

Formula (4.3) implies that �.QIBi / contains no line if �.Qi IBi / has this
property; but such a conclusion cannot be drawn from formula (4.2): if �.QIA1/
and �.QIA2/ both contain a half-line, their union can be a line.

If Qi is finite or infinite cyclic, this problem does not arise, since Bi can then
be chosen so that �.Qi IBi / is reduced to the origin. If, however, Qi is a Heisen-
berg group of rank k > 0, no easy solution seems available. The solution pro-
posed in Section 6 will involve the choice of a symplectic basis of a normal
subgroup P of Qi of finite index and the module Bi will be an induced mod-
ule B ˝P ZQi with B a P -module of the kind constructed in Section 3. The set
�.Qi IB ˝P ZQi / can then be computed with the help of the formula

��.�.Qi IB ˝P ZQi // D �.P IB/ \ im ��: (4.4)

In the above �WP � Qi denotes the inclusion and �� is the induced linear map
Q�i � P � (see [4, Lemma 2.4]).

5 Symplectic spaces

Let F be a subfield of R and .V; ˇ/ be a finite dimensional vector space over
F equipped with a non-degenerate skew-symmetric bilinear form ˇWV � V ! F .
In the sequel, .V; ˇ/ will be referred to as a symplectic space. We shall make use
of the following basic properties of .V; ˇ/:

(a) V is even dimensional, say dimF V D 2k,

(b) V admits a basis ¹e1; f1; : : : ; ek; fkº, called symplectic, such that

ˇ.ei ; ej / D ˇ.fi ; fj / D 0 and ˇ.ei ; fj / D ıi;j for all i; j;

(c) for every subspace U the annihilator

U? D ¹v 2 V j ˇ.v; u/ D 0 for all u 2 U º

has dimension 2k � dimU and .U?/? D U

(see, for instance, [6, Corollary 5.60, Theorem 5.59 and Proposition 5.43]).
A subspace U of V with U � U? is called isotropic; it is said to be Lagrangian

if it is isotropic and not contained in a larger isotropic subspace. It is clear that
every isotropic subspace is contained in a Lagrangian subspace; moreover, the
formula dimU? D dimV � dimU (see (c) above) implies that every Lagrangian
subspace is of dimension 1

2
dimV . If ¹e1; f1; : : : ; ek; fkº is a symplectic basis of

the symplectic space .V; ˇ/, the subspace U spanned by e1; : : : ; ek is Lagrangian;
conversely, every Lagrangian subspace is of this form (easy induction on k).
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As before, let .V; ˇ/ be a symplectic space of dimension 2k over a subfield F
of R and let � be a finite collection of subspaces of V each having dimension at
most k. In the arguments of this section, we will use without further comment the
well-known fact that a finite dimensional vector space over an infinite field cannot
be the union of a finite collection of proper subspaces.

Lemma 5.1. There is a Lagrangian subspace L of V so that L \W D ¹0º for
each W 2 �.

Proof. We shall prove the result by induction on k; if k D 1, it is immediate. We
can clearly suppose that each W 2 � is non-zero; as ˇ is non-degenerate, this
implies that each annihilatorW ? is a proper subspace. Thus we can find u 2 V so
that, for each W 2 �, the vector u belongs to neither W nor W ?. Let U denote
the subspace spanned by u and let U? be its annihilator. Then U has dimension 1
and U? has dimension 2k � 1. Further, as u … W ? it follows that each W 2 �
is not a subspace of U?. Thus W \ U? will have dimension dim.W / � 1 and its
image OW in U?=U will also have dimension dim.W / � 1.

The symplectic form ˇ induces a skew-symmetric form on the 2.k � 1/-dimen-
sional space U?=U ; since .U?/? D U by property (c), the induced form is
non-degenerate. Moreover, the set O� D ¹ OW j W 2 �º is a finite set of subspaces
of dimension at most k � 1. Thus the inductive hypothesis provides a Lagrangian
subspace OL of U?=U so that OL \ OW D ¹0º. Let L be the lift of OL in U?.
If W 2 �, then L \W must lie in U and so must be zero as u … W .

The next lemma is the technical heart of this section. Let L be a Lagrangian
subspace of V and suppose that each element of � has trivial intersection with L.
Choose a basis ¹e1; : : : ; ekº for the subspace L and extend it to a symplectic basis
¹e1; f1; : : : ; ek; fkº for V .

Given � D .�1; : : : ; �k/ 2 Œ0; 1�k , let K� be the span of the vectors

¹.1 � �1/e1 C �1f1; : : : ; .1 � �k/ek C �kfkº:

Thus if � D .0; : : : ; 0/, then K� D L, and if � D .1; : : : ; 1/, then K� is the span
of ¹f1; : : : ; fkº.

Lemma 5.2. The family K� of subspaces has the following properties:

(i) for every � 2 Œ0; 1�k the subspace K� is Lagrangian,

(ii) for every � 2 .0; 1�k the subspace K� is transversal to L,

(iii) if every subspace in � has dimension k, then for every � sufficiently close
to .0; : : : ; 0/ the subspace K� is transversal to every subspace in �.
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Proof. (i)–(ii) For every index i , the vectors ei and fi span a symplectic plane;
these planes are orthogonal to each other. It follows that each subspace K� is
isotropic and of dimension k, hence Lagrangian. Moreover, if � 2 .0; 1�k , the sub-
space LCK� contains a basis of V whence the Lagrangian subspaces L and K�
must be transversal.

(iii) Let W be a subspace in � and let w1; : : : ; wk a basis of W . Consider the
function

gW Œ0; 1�k ! R;

� 7! det..1 � �1/e1 C �1f1; : : : ; .1 � �k/ek C �kfk; w1; : : : ; wk/:

This function is continuous and is non-zero at .0; 0; : : : ; 0/ (since W is a com-
plement of L). Hence there exists an interval Œ0; "W � such that g does not van-
ish on Œ0; "W �k . Set " D min¹"W j W 2 �º. For every � with 0 < �i � " for
1 � i � k, the subspaceK� is then a Lagrangian subspace that is transversal to L
and to every subspace in �.

Definition 5.3. Let C D ¹�1;  1; : : : ; �k;  kº be a symplectic basis for V . Then
the associated subspaces corresponding to the basis C are all subspaces of the
form h�1; : : : ; �ki where each �i is an element of ¹�i ;  i ; �i C  iº.

Note that, in this language, the set of subspaces described in (ii) of Proposi-
tion 4.3 is the set of subspaces associated to the basis ¹�1;  1; : : : ; �k;  kº ofH�

which is dual to the basis ¹x1; y1; : : : ; xk; ykº of H . (Here F D R.)

Proposition 5.4. There exists a symplectic basis e1; Of1; : : : ; ek; Ofk such that every
subspace associated to it has trivial intersection with each subspace in �.

Proof. Observe that it is sufficient to prove the theorem in the case that each sub-
space in � is replaced by a subspace of dimension k which contains it. Let L be
the symplectic basis ¹e1; f1; : : : ; ek; fkº and let the family K� be as described in
Lemma 5.2. Fix a positive integer p so that K� is transversal to every subspace
in� for each � 2 Œ0; 1

p
�k . Set Ofi D p.eiC 1

p
fi /. Then the set ¹e1; Of1; : : : ; ek; Ofkº

is also a symplectic basis for V .
Further, any subspace associated to this basis is spanned by a set of the form

¹u1; : : : ; ukº where ui is one of the vectors

ei ; Ofi D p

�
ei C

1

p
fi

�
or ei C Ofi D .p C 1/

�
ei C

1

.p C 1/
fi

�
:

Thus each associated subspace is of the form K� with � 2 Œ0; 1
p
�k and so meets

every subspace W 2 � trivially.



10 J. R. J. Groves and R. Strebel

6 Proof of the theorem

Suppose that Q is a finitely generated nilpotent group of class 2. Write Q as
a subdirect product with factors Q1, . . . , Qm where Q1 is finite and the re-
maining factors are torsion-free groups with infinite cyclic centre and so gen-
eralized Heisenberg groups (see Proposition 2.1). We then have epimorphisms
�i WQ! Qi and

Tm
iD1 ker.�i / is trivial.

We shall construct the group G by forming a module A for Q and then defin-
ingG as a split extension ofA byQ. We will take, for each i , a suitable moduleBi
for Qi and then regard Bi as a Q-module via �i . The module A will then be the
direct sum of the Bi . We must exercise considerable care, however, to ensure that
the resulting module A is tame and hence that G is finitely presented.

The factor Q1 is finite; order the remaining factors so that for i � j the rank
of Qi , as generalized Heisenberg group, is less than or equal to the rank of Qj .
For the finite factor Q1 the module B1 will be the group ring of Q1; note that
�.Q1IB1/ is reduced to 0. In all other cases, the module will be a modified ver-
sion of the modules A constructed for generalized Heisenberg groups in Section 3.
IfQi is cyclic, we can use such a module forBi without further adjustment. In this
case, the module Bi is finitely generated as abelian group and the corresponding
�.Qi IBi / is again reduced to the origin. For the other Bi we will need to take
more care to ensure that the resulting direct sum of the modules Bi is tame.

Suppose that, for some integer l with 1 � l � m, we have constructed modules
B1; : : : ; Bl�1 for Q so that the set

�.QIB1 ˚ � � � ˚ Bl�1/ D �.QIB1/ [ � � � [�.QIBl�1/

contains no lines and is contained in a finite collection � of subspaces of Q�,
each of dimension no more than the rank k of H D Ql and spanned by at most
k characters with images in Q. In order to describe our construction of the mod-
ule Bl , we need to consider symplectic forms on H and on Hom.H;Q/; we shall
denote Hom.H;Q/ byH #. The projection � D �l WQ � H D Ql yields an em-
bedding H� � Q� and the inclusion of the rational numbers in the reals yields
a further embedding H # � H�. We shall treat these embeddings as inclusions.

We have observed in the proof of Proposition 2.1 that the quotient H=Z by
the centre has a natural symplectic form given by commutation. This yields an
embedding �WH=Z ! H # defined by �.h1Z/Œh2� D .h1Z; h2Z/ and the image
of � inH # is a lattice inH # of full rank; that is, it contains a basis ofH #. It follows
that H # inherits a symplectic form ˇ satisfying

ˇ.�.h1Z/; �.h2Z// D .h1Z; h2Z/ D s exactly when Œh1; h2� D zs

where z is the chosen generator of Z.
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Let O� D ¹W \H # j W 2 �º. Then O� is a finite collection of subspaces ofH #

each of which has dimension no more than k (recall that each W 2 � is spanned
by at most k elements of H #). Thus we can apply Proposition 5.4 (with F D Q)
to find a symplectic basis C for V D H # so that each associated subspace of this
symplectic basis avoids each element of O� and hence avoids each element of �.

We shall now show how to construct the module Bl . As �.H=Z/ is a full
lattice in H #, there is a positive integer j so that jC � �.H=Z/. Thus there is
a subset D �H so that � maps ¹dZ j d 2Dº bijectively onto jC . It follows eas-
ily that D is a symplectic basis for a normal subgroupP of finite index inQl DH .
We then proceed with the construction of Section 3 to produce a module B for P
so that the set �.B/ � P � D Q�

l
will lie in the union of the subspaces associated

to the symplectic basis D of the Heisenberg group P ; because C D j�1�.D/

these associated subspaces coincide with the subspaces associated to the symplec-
tic basis C of the vector space V D H #. We then induce B from P toQl to obtain
the module Bl . It follows from formula (4.4) and the fact that �WP � H induces
an isomorphism im�WH� ! P � that�.Ql IBl/ lies in the union of the subspaces
associated to the symplectic basis C .

We have now constructed a module Bl for Ql so that �.Ql IBl/ contains no
lines. We pull Bl back to Q; formula (4.3) then shows that �.QIBl/ contains no
lines either and that it lies in a finite union of subspaces each of which intersects
the subspaces in � trivially. Formula (4.2) then implies that

�.QIB1 ˚ � � � ˚ Bl/ D �.QIB1/ [ � � � [�.QIBl/

contains no lines. Moreover, our construction shows that �.QIB1 ˚ � � � ˚ Bl/
lies in the finite union of subspaces, each either a member of� or one of the asso-
ciated subspaces of the symplectic basis C , and generated by at most k elements
of Q#.

We have thus completed the inductive step and so we can now deduce that,
if A D B1 ˚ � � � ˚ Bm, then A is finitely generated as ZQ-module and �.QIA/
contains no lines. Further, if A is a finite generating set for A, then Q0 acts on A
in such a way that the split extension of A by Q0 is locally polycyclic. Thus
�.Q0IA � ZQ0/ is reduced to the origin and so certainly contains no lines. Thus,
recalling Definition 4.1, A is tame.

The group G required by the theorem is the split extension of A by Q and we
deduce from Theorem 4.2 that it is finitely presented. The final step is to observe
that, if A were not the Fitting subgroup of G, then some non-trivial element of the
centre of Q would act nilpotently on A. The image of this element in some Qi
would be non-trivial and still central and would act nilpotently on Bi . But the
construction of the action of the centre of each Qi makes it clear that, in all cases,
no non-trivial element of the centre acts nilpotently on Bi . The proof is complete.
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