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According to the World Health Organization, bronchial asthma is a

chronic inflammatory respiratory condition, which affects at present
more than 150 million people worldwide, mostly children. Asthma
defined as bronchial hyper-responsiveness to allergens results from
the expansion of Th2 lymphocytes secreting an array of inflammatory
cytokines (IL-4, IL-5, IL-9, IL-13 and granulocyte macrophage colony
stimulating factor, GM-CSF)(Holgate, 2012). In the past 25 years the
cases of asthma have more than doubled in western society with the
highest morbidity around urbanized areas (D'Amato et al., 2013). It
has been shown that allergic asthma correlates strongly with environ-
mental factors such as tobacco exposure (Chilmonczyk et al., 1993),
air pollution (Kim et al., 2013), pollination (D'Amato et al., 2005) and
diet (Ali and Ulrik, in press). Nevertheless, recent genome wide associ-
ation studies (GWAS) have indicated susceptibility loci that contribute
to the aberrant immune response to allergens and can determine the
onset and the severity of the disease (Tamari et al., 2013). In addition,
other recent works suggest that parental or prenatal exposure to envi-
ronmental pollutants as tobacco can induce epigenetic modification in
immune cells and may be responsible for the endemic of asthma in
young children (Salam et al., 2012;Wang et al., 2013). Asthma appears,
therefore, a complex chronic disease of environmental and genetic
etiology (Fig. 1). The high incidence in the young population and the
prolonged treatment with anti-inflammatory drugs to contain the
symptoms and avoid deadly apnea episodes make asthma a serious
clinical condition for the patients and a significant economic burden
for the health care providers. Furthermore, secondary effects of breath-
less on blood oxygenation can have long-term consequences on brain
function. Indeed, asthmatic children are at risk of developing intermit-
tent hypoxia and sleep apnea which have been seen to correlate with
lower IQ scores and are at risk of developing attention deficit disorder
(Bass et al., 2004). Nevertheless, a direct link between asthma and cog-
nitive deficit has been so far elusive. The article from Guo et al. in this
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issue of Experimental Neurology uses an ovalbumin animal model of
asthma and indicates, for the first time, that chronic asthma can affect
cognitive performance and have irreversible effect on synaptic function
and neurogenesis (Guo et al., 2013). In this commentary we will touch
upon the implication of their findings for brain health.

Animal models of asthma: from sensitization to inflammatory
reaction

Based on the endemic of asthma observed in the last two decades,
several clinically relevant animal models have been established to
develop treatments for asthma. This research has been essential in
understanding the underlying mechanisms of airways inflammation,
hypersensitivity and susceptibility to organic and inorganic allergens.
The common feature of the asthma animal models is represented by a
sensitization phase to an exogenous antigen followed by long-term
exposure with the same or another protein at lower concentrations.
At the cellular level, airborne allergens which, in early life, come in
contact with the airway epithelium can break down the epithelial
cell barrier causing the release of soluble chemoattractant (CCL17,
CCL22 among others) and cytokines (IL-33, IL-25, TNFα and GM-CSF
among others)(Holgate, 2012). The released ligands and cytokines,
then, recruit dendritic cells from the bone marrow to the underlying
mucosa and promote their specification. Mature dendritic cells, with
antigen presenting capacity, can take up the exogenous allergens
captured by Immunoglobulin E (IgE) and migrate to the local lymph
nodes where they interact with naïve T cells. As a result of this inter-
action T cells are specified into Th2 cells which produce a wide array
of cytokines. The characteristic differentiation of T cells into Th2
memory cells at the expenses of Th1 cells, is regulated by IL-4 produced
by dendritic cells or resident basophils (Holgate, 2012). Th2 cells, which
are a more immature T-cell type, release high amount of cytokines that
contribute to Th2 cell expansion (IL-4), IgE synthesis from B cells (IL-4
and IL-13), mast cell differentiation and maturation (IL-3, IL-9 and
IL-13), eosinophil maturation (IL-3, IL-5 and GM-CSF) and basophil re-
cruitment (IL-3 andGM-CSF)(Holgate, 2012). This allergic cascade exac-
erbates the inflammatory reaction and leads to epithelial hypertrophy
and airway remodeling resulting in wheezing and breathlessness. The
ovalbumin model of asthma recapitulates several of the features of the
human respiratory condition including airways hyper-responsiveness,
epithelium thickening and respiratory weakness. Nevertheless, ovalbu-
min, which is contained in the egg white, is not considered to be an al-
lergen to human and recently exposure to particulates, tobacco, mites,
bacteria or viruses have been integrated in the ovalbumin protocol to re-
semble more closely the human condition (McAnulty, 2011). One of the
mechanisms for exacerbation of the airways inflammatory reaction in

1

Published in 
which should be cited to refer to this work.

ht
tp

://
do

c.
re

ro
.c

h



chronic asthmahas been attributed to epigeneticmechanisms involving
dysregulation of miRNAs. In particular, miRNA-21, which inhibits IL-12
expression, aTh1differentiation factor, leads to the increased Th2 differ-
entiation amplifying the allergic reaction (Lu et al., 2011). This indicates
that early inflammatory signals may actively contribute to propagate
the allergic reaction. On the other hand, neonatal exposure to virus or
bacteria has so far failed to aggravate the symptoms of asthma, indicat-
ing that neonatal contact with allergen speciesmay protect from devel-
oping an allergic reaction (Olszak et al., 2012; Siegle et al., 2010). This
would be in line with the evidence that children raised in rural areas
are at lower risk of developing asthma based on early immunization
to variety of bacterial and natural allergens (Ege et al., 2011). Further-
more, it has been demonstrated that obese mice have a higher risk of
developing asthma due to the sustained release of chemokine from
adipose tissue (Leptin, TNF, IL-6, VEGF and others). These cytokines
are pro-inflammatory and have been shown to favor Th2 cells differen-
tiation actively contributing to airways hyper-responsiveness (Shore,
2007). These studies corroborate the epidemiological research indicat-
ing obesity as a risk factor for developing asthma (Kheirandish-Gozal
and Gozal, 2012). Despite the evidence that asthma susceptibility has
an inheritable component, very few models have been established to
address the trans-generational transmission of allergic reactions.
Nevertheless, one study has indicated that the dietary intake of the
methyl donor, folate, from the pregnant mother can silence RUNX3
expression throughmethylation of CpG islands on the RUNX3 promoter
region. RUNX3, which regulates T cell development, if suppressed, leads

to differentiation of T cells into Th2 lineage increasing the severity of the
allergic reaction in the offspring (Hollingsworth et al., 2008). Prenatal
and early life epigenetic modifications appear, therefore, critical for
developing allergic asthma. On the whole, asthma research has un-
raveled important mechanisms underlying the airways immune
response to allergens and the long-term respiratory symptomatic,
but very little attention has been given to the resulting effects of ox-
ygen deprivation on the central nervous system. Nevertheless, cross-
correlative studies have indicated that obstructive sleep apnea (OSA),
which is clinically associated to bronchial asthma (Alkhalil et al., 2009),
can affect cognitive performance and attention in children (Bass et al.,
2004), adults (Kheirandish-Gozal and Gozal, 2012) and animal models
(Gozal et al., 2001; Row et al., 2003, 2002). Interestingly, Guo and col-
leagues in this issue of Experimental Neurology have shown that ovalbu-
min induced bronchial asthma has a direct effect on synaptic plasticity,
neurogenesis, memory and brain inflammation in mice (Guo et al.,
2013). The common features of intermittent hypoxia and asthma
(bronchoconstriction, dyspnea and inflammation) and the frequent
comorbidity (Alkhalil et al., 2009) suggest that reduced blood oxy-
genation (Hypoxemia) in asthma may be a critical factor for devel-
oping long-term neurological deficits.

Effect of chronic asthma on neuronal function

It is established that blood oxygenation is critical for brain func-
tion. Hypoxia is considered one of the main causes of brain damage
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Fig. 1. Illustration of the asthma cascade on airways inflammation and on brain function. Allergic asthma is triggered by environmental, genetic and epigenetic factors (blue filled
arrows). Asthma is aggravated by conditions as obesity and depression (blue dashed arrows). Allergic asthma causes airways inflammation and bronchoconstriction (wavy dash
indicates OSA as an associated symptom). Airways hyper-responsiveness as a result leads to Hypoxemia with detrimental effect on brain functions. Therapeutical approaches
used in the practice are indicated by green filled oval arrows. Adjuvant therapeutical strategies are indicated by green dashed oval arrows. ICS = Inhalant Corticosteroid, IgE
Abs = Immunoglobulin E antibodies and OSA = Obstructive sleep apnea.
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and cognitive impairment. In addition, dyspnea episodes during life are
considered amajor risk factor for developing neurodegenerative disease
(Daulatzai, 2012). Asthma due to the airways thickening may lead early
on to dyspnea and obstructive sleep apnea independently of age or
gender (Alkhalil et al., 2009). Early studies from the group of Gozal
have shown that obstructive sleep apnea, without interfering with the
sleep pattern, leads to spatial memory impairment, neuronal cell death
and gliosis in adult (Gozal et al., 2001) and immature rats (Row et al.,
2002). In later studies, the same group has resolved that the spatial
memory impairment may result from reduced c-AMP responsive
element binding protein (CREB) activity (Goldbart et al., 2003) and
reduced synaptic plasticity (Payne et al., 2004). Most recent evidence
indicate that brain derived neurotrophic factor (BDNF) which is critical
for synaptic plasticity and memory formation (Mattson, 2008), is re-
duced in intermittent hypoxia and BDNF infusion can rescue the synap-
tic plasticity deficit (Xie et al., 2010). These studies have demonstrated
for the first time how chronic dyspnea can have detrimental effects on
brain function. The recent paper from Guo et al. using an experimental
model of asthma recapitulates some of the former findings in intermit-
tent hypoxia. Guo and colleagues have found that mice treated with
the allergen ovalbumin from the first weeks of life (sensitization
phase) and challenged until mid-early adulthood (2 months of age) dis-
play a spatial learning andmemory deficit (Guo et al., 2013). Treatment
with the inhalant corticosteroid (ICS), Budenoside, despite reducing the
inflammatory reaction in the lungs, failed to rescue the cognitive impair-
ment. Thismight be explained by the subtle reduction in smoothmuscle
thickness by Budenoside treatment which may not prevent broncho-
constriction and can result in central hypoxia. Further studies using
a therapeutical combination of ICS and a β2 adrenergic agonist, as used
in the clinical practice (Ankerst, 2005), may improve blood oxygenation
through bronchodilatation in the ovalbumin model of asthma. More-
over, the authors confirmed that the neurocognitive deficit results
from impairment in long-term potentiation (LTP) of CA1 synapses
(Guo et al., 2013). LTP is a physiological correlate of memory and
its induction depends on NMDA receptors signaling. Whereas, the
maintenance of LTP is attributed to the increase of AMPA receptor
at the post-synapse or due to the insertion of AMPA receptors on
constitutive silent synapses, which become activated (for original
references Sweatt, 2009). Surface AMPA receptors insertion leads
to actin anchoring through CamKII resulting in the enlargement of
the spine heads and augmenting the strength of the synaptic con-
nection (Sweatt, 2009). Interestingly, in the asthma model presented,
LTP induction is unaltered whereas maintenance is affected. This sug-
gests that AMPA receptors trafficking may be compromised without
affecting the NMDA component. In addition to the LTP deficit, the
authors observed that basal transmissionwas reduced in the ovalbumin
treated group suggesting a reduced strength between CA3 and CA1
synapses (Sweatt, 2009). Indeed, Guo and co-authors reported profound
changes in spine density in CA3 region as well as an increase in mito-
chondrial size. Both LTP maintenance and basal transmission could be
partially reversed by Budenoside treatment. This might be explained
by the effect of Budenoside on mitochondrial function in CA3 neurons
as indicated by the reduction in mitochondrial size and the decrease in
theROS target, Hypoxia inducible factor 1α (Hif1α). Indeed presynaptic
mitochondria have been shown to release Ca2+ through Na+/Ca2+

exchanger in an activity dependent fashion, strengthening synaptic
transmission (Yang et al., 2003). In asthma, enlarged mitochondria
might be unresponsive to activity dependent changes but rather engaged
in processing reactive oxygen species (ROS) as a result of hypoxia, as in-
dicated by the increase in Hif1α expression. Indeed, it has been shown
that, in intermittent hypoxia, ROS are strongly induced (Row et al.,
2003). CA1 dendritic mitochondria have been, also, shown to contribute
to synaptic function (Li et al., 2004). It is likely that the rescue in mito-
chondrial function through Budenoside treatment occurs also at CA1
dendrites partially rescuing the synaptic potentiation. Nevertheless, the
moderate improvement in early LTP maintenance by ICS treatment

does not translate in better spatial learning and memory performance
suggesting that memory processing requires a threshold potentiation
level to trigger and maintain de novo synthesis of proteins constituting
the molecular pool of memories (Sweatt, 2009). Indeed, in the asthma
condition, levels of the early immediate genes c-fos and Arc are reduced
in hippocampal tissue and cannot be rescued by Budesonide. C-fos and
Arc transcription are downstream of CREB regulation (Benito et al.,
2011; Ying et al., 2002), it is plausible to think that, similar to the inter-
mittent hypoxia model (Goldbart et al., 2003), CREB activation may be
reduced. The defect in CamKII/CREB activation might, therefore, explain
also the LTP deficit as a result of decreased AMPA receptor tagging
through CamKII (Kessels and Malinow, 2009). The other possibility is
that, as it has been shown in several models of intermittent hypoxia
(Gozal et al., 2001, 2003) and altitude hypoxia (Maiti et al., 2007,
2008), sporadic cell deathmay be ongoing in chronic asthma, thus, inter-
fering with neural activity and network plasticity. The presence of VEGF,
a marker of brain inflammation and angiogenesis, may suggest so, al-
though further studies addressing this question will help understand
whether asthma can also have effects on neuronal survival.

Neurogenesis in asthma

The adult mammalian brain presents at least two neurogenic niches,
the subventricular zone (SVZ) of the forebrain and the subgranular zone
(SGZ) of the dentate gyrus. Those unique brain regions have regenera-
tive capacity and can respond to physiological stimuli as exercise (van
Praag et al., 1999) and learning (Sisti et al., 2007) as well as injuries
such as stroke (Arvidsson et al., 2002) and seizures (Madsen et al.,
2000). Neurogenesis in the hippocampus has been shown to be directly
implicated in associativememory (Shors et al., 2001), pattern separation
(Vivar and van Praag, 2013) and reduced neurogenesis has been associ-
ated to poorer learning and memory performance (Jessberger et al.,
2009). Themolecularmechanismsbeyond the neurogenic drive in phys-
iological conditions have been attributed to neurotrophins as BDNF (Lee
et al., 2002), and the increase in network activity (Deisseroth et al.,
2004). Interestingly BDNF expression is induced by synaptic potentia-
tion (Patterson et al., 1992), indicating that neuronal activity has
self-propagating effects through neurotrophin-induced neurogenesis
and plasticity. On the other hand, in condition of hypoxic injury, VEGF
appears to play a more prominent role (Jin et al., 2002; Shimotake et
al., 2010) indicating that the neurovascular unit is instrumental in
modeling plasticity following injury. In several brain injury models, the
hypoxic microenvironment stimulates neurogenesis as a result of in-
creased Hif1α signaling (Cunningham et al., 2012). Nevertheless,
based on the limited regenerative capacity of the brain, it is still debated
whether new born neurons can survive and integrate in the circuit.
Indeed, several reports have raised the possibility that long-term
inflammation can prevent neurogenesis and neuronal integration limit-
ing brain regeneration (Ekdahl et al., 2009). In the asthma ovalbumin
model Guo et al. show a similar discrepancy: despite an increase in
VEGF levels as a result of increased hypoxia (Hif1α)(Manalo et al.,
2005) and ongoing angiogenesis, as indicated by the angiogenic factor
GCPR 124 (Kuhnert et al., 2010), there is a substantial decrease in
neurogenesis (Guo et al., 2013). Treatment with Budenoside improves
only slightly neurogenesis and reduces circulating VEGF levels as a result
of reduced Hif1α, whereas levels of the angiogenic marker GPCR 124
remain unaltered. This result is difficult to reconcilewith the existing lit-
erature on the proliferative activity of VEGF (Jin et al., 2002; Shimotake
et al., 2010; Sun et al., 2003), however it remains possible that the simul-
taneous action of neuronal network activity (Bruel-Jungerman et al.,
2006), growth factors and endothelial factors contribute to neural
stem cells proliferations. Indeed, in the asthma model studied, synaptic
potentiation and neuronal activity, indicated by c-fos and Arc, are re-
duced. On the other hand, it is possible that chronic asthma induces
chronic inflammation not only peripherally but also centrally interfering
with neurogenesis and other neuronal processes. In fact, it has been
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reported that T-cells shape microglia responses in physiological and
pathological conditions contributing to learning andmemory processing,
neurogenesis and neuroprotection (Ziv et al., 2006, 2007). It remains
possible that aberrant T cell differentiation, as observed in allergic asth-
ma (Holgate, 2012), may interfere with the central immuno-neuronal
homeostasis impairing neuronal functions. In line with this hypothesis,
treatment with Budenoside, which dampens the immunological re-
sponse, can improve by 40% neurogenesis as compared to the asthma
condition, but cannot rescue completely the phenotype. The incomplete
rescue by Budenosidemight also be explained by the intrinsic inhibitory
activity that glucocorticoids have on proliferation (Ekstrand et al., 2008).
Further studies investigating the brain microenvironment in asthma an-
imal models will help unravel the mechanism beyond the hippocampal
neurogenesis defect and its consequences on memory processing.

Treating asthma beyond chronic inflammation

Based on the recent findings indicating that allergic asthma has
detrimental effects on cognitive functions and neuronal integrity,
therapeutical approaches should be considered to limit these secondary
yet crucial effects. The elective therapy for allergic asthma is based on
anti-inflammatory ICS. Nevertheless, it has been shown that long-term
monotreatment with corticosteroid can induce tolerance and have
adverse effect on hypothalamic–pituitary–adrenal axis and on bone
growth in children (Ankerst, 2005). In recent years, co-treatment of
ICS with long-acting β2-agonists, reducing muscle contraction, is pre
ferred as the drugs combination is synergistic and prevents overdosage
and secondary effects (Tamm et al., 2012). Other therapeutical
substances as leukotriene antagonists (Price et al., 2011) and immuno-
therapy with anti-IgE antibodies (Milgrom et al., 1999) have been put
forward as alternative to ICS or implementation to asthma therapy.
Nevertheless, asthma is a chronic and complex disease with growing
proportions and considering lifestyle corrections as reducing dietary
intake and physical exercise can have additional advantage to the classi-
cal therapy both on lungs' and brain's function. Indeed it has been
reported that both physical activity and dietary restriction or the combi-
nation of the two can improve significantly airways responsiveness
(Johnson et al., 2007; Lucas and Platts-Mills, 2005; Scott et al., 2013;
Walders-Abramson et al., 2009) as well as memory performance
(Mattson, 2000). It is thought that reducing the calorie intake has a
direct effect on mitochondrial metabolism reducing ROS production
which is cytotoxic and could contribute to neurodegeneration in the
long-term (Mattson et al., 2008). On the other hand, physical activity in
asthmatic patients could boost BDNF levels improving synaptic plasticity,
neurogenesis and ultimately reverting the memory defect (Mattson,
2008). In addition, it has been indicated that difficult to cure asthma sub-
jects are often diagnosed with depression (Lieshout and MacQueen,
2008). It is unclear at present whether there is a mechanistic link be-
tween asthma and depression. Nevertheless, there is increasing evidence
suggesting that depression increases pro-inflammatory cytokine andROS
production (Jones and Thomsen, 2013). Antidepressant therapy may be
sought in those patients to improve not only the central symptoms but
also the immunological response. In addition, dietary implementation
with antioxidants, as Vitamin E, may further prevent mitochondrial
dysfunction in the airways (Mabalirajan et al., 2009) as well as display
neuroprotective effects on the long-term (Mattson et al., 2008). Based
on the fact that many cellular processes are conserved between cells in
the human body, asthma therapy in the practice should consider novel
treatment directed at improving the immunological response as well as
brain health (Fig. 1).

Conclusions

On the whole, it appears that chronic asthma, besides the airway in-
flammation symptoms, has significant effects on cognitive processing
through impairment of synaptic plasticity andneurogenesis. In addition,

poorly treated asthmamay have, on the long-term, detrimental effect on
neuronal survival both through hypoxia andmitochondrial dysfunction.
In light of these important findings, asthma should therefore be consid-
ered as a secondary neurological condition.
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