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Spatial dynamics of a vegetation model in an arid flat

environment

Gui-Quan Sun - Li Li - Zi-Ke Zhang

Abstract Self-organized vegetation patterns in space
were found in arid and semi-arid areas. In this paper,
we modelled a vegetation model in an arid flat en-
vironment using reaction-diffusion form and investi-
gated the pattern formation. By using Hopf and Turing
bifurcation theory, we obtain Turing region in param-
eters space. It is found that there are different types
of stationary patterns including spotted, mixed, and
stripe patterns by amplitude equation. Moreover, we
discuss the changes of the wavelength with respect to
biological parameters. Specifically, the wavelength be-
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comes smaller as rainfall increases and larger as plant
morality increases. The results may well explain the
vegetation pattern observed in the real world and pro-
vide some new insights on preventing from desertifi-
cation.
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Wavelength - Desertification

1 Introduction

Vegetation plays a critical role in the real life. On
one hand, it can absorb carbon dioxide and release
oxygen, which keeps the balance of the ecosystem.
One the other hand, it can evaporate soil moisture into
the atmosphere, which can promote global water cir-
culation cycle. In a word, vegetation is able to keep
different kinds of plants, animals, and microbes and
provide all kinds of important renewable natural re-
sources.

Spatial self-organized vegetation patterns were
found by scientists in different areas [1, 2]. In arid
ecosystems, regular vegetation patterns are in the form
of stripes, spots, labyrinths, gaps, and so on [3-8]. The
mechanisms of these patterns are different, includ-
ing long-distance negative feedback, short-distance
positive feedback, long-range competition, and short-
range facilitation. Moreover, in some regions, it was
found that vegetation follows a power law distribu-
tion, which may be recognized as a warning signal for
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the onset of desertification [9-11]. As a result, investi-
gation on vegetation pattern in both space and time is
very important.

Since that long time data of the vegetation den-
sity is needed, it is difficult to obtain the properties
of vegetation pattern in both space and time. Thus, it
may provide useful information by constructing suit-
able mathematical models to explain the phenomenon
observation in the real world. Marinov et al. pre-
sented a detailed analysis on a vegetation pattern for-
mation model governed by a nonlinear parabolic sys-
tem [12]. Ursino used a simple model to reveal the in-
terrelations between plant ecology and hydrology, and
the interplay between above and below ground mass
patterns [13]. Kefi et al. investigated bistability and
regular spatial patterns based on a model of vegeta-
tion dynamics in arid ecosystems [14]. Sheffer et al.
posed a theory on the role of physical templates and
self-organisation for vegetation patchiness [15]. Sher-
ratt demonstrated that there were history-dependent
patterns in a vegetation model [16]. Borgogno et al.
reviewed mathematical models of vegetation pattern
formation in ecohydrology [17]. Inspired by Klaus-
meier’s model [1], we will study a vegetation model in
an arid flat environment using reaction-diffusion equa-
tions.

By using the standard multiple-scale analysis,
we can show pattern selection of reaction-diffusion
equations, where the control parameter(s) and the
derivatives are expanded with respect to a small pa-
rameter ¢ and the Fredholm solubility condition is
used [18, 19]. In the small neighborhood of the crit-
ical bifurcation (Hopf or Turing) point, the criti-
cal amplitudes A; (j = 1,2,3) follow the normal
forms. Their general forms can be derived from the
standard techniques of symmetry-breaking bifurca-
tions.

The structure of this paper is as follows. In Sect. 2,
we obtain a spatial vegetation model, and describe
the biological meanings of these model parameters.
In Sect. 3, we analyze the spatial model and derive
the mathematical expression for Hopf bifurcations and
Turing bifurcation critical line with respect to these
parameters. On the basis of the two lines, we gain
the exact Turing pattern region within the parame-
ter space. In Sect. 4, we obtain the amplitude equa-
tions of vegetation model and by performing a se-
ries of simulations, we demonstrate the emergence
of stationary patterns and interpret the meanings in

Sect. 5. Finally, some conclusions and discussion are
given.

2 Mathematical modeling and analysis
2.1 Model formulation
Klausmeier proposed a very simple partial differen-

tial equation model, with equations for surface water
W (X, Y, T) and vegetation U(X, Y, T) [1]:

ow

ﬁ=d—eW—fU2W+gVW, (1a)
AU
ﬁzaUZW—bU—i—cAU, (1b)

where a is plant growth rate, b is plant loss rate, d is
the rainfall, e is the evaporation rate of the water, and
f is uptake rate of plant. A = 3%/3X? + 82/9Y? is
the Laplacian operator in two-dimensional space and
V =09/0X is a flow term.

Klausmeier’s model was used to describe the veg-
etation pattern in a hill. However, in this study, we
want to investigate the vegetation pattern formation in
an arid flat environment. To this end, VW will be re-
placed by AW [20-22].

In order to minimize the number of parameters in-
volved in the model system it is extremely useful to
write the system in non-dimensionalized form. Al-
though there is no unique method of doing this, it is
often a good idea to relate the variables to some key
relevant parameters. Thus, following Sherratt [23, 24],
and taking

a
w=W-—,

NG u:U\/g, t=Te,
e

e e
x:X\/: y:Y\/j,
c c

we arrive at the following equations containing dimen-
sionless quantities:

Jw

E:S—w—uzw—i—DAw, (2a)
du 5
5 =Y w — Bu + Au, (2b)

where S =ade’/?//f, B=b/eand D = g/c.
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The initial conditions and boundary conditions are
as follows:

wx,y,0)>0,u(x,y,0) >0,

(x,y) €2 =[0, L] x [0, Ly], 3)
8w_8u_0( )eae
om _on_ Y '

where L, and L, give the size of the system in the di-
rections of x and y, respectively; n is the outward unit
normal vector of the boundary 92 and we assume 92
is smooth. The main reason for choosing such bound-
ary conditions is that we are interested in the self-
organization of the pattern. And Neumann boundary
conditions imply that there are no fluxes of popula-
tions through the boundary, i.e., no external input is
imposed from outside [25-31].

2.2 Bifurcation analysis

In the absence of diffusion, system (2a), (2b) is corre-
sponding to the following system:

dw

E:S—w—uzw:f(u,w), (4a)
W P~ Bu= gu,w) (4b)
— =u"w — u = u,w).

dt &

Note that (w, u) is an equilibrium point of system
(3) if it satisfies f(u, w) =0 and g(u, w) = 0. When
S < 2B, system (3) has one equilibrium: (S, 0). When
S > 2B, system (3) has two equilibrium solutions in
the positive quadrant. One equilibrium point, given by
((S+ /82 —4B2)/2,2B/(S + ~/S? — 4B?)), which
is unstable. Another equilibrium point is given by
E* = (w*, u*), where

. S—+/S§?—4B? . 2B
w=— U =——
2 S — /82 —4B2

From the biological perspective, we are interested
in studying the stability behavior of the interior equi-
librium point E*. The Jacobian matrix corresponding
to this equilibrium point is as follows:

ajip ap
J = b
a ax

where
28 (5a)
aln=—— ==, a
S —VS2—4B2

ajp = —2B, (5b)

a = 45 (50)
(S —+/ST—4B2)2’

a» = B. (5d)

Turing condition is the one in which the uniform
steady state of the reaction-diffusion system is stable
for the corresponding ordinary differential equations,
but it is unstable in the partial differential equations
with diffusion terms. First of all, we address the tem-
poral stability of the uniform state to non-uniform per-
turbations [32, 33]

* . o
(w) _ <w*)+(9 (wK)eAt+1Kr +ec + 0(82),
u u Uy

(6)

where A is the growth rate of perturbations in time ¢,
i is the imaginary unit and i> = —1, « is the wavenum-
ber, 7 = (x,y) is the spatial vector in two dimen-
sions and c.c. stands for the complex conjugate. The
linear instability (¢ < 1) of the uniform state is de-
duced from the dispersion relations. After substituting
Eq. (6) into Eqgs. (2a), (2b) one finds the characteris-
tic equation for the growth rate A as the determinant
det(H), where

H:<a11—DK2—A a122 )
any a» —K°— A

Then we can obtain the eigenvalues A, as follows:

e V)2 —4a,

« > . N
where
tre =ai +axn —«*(1+ D)
=try —«k%(1 + D), (82)
Ay =ajjapn — anay — k> (ar +anD) +«*D
= Ay — k(a1 +anD) +«*D. (8b)

Hopf bifurcation occurs when

Im(h) #0,

atk =0, i.e., aj; +axn =0.

Re(A¢) =0,
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Then we can get the critical value of the Hopf bifurca-
tion parameter, S:

BZ
Sgp=——. 9
H = )

Turing bifurcation occurs when
Im(x,) =0, Re(A¢) =0, atk =«r #0,

and the wavenumber k7 satisfies

A

2 J

=2 (10)
Then we can get the critical value of the Turing bifur-

cation parameter, S:

_ V—4BCD+3B3D3-2B2CD2+7B2D2+8BDB

s
T BD + 1

(11)
where C =+/2B2D? —2BD.

In [20], the diffusion coefficient values are chosen
as

g =100m>d, c=0.1m?d,

and thus we have D = 1000. In Fig. 1, we give the dy-
namical regions in parameters space spanned by the
parameters S and B. The domain located below all
two-bifurcations’ lines, corresponds to systems with
homogeneous equilibria, which is unconditionally sta-
ble. The equilibria that can be found in the area,
marked by “Turing region”, are stable with respect
to homogeneous perturbations, but lose their stabil-
ity with respect to perturbations of specific wavenum-
bers «. In this region, stationary inhomogeneous pat-
terns can be observed. In the rest, both Hopf and
Turing instabilities occur. For overall analysis, we fix
B =3 and show the real part of the eigenvalue as §
increases, which can be seen in Fig. 2.

3 Amplitude equations

The standard multiple-scale analysis yields the well-
known amplitude equations [19, 34, 35]. Close to the
onset S = St, the eigenvalues associated to the critical
modes are close to zero, and they are slowly varying
modes, whereas the off-critical modes relax quickly,

60
50 1
40 1
S
30 1
20 A Turing region
10 1
1 1.5 2 2.5 3
B

Fig. 1 Bifurcation diagram of system (2a), (2b). Turing region
is bounded by the Turing bifurcation line (the blue (upper) line)
and the Hopf bifurcation line (the red (lower) line) (Color figure
online)

Fig. 2 The real part of the eigenvalue as S increases. I: S = 10;
II: $ =30; III: S =40; IV: S =50. This figure shows that when
there is no space, the equilibrium point E* is stable. When com-
bined with space, loss of stability occurs in relation to the wave
numbers (Color figure online)

so only perturbations with k around k7 need consider-
ing. The whole dynamics can be therefore reduced to
the dynamics of the active slow modes. The stability
and the selection of the different patterns close to onset
can be derived from the amplitude equations that gov-
ern the dynamics of these active modes. Turing pat-
terns (e.g., hexagon and stripe patterns) are thus well
described by a system of three active resonant pairs of
modes (k;, —k;) (j =1, 2, 3) making angles of 27/3
and |kj| = kT.
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We can obtain the linearized form of model (2a),
(2b) at the equilibrium point E* as follows:

0x

i anx +apy —2u*xy —wy? — xy?
+ DAx,

0

d_)t) =anx +any +2utxy + w*y? + xy* + Ay.

12)

Close to onset S = S7, the solutions of model (4a),
(4b) can be expanded as

3
U=Us+) Uo[A;explik;- r)+Ajexp(—ik;-)].
j=1

(13)

At the same time, the solutions of model (12) can
be expanded as

3
v’ = ZUO[AJ exp(ik;-r)+ A_j exp(—ik; -r)],
j=1
(14)
where Ug represents the uniform steady state. A; and
the conjugate A_j are the amplitudes associated with

the modes k; and —k;, respectively. The amplitude
equations are described through the equations:

0A]

'L’OW = A +/’lA_2A3
— (8114117 + g2(1A21* + 1A31%)) A1,

0A> -

IOW =nAr+hA Az

— (811421 + g2(1A11* + |A3]%)) As,
1’0% = A3+ hA| A,
— (&11431* + g2(1A11* + 1A2]%)) A3,
(15)

where 1 = (St — §)/St is a normalized distance to
onset, 7 is a typical relaxation time.

In the following, we will give the exact expressions
of the coefficients g, &, g1, and g>.

Setting X = (x, y)T, N = (N1, N3), model (12) can
be converted to the following system:

9X
o =LX+N, (16)

where

I a1 + DA apn
as| an+A)]’

N N —2u¥xy — w*y? — xy?

IRV 2utxy +w*yr +xy* |’

During the calculation, we just analysis the behav-
ior of the controlled parameter close to onset S = St.

With this method, we can expand S in the following
term:

S —S=eS1+e25 +&°53+ 0(%), (17)

where ¢ is a small parameter. Expanding the variable
X and the nonlinear term NN according to this small
parameter, we have the following results:

y
=¢ <x1> + &2 <x2> +&3 (x3> + 0(84), (18)
Y1 y2 Y3

N=e>r’+ & + 0(e*), (19)

where A% and h* are corresponding to the second and
the third order of ¢ in the expansion of the nonlinear
term N. At the same time, the linear operator L can be
expanded as follows:

L=Lr+ (St —SM, (20)
where

_ (4 + DV? ap,
br= ( az azy, + vz )

b b12)
M= .
<b21 b
Here, one can have the expression of ai*j by substi-
tuting A7 for A in @;; and b;; is easy to be obtained.
The core of the standard multiple-scale analysis is sep-

arating the dynamical behavior of the system accord-
ing to different time scale or spatial scale. We just need
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to separate the time scale for model (16) (i.e., Top =1,
Ty =¢t, T, = 821). Each time scale 7; can be con-
sidered as independent variable. The derivative with
respect to time becomes the following form:

I 9,0 X
2% L. 12 % Lo 21
o a9, o TS T (%) @

Since that amplitude A is a variable that changes
slowly, the derivative with respect to time %, which
changes fast does not have an effect upon the am-
plitude A. As a result, we have the following re-
sult:

0A DA ,0A X
P2 e 28 422220 4 o(d). 2
Py 88T1 +e T +0(&”) (22)

By using the Egs. (18), (19), (20), and (21) and ex-
panding Eq. (16) according to different orders of €, we
can obtain three equations as follows:

The first order of ¢:

o(5)-
V1

The second order of &:
r(3)=am ()5 (3))
» Ty \ 1 n
—2u*x1y; — w*y%
2u*xy; + w*yl2 ’
The third order of &:
e (3) =5 (2) +am ()
y3 aT; \» T2 \ )1
- S1M<x2) - S2M<xl) —Z,
y2 Y1

4 (B i) = 2wty —
2u*(x1y2 + yix2) + 2w¥yiya +x1y7 )

where

For the first order of ¢:

Ly <x1> —0. (23)
Y1

As Lt is the linear operator of the system close
to the onset, (xq, yl)T is the linear combination of

the eigenvectors that corresponds to the eigenvalue 0.
Solving the first order of &, we have

aj,—az D
(xl ) = 2(1;1D
Y1 1

+ Waexp(ika r) + W3 exp(iks r))

(W1 exp(iky r)

+c.c., (24)

where |k;| = k7., W; is the amplitude of the mode
exp(ikjr) when the system is under the first order per-
turbation.

For the second order of ¢, we have

B
P(2)=am () - ()
»2 aTy \ V1 yi
—2u*x1y; — w*yl2
2u*xiyy 4 w*y?
Fy
= (Fy) . (25)

According to the Fredholm solubility condition, the
vector function of the right hand of Eq. (25) must be
orthogonal with the zero eigenvectors of operator L.
L7 is the adjoint operator of L. In this system, the
zero eigenvectors of operator L, are

1

exp(—ik;jr)+c.c. (j=1,2,3).

* *
_aj—apD
E3
2a3,

(26)

The orthogonality condition is

a¥, —a* D Fi
(1,-%)(1;):0, (27)
21

where F; and F}",, separately, represent the coeffi-
cients corresponding to exp(ik;r) in F, and F,. Tak-
ing exp(ik;r), for example, we have

(1 D)awl
a7

= S1(Ib11 + b1a — DIl(ba1 + b)) Wi
— (1 + DI)(41S7u* + 21STw*) Wo W3. (28)
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The coefficients in Eq. (28) are obtained by solv-
ing the sets of the linear equations about exp(0),
exp(ik;r), exp(i2k;r), exp(i(k; — ki)r).

With this method, we have

Xo XO> 2 2 2
= Wil= + IWa |~ + |W3]7),
<Y0> (yo (IW1I° + W2l + [W3]%)

X; =1Y;,
ij) <x11> 2
= w2,
(Yj' yir )
Xjk _ x* 5
()= ) worie

For the third order of ¢, we have
()= (2)+am ()
T = + =
y3 0T \ »n2 91> \ y1
—SM <x2) —$HM <x1> —Z. (29
2 Y1

Using the Fredholm solubility condition again, we
can obtain

aYy
a7y

= $2(Ib11 + b2 — DI(Iby1 + b)) W)
+ S1(Ib11 + b2 — DI(Iby; + b)) Y
+ (1 + DI)(4S7u* + 2S7w*) (WY, + W1 ¥3)

oW,
1—D)—+ (1 — D)l
( )8T2+( )

— (G1IW1 P + G (IWa* + W3 2)) Wi (30)

By transformation of W, the other two equations
can be obtained and the amplitude A; can be expanded
as

Ai =eW; + Vi + 0(e%). 31
For the order 2 and &, we can obtain the ampli-

tude equation corresponding to A as follows:

0A1 - -
T()W = ,LLAI +hA2A3

— (g11A17 + g2(1421* +1431%)) A1, (32)

where
D—1
Stllb11 + bia — DI(Ibay + by)]’

0=

_ (1 4+ DhH4Stu* +2S7w™)
~ Srllbyy + bia — DI(bay + ba2)]’
K

1 = 9
817 Srlibny + bia — DI(Iba; + b2)]
and

K>
82

= S7llb11 + bia — DI(Iba1 + b)]’

with K1 = (1 + D)[(—=2S7u*l — 2S7w*)(yo + y11) —
2S7u*(xo + x11) — 3S7l] and Kr» = (1 + D) x
[(=287u*l = 2S7w*)(yo + y11) — 287u™ (x0 + X11) —
6Sr!].

The other two equations of (15) can be obtained
through the transformation of the subscript of A.
Each amplitude in Eq. (14) can be decomposed to
mode p; = |A;| and a corresponding phase angle ¢;.
Then, substituting A; = p; exp(ig;) into Eq. (14) and
separating the real and imaginary parts, we can get
four differential equations of the real variables as fol-
lows [36]:

W2, PiP; + P1P3 + P3P3
dt P10203

sing,

ap1
T~ = o1 +hpap3cos - 107 — 82(0303) p1.

002

T - = o2+ hp1 p3cose - 2105 — 82(07P3) P2,
9p3 3 22

T = 13 + ho1p2cosp — 8103 — &2 (pip3)p3.

(33)

where ¢ = @1 + @2 + ¢3.
System (33) may have four different types of solu-
tions [18].

(1) The stationary state (O), corresponding to
p1=p2=p3=0, (34

is stable for < o =0, and unstable for p > ws.
(2) Stripe patterns (S), corresponding to

m
,01=‘/;750, p2=p3=0, (35)

are stable for u > u3 =
W< W3-

ﬁ , and unstable for
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(3) Hexagon patterns (Hy, Hy ) are corresponding to

Al £ /R +4(g1 +2g210)

P1L=p2=p3
2(g1 +282)
(36)
with ¢ =0 or 7, and exist when
—h?
> =—-": (37)
4(g1+2g2)
: Al R A1 H2801)
The solution p+ = @120 is stable
only for
2g1+ 2
W< pg= R, (38)
(g2 —g1)
— - 2 .
and p~ = ! Vzh(g:rig?;zgz“ ) is always unstable.

(4) The mixed states are corresponding to

|| n—gi1p?
p1= , p2=p3 =, ——L, (39)
82 — &1 g1+ 8

with g» > g1. They exist when p > u3 and are
always unstable.

We show the analysis results on the above in Fig. 3
with B =3 and D = 1000. It is found that when
W= 2, u3 and 4, the corresponding values of S
are S = 6.43537822, 34.11923562, and 61.56901126.

Ompz ~ oy 02 " 03 04" 05
I

Fig. 3 Bifurcation diagram of model (2a), (2b). We set
the parameter values as B = 3, D = 1000. Hp: hexagon
patterns with ¢ = 0; Hy: hexagon patterns with ¢ = m;
SP: stripe patterns. Solid curve: stable state; dash line: unsta-
ble state. ;1 = —0.00314651, o =0, u3 = 0.24718849, and
e =0.43681987

When the controlled parameter p increases to the crit-
ical point up = 0, the stationary state of the system
begins to lose stability. If w1 < u < 2, then the sys-
tem exists a bistable region in the range of the con-
trolled parameter. The emergence of stripe patterns de-
rives from supercritical bifurcation which are unsta-
ble for ; < w3 and stable for u > 3. When the con-
trolled parameter p exceeds (4, there is coexistence
of hexagon and stripe pattern.

4 Pattern formation

Since the dynamical behavior of the spatial model can-
not be studied by using analytical methods or nor-
mal forms, we have to perform numerical simulations
by computer. The continuous problem defined by the
reaction-diffusion system in two-dimensional space is
solved in a discrete domain with M x N lattice sites.
The space between the lattice points is defined by the
lattice constant AH. The time evolution is also dis-
crete, i.e., the time goes in steps of Az. The time evo-
lution can be solved by using the Euler method. In
the present paper, we set AH =1, Ar =0.00001 and
M = N = 150. And it was also checked that a further
decrease of the step values did not lead to any signifi-
cant modification of the results.

In the following, we will perform a series of numer-
ical simulations of the spatially extended model (2a),
(2b) in two-dimensional spaces, and the qualitative re-
sults are shown by figures. We keep B =3, D = 1000,
and S is regarded as a parameter. All our numeri-
cal simulations are employed with a system size of
150 x 150 space units. We run the simulations until
they reach a stationary state or until they show a be-
havior that does not seem to change its characteristics
anymore. In this paper, we want to know the distribu-
tion of the vegetation. As a result, we will restrict our
analysis of pattern formation of variable u.

Figure 4 shows the evolution of the spatial pattern
of vegetation at 0, 10000, 50000, and 300000 itera-
tions with S = 10. It can be concluded from this fig-
ure that random distribution can result in regular spot-
ted patterns. The parameter values set in Fig. 4 satisfy
uo < o =0.07431124 < 3, which means Hy spot-
ted pattern will emerge. That is to say, numerical re-
sults in Fig. 4 are consistent with the results shown in
Fig. 3.



/ldoc.rero.ch

http

Fig. 4 Snapshots of contour pictures of the time evolution of vegetation at different instants with S = 10, D = 1000 and B = 3.
(a) 0 iteration; (b): 10000 iterations; (¢) 50000 iterations; (d) 300000 iterations (Color figure online)

To well describe the evolution of the vegetation pat-
tern, we show space-time plot in Fig. 5. The method
of space-time plot is to let one direction of space be a
constant (here, we set x = 75, the center line of each
snapshot) and show the evolution of pattern on the
other direction of space. As a result, the space-time
time plots show the evolution process of the vegeta-
tion as a function of time ¢ and space y. As seen from
Fig. 5, it shows that Turing pattern will emerge when
time is long enough.

In Fig. 6, the time series of the spatially averaged
values of the vegetation density shows that in the first
intervals of simulations these values change fast as
time increases. One can see that at r &~ 50, the veg-
etation density reaches a constant value and the mean

time

60

50

40

30

20

50 10
0

0 50 100 150
space

Fig. 5 Space-time plot corresponding to Fig. 4. This figure
shows that there are stationary patterns for a long enough time
(Color figure online)
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value increases slower. At this time, the vegetation pat-

34 tern formation has almost completely evolved and the
system has reached its steady state which means sta-

33 tionary patterns appear in this system.
A In Fig. 7, we show the spatial pattern of vegeta-
vs2 tion at 0, 30,000, 100,000, and 300,000 iterations with
S =30 and the initial condition is the same as that in
3.1 Fig. 4. It can be seen from this figure that the random
initial distribution of vegetation will lead to an incon-

3

0 100 200 300 spicuous stripe shape. After these forms, spotted-like

time patterns will emerge and persist for a very long time,
and the spotted patterns occupy the two-dimensional
space. As time further increases, the pattern dynamics
of the system stay the same.

Fig. 6 The time series of the mean density of vegetation popu-
lation. Parameters values are the same as Fig. 4

Fig. 7 Snapshots of contour pictures of the time evolution of vegetation at different instants with § =30, D = 1,000 and B = 3.
(a) 0 iteration; (b) 30,000 iterations; (¢) 100,000 iterations; (d) 300,000 iterations (Color figure online)
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Fig. 8 Snapshots of contour pictures of the time evolution of vegetation at different instants with S =60, D = 1,000 and B = 3.
(a) 0 iteration; (b) 20,000 iterations; (¢) 150,000 iterations; (d) 300,000 iterations (Color figure online)

Compared with Figs. 4, 7 has three main differ-
ences with it. Firstly, the spotted pattern in Fig. 7 is
similar with a circle. However, in Fig. 4, it looks like
a square shape. Secondly, we found the time for the
spotted patterns emerge in Fig. 7 is short than it in
Fig. 4. Lastly, the mean density of vegetation in Fig. 7
is higher than that in Fig. 4, which means rainfall plays
a positive role on vegetation growth.

In Fig. 8, we show the spatial pattern of vegeta-
tion at 0, 20,000, 150,000, and 300,000 iterations with
S = 60. In that case, we obtain that u = 0.35425682 ¢
(w3, wa) which means coexistence of spotted and
stripe patterns will emerge. When the time is small,
the differences of patterns between Figs. 4 and 8 are
not distinct. However, as time increases, spotted and

11

stripe patterns spring up, which confirms the theoreti-
cal results in amplitude equation.

We show the spatial pattern of vegetation at 500,000
iterations with S = 64 in Fig. 9. These parameters set
is corresponding to that ;= 0.46573429 > (4, which
means stripe patterns will emerge. From numerical
simulations, we can draw a conclusion: numerical re-
sults correspond perfectly to our theoretical findings.

Figure 10 illustrate wavelength of vegetation pat-
tern as a function of parameters S and B. Figure 10(a)
shows dependence on the rainfall with fixed plant
morality. The wavelength becomes smaller as rainfall
increases. On the other hand, Fig. 10(b) shows that
the wavelength becomes larger as plant morality in-
creases.
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5 Discussion and conclusion

In this paper, we have investigated the vegetation pat-
tern in an arid flat environment by giving the condi-
tions on the emergence of spatial patterns. By stan-
dard multiple-scale analysis, we give the pattern se-
lection of vegetation model. Furthermore, we show
the relationship between parameters (S and B) and
wavelength of the spatial pattern by using dispersion
relation. It can be found from this paper, vegetation
in an arid flat environment could have rich pattern
structures, including spotted, mixed, and stripe pat-
terns.

Rainfall may be one of the important factors in the
vegetation formation. We found that when rainfall is

Fig. 9 Stripe pattern of vegetation at 500,000 iterations with
S =064, D=1,000 and B =3 (Color figure online)
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small, the system (2a), (2b) has spotted pattern. As it
increases, the density of spotted pattern will increase
(cf. Figs. 3 and 6). However, when it is large enough,
spotted and stripe pattern emerge with lower density.
It was also found that spatial pattern may be a warning
signal for the onset of desertification [21, 37]. And we
check that when rainfall is small enough, there is no
vegetation pattern. In a word, rainfall plays an impor-
tant on vegetation patterns.

In [23, 24], model (1a), (1b) is investigated in de-
tail and it is found that there are stripe patterns. In
the present paper, we found there are spotted pat-
terns in the arid flat environment instead of downhill.
In [22], they obtain the condition for emergent pat-
terns. However, the methods are different from ours.
In the Negev desert, it was found that there was a
spot-like vegetation pattern [38], which is consistent
with our theoretical findings. Furthermore, bistable
systems can give rise to regular spatial patterns, which
needs deep investigation on model (2a), (2b). More-
over, natural environments are random environments,
and thus noise should be included in vegetation mod-
els. We need to check whether pattern transition can
emerge in vegetation models with noise in the future
work.
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Fig. 10 This figure shows the parameters dependence of wavelength. (a) D = 1,000 and B = 3; (b) D = 1,000 and S = 10
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