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We study the Holstein-Hubbard model at half filling to explore ordered phases including superconductivity
(SC), antiferromagnetism (AF), and charge order (CO) in situations where the electron-electron and electron-
phonon interactions are strong (comparable to the electronic bandwidth). The model is solved in the dynamical
mean-field approximation with a continuous-time quantum Monte Carlo impurity solver. We determine the
superconducting transition temperature Tc and the SC order parameter and show that the phonon-induced
retardation or the strong Coulomb interaction leads to a significant reduction and shift of the Tc dome against the
effective electron-electron interaction Ueff given by the Hubbard U reduced by the phonon-mediated attraction in
the static limit. This behavior is analyzed by comparison to an effective static model in the polaron representation
with a renormalized bandwidth. In addition, we discuss the superconducting gap � and 2�/Tc to reveal the effect
of the retardation and the Coulomb interaction. We also determine the finite-temperature phase diagram including
AF and CO. In the moderate-coupling regime, there is a hysteretic region of AF and CO around Ueff = 0, while
the two phases are separated by a paramagnetic metal in the weak-coupling regime and a paramagnetic insulator
in the strong-coupling regime.

I. INTRODUCTION

While the physics of correlated electron systems is an
interesting and formidable problem in its own right, several
classes of interesting materials exhibit an interplay of strong
electron-electron Coulomb repulsion and strong electron-
phonon coupling. For example, the electron-phonon coupling
in high-Tc cuprates is strong, as evidenced by the kinks
observed in the angle-resolved photoemission spectrum.1

In alkali-doped fullerides an s-wave superconducting phase
borders an antiferromagnetic phase in the temperature-
pressure phase diagram,2–4 and the transition temperature
of the superconducting state has recently been found to be
dome shaped. These features indicate that in these classes
of materials, both the electron-electron Coulomb repulsion
and the electron-phonon interaction are strong. Likewise, in
aromatic superconductors such as picene (a recent addition
to carbon-based materials), the electron-electron and electron-
phonon interactions are reported to be strong,5–9 although the
mechanism of superconductivity in the aromatic compounds is
still totally unclear. Correlated electron systems often provide
an interesting arena in which various phases compete with
each other. In the presence of strong electron-electron and
electron-phonon interactions, the problem should become even
richer.

The Holstein-Hubbard (HH) model is a simple model
which allows us to describe and explore the interplay of
electron-electron and electron-phonon interactions. The model
incorporates a coupling between electrons and dispersionless
(i.e., Einstein) phonons with energy ω0, in addition to the
on-site Hubbard interaction U . There is a body of works which
investigates the competition between the two interactions in
this model. The study of the one-dimensional case based on
the density matrix renormalization group (DMRG) technique

or quantum Monte Carlo analysis has revealed some general
features.10–12 However, since ordered phases with continuous
symmetry breaking do not occur in D = 1, it is difficult to
elucidate the generic behavior of ordered states from these
calculations, although we can indeed discuss quasiordered
states in terms of the Tomonaga-Luttinger picture. In D = 2,
several works on this model have revealed interesting proper-
ties caused by the coexistence of two types of interactions.13–17

In the opposite limit of infinite spatial dimensions, D = ∞,
where the dynamical mean-field theory (DMFT) becomes
exact,18–20 ordered states with full symmetry breaking exist
even at nonzero temperature, and analyses in this dimension
provide further insights into the effect of these competing
interactions. The symmetric phases have been studied in
Refs. 21–24, and the corresponding phase diagram has been
determined.

As for the ordered states, their properties have been
investigated in several works,25–29 but many issues remain
unresolved. The ground-state phase diagram around U =
λ, where λ is the static effective electron-electron in-
teraction mediated by the phonons, has been determined
in Refs. 26 and 27, and the accuracy of and deviations
from the conventional theory30–33 of superconductivity have
been discussed.28,29 An important issue is the following:
the electron-phonon coupled system is often regarded as
having an effective interaction Ueff ≡ U − λ, but this is
only strictly valid in the antiadiabatic limit for the phonon
energy, ω0 → ∞, where the interaction in the HH model
becomes nonretarded, and the real question is to what
extent this approximation remains valid when we vary U

and/or ω0. In other words, for a finite ω0 the phonon-
mediated interaction is certainly retarded, and for a small
enough phonon frequency, the static model with Ueff can
be expected to fail. Thus the nature of the superconducting
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state in the regime where U , λ, and ω0 are all compa-
rable to the bandwidth W poses a challenging problem,
which is not only conceptually interesting but may have
relevance to real materials with strong electron-electron and
electron-phonon interactions. The problem, however, has
not been properly understood since superconducting states
in such a regime cannot be treated within conventional
theories such as the Migdal-Eliashberg theorem30,31 or the
McMillan equation.33 Another open issue is the finite-
temperature phase diagram for ordered phases in the vicinity
of U = λ.

With these questions in mind, we study in this paper ordered
states in the half-filled Holstein-Hubbard model to clarify the
effect of the coexistence of electron-electron and electron-
phonon interactions on the s-wave superconducting state (SC),
the antiferromagnetic (AF) state, and the charge-ordered state
(CO). In our study we employ DMFT, with a continuous-time
quantum Monte Carlo (CT-QMC) impurity solver, which is
exact up to statistical errors and can, in principle, access any
parameter regime down to temperatures of about 1% of the
electronic bandwidth. Furthermore, in principle, DMFT + CT-
QMC can treat these three ordered states without bias, which
enables us to systematically investigate their competition
in the regime where U , λ, and ω0 are comparable to the
bandwidth. While there have been several works discussing
ordered states in the HH model,25–27,29 the present work
attempts to directly treat these ordered phases at nonzero
temperatures with DMFT + CT-QMC. For SC, we focus on the
transition temperature, the superconducting order parameter,
and the gap in the one-particle spectral function. We show that
the phonon-induced retardation (when the phonon energy is
well below the antiadiabatic limit) or the Coulomb repulsion
has the effect of significantly decreasing and shifting the Tc

dome against Ueff, and a similar shift occurs for the super-
conducting order parameter as well. In order to understand
and interpret the observed behavior we use an effective static
model in a polaron representation with reduced bandwidth
derived from a Lang-Firsov transformation, which has been
introduced to investigate electron-phonon coupled systems in
the strong-coupling or antiadiabatic regime.34–36 We test the
quantitative and qualitative reliability of the effective model by
examining to what extent the model reproduces the transition
temperature, superconducting order parameter, and Green’s
function. We also reveal the behavior of the gap and show
that the retardation and the Coulomb interaction increase
the deviation from BCS theory. As for AF and CO phases,
we determine the phase diagram around Ueff = 0 at nonzero
temperature and show how these phases compete with each
other.

This paper is organized as follows. In Sec. II, we introduce
the Holstein-Hubbard model and explain how DMFT can
deal with ordered phases of this model. We also derive
the effective static model. In Sec. III, we discuss how
the properties of the superconducting state depend on the
parameters U , λ, and ω0 when these parameters are com-
parable to the bandwidth. We also show phase diagrams
at nonzero temperatures around U = λ and reveal how AF
and CO compete with each other. Section IV gives a brief
summary.

II. FORMALISM

A. Model

The HH model represents an electron system that is coupled
to local (Einstein) phonons. The Hamiltonian is

H = −t
∑

〈i,j〉,σ
[c†jσ ciσ +H.c.] +

∑
i

[Uni↑ni↓−μ(ni↑+ni↓)]

+ g
∑

i

(b†i + bi)(ni↑ + ni↓ − 1) + ω0

∑
i

b
†
i bi, (1)

where i, j denote sites, σ is the spin, and the first sum is
over nearest neighbors. c

†
i,σ denotes a creation operator of an

electron, b†i is a creation operator of a phonon, t is the hopping
parameter, U is the on-site electron-electron interaction, μ

is the chemical potential, g is the coupling constant between
electrons and phonons, and ω0 is the phonon frequency. In this
model, the phonon is envisaged as an optical mode with an
approximately constant energy dispersion (Einstein model).
Since the phonons are assumed to be noninteracting, one can
integrate out the phonon part to derive the effective electron-
electron interaction,

Ueff(ω) = U − 2g2ω0

ω2
0 − ω2

, (2)

in a path integral framework. The effective interaction in the
low-energy regime is thus

Ueff ≡ Ueff(ω = 0) ≡ U − λ, λ = 2g2/ω0. (3)

If we take the antiadiabatic limit of ω0 → ∞ with λ and U

fixed, the HH model reduces to the Hubbard model with the
interaction Ueff . This low-energy effective interaction has been
used as a measure of the characteristic effective net interaction
in previous works.10,26,27 In the present work we examine the
validity of a static description in the parameter regime of
interest, namely, strong electron-electron and electron-phonon
coupling, with phonon frequencies comparable to the band-
width. We shall see that a proper static description involves
the screened interaction, along with a reduced bandwidth.

In order to deal with SC states, we employ the Nambu
formalism and define the local Green’s function as

Ĝloc,i(τ ) ≡ −〈T �i(τ )�†
i (0)〉H

=
[

G11,i(τ ) G12,i(τ )

G21,i(τ ) G22,i(τ )

]
, (4)

where �
†
i ≡ (c†i↑,ci↓) are Nambu spinors. We use

� = 〈ci↓ci↑〉H = G12(τ = 0+) (5)

as the order parameter for the SC phase (assuming homo-
geneity), where 〈〉H denotes the equilibrium expectation value
computed with the Hamiltonian H .

B. Dynamical mean-field theory

DMFT, which is exact in infinite spatial dimensions,18–20

maps a lattice problem onto an effective impurity problem.
When we take into account the superconducting state of the
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Holstein-Hubbard model, the Hamiltonian of the impurity
problem is Himp = Hloc + Hbath + Hmix, with the three terms

Hloc = Un↑n↓ − μ(n↑ + n↓)

+ g(b† + b)(n↑ + n↓ − 1) + ω0b
†b, (6)

Hbath =
∑
σ,p

εpc†pσ cpσ +
∑

p

(�pc
†
p↑c

†
−p↓ + H.c.), (7)

Hmix =
∑
σ,p

(
V σ

p d†
σ cpσ + H.c.

)
. (8)

Here, d is the annihilation operator of the electron on the
impurity, nσ is the density of electrons with spin σ on the
impurity, b is the annihilation operator of a local phonon
coupled to the impurity, and cpσ is the annihilation operator
of a spin-σ electron in the bath with the bath states labeled
by the quantum number p. In a SC state the parameters �p

can be nonzero. Thus the Hamiltonian describes an impurity
that is coupled to local phonons in a superconducting bath.
The bath (Hbath) and mixing (Hmix) terms are determined
self-consistently in such a way that the impurity Green’s
function reproduces the local lattice Green’s function of the
HH model. The only information on the lattice structure that
enters a DMFT calculation is the density of states. Here we
adopt the Bethe lattice, a bipartite lattice whose density of
states is ρ(ε) = 1

πt

√
1 − [ε/(2t)]2.

Since we want to describe phases such as the AF and CO
ones with a broken Z2 symmetry between sublattices, we
introduce sublattice indices θ = A, B (θ̄ = B, A) and express
the self-consistency equation in the form

[
̂θ ]i,j (τ ) = −〈T Ai(τ )A†
j (0)〉Hbath

= [t2σ3Ĝloc,θ̄ (τ )σ3]i,j , (9)

where 
̂ is the hybridization function of the impurity model.
Here, Ai = ∑

p V i
pap,i , V 1

p = V
↑
p , V 2

p = −V
↓
p , (a†

p,1,a
†
p,2) ≡

(c†p,↑,c−p,↓) (all quantities for sublattice θ ), and σ3 =
diag(1, − 1) is a Pauli matrix. If we assume a homogenous
system, as in the investigation of SC, then 
̂θ (τ ) = 
̂(τ ) is
independent of the sublattice.

The impurity problem, Eqs. (6)–(8), is solved with the
continuous-time quantum Monte Carlo impurity solver [hy-
bridization expansion, i.e., we regard the mixing term (8) as
a perturbation term and perform a Monte Carlo sampling of
the corresponding diagrammatic expansion]37,38 based on the
method introduced in Ref. 21. In this approach, a Lang-Firsov
decoupling39 of the electrons and phonons and an analytical
summation of all phonon contributions for each term in the
expansion enables an exact treatment of the quantum phonons.
In the present case, we extend this technique to impurity
problems that couple to a superconducting bath.40 From the
methodological point of view, an interesting observation is that
the simulations in the SC phase yield more accurate Green’s
functions than corresponding calculations in the AF phase.
This suggests that the sampling and measurement involving
off-diagonal hybridization functions produces significantly
better statistics and allows us to reliably measure the small
values of insulating Green’s functions near τ = β/2. We
discuss this issue in more detail in Appendix A.

C. Effective static model

Before presenting the DMFT results, let us first introduce
an effective static model for the low-energy description of the
HH model,34,36 which is useful for discussing the properties
of the SC phase. The first step in the derivation is to perform a
Lang-Firsov (LF) canonical transformation of the HH model,
HLF = eSHe−S , with S = g

ω0

∑
i(ni − 1)(b†i − bi). The ex-

plicit expression for HLF is

HLF = −t
∑

〈i,j〉,σ

[
e

g

ω0
(b†i −bi )e

− g

ω0
(b†j −bj )

c
†
i,σ cj,σ + H.c.

]
+Ueff

∑
i

ni,↑ni,↓ − μeff

∑
i

ni + ω0

∑
i

b
†
i bi, (10)

with μeff = μ − g2/ω0. Here, c†, after the LF transformation,
has the meaning of creating a polaron, as is evident from the
phonon factors. An effective low-energy model for the original
fermions is obtained by assuming that the phonons are not
much excited. In other words, the effective Hamiltonian for the
fermion part is obtained as the projection onto the subspace
of zero phonons, Heff = 〈0|HLF|0〉, where |0〉 is the phonon
vacuum state. This description becomes exact in the limit
where ω0 is large and the temperature is much lower than
ω0. The Hamiltonian resulting from the projection is34

Heff = −ZBt
∑

〈i,j〉,σ
[c†i,σ cj,σ + H.c.]

+Ueff

∑
i

ni,↑ni,↓ − μeff

∑
i

ni,

ZB = exp
(−g2/ω2

0

)
. (11)

This is nothing but the usual Hubbard model with a static
interaction Ueff and a hopping parameter renormalized by ZB .
From this model we can readily derive physical quantities
such as the transition temperature, the order parameter for the
SC phase, or the Green’s functions from simulations of the
Hubbard model as follows: Let us define �(T ,U,Ueff,ZB) =
〈c↓c↑〉H as the order parameter for the SC state. Within the
effective model, the order parameter is expressed as

�(T ,U,Ueff,ZB) = 〈e−2 g

ω0
(b†−b)

c↓c↑〉HLF

≈ 〈0|e−2 g

ω0
(b†−b)|0〉〈c↓c↑〉Heff

= Z2
B�0(T/ZB,Ueff/ZB)

≡ �eff[T ,ZB,Ueff], (12)

where we have defined �0(T ,U ) as the order parameter for
the Hubbard model with hopping t and interaction U at
temperature T . It follows that the transition temperature for
the Holstein-Hubbard model (Tc[U,Ueff,ZB]) is related to that
for the attractive Hubbard model (T 0

c [U ]) by

Tc[U,Ueff,ZB] ≈ ZBT 0
c [Ueff/ZB]

≡ Tc,eff[ZB,Ueff]. (13)
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In order to evaluate Green’s functions, we again use the LF
transformation to obtain

Gσ (τ ) = −〈Tτ cσ (τ )c†σ (0)〉H
= −〈

Tτ e
− g

ω0
[b†(τ )−b(τ )]

cσ (τ )e
g

ω0
[b†(0)−b(0)]

c†σ (0)
〉
HLF

.

(14)

Then we make an approximation and separate the phonon
factors from the expectation value with respect to HLF (i.e.,
the phonon dynamics may be decoupled from the polaron
dynamics for large enough ω0). The fermionic part is evaluated
by the static approximation, which gives

Gσ (τ ) ≈ −〈Tτ cσ (τ )c†σ (0)〉Heff

× 〈
Tτ e

− g

ω0
[b†(τ )−b(τ )]

e
g

ω0
[b†(0)−b(0)]〉

Hph
, (15)

where Hph = ω0
∑

i b
†
i bi . In other words, we treat the whole

system as if its Hamiltonian is Heff + Hph.35

As for the anomalous part, we have

G12(τ ) ≈ −〈Tτ c↑(τ )c↓(0)〉Heff

× 〈
Tτ e

− g

ω0
[b†(τ )−b(τ )]

e
− g

ω0
[b†(0)−b(0)]〉

Hph
. (16)

The phonon factor can be calculated analytically as〈
Tτ e

−s
g

ω0
[b†(τ )−b(τ )]

e
−s ′ g

ω0
[b†(0)−b(0)]〉

Hph

= exp

{
− g2/ω2

0

eβω0 − 1
[(eω0β + 1) + ss ′(eω0(β−τ ) + eω0τ )]

}
,

(17)

where s,s ′ = ±1 and 0 � τ � β.

III. RESULTS

In the following, we use the quarter of the bandwidth, t =
W/4, as the unit of energy and focus on the case of half filling.
Transition temperatures are evaluated from the order parameter
in ordered phases.

A. Superconductivity

Here, we investigate the SC phase at half filling in
order to understand the effect of the retardation and the
Coulomb repulsion on the SC state. To focus on SC, we
enforce the symmetries G11(τ ) = G11(β − τ ) = G22(τ ) =
G22(β − τ ), which hold in the SC and normal states at half
filling but not in the AF and CO phases. Strictly speaking, if
we allow both CO and SC orders in the self-consistency loop,
CO dominates over SC. Still, it should be meaningful to study
the SC state at half filling since, if the system has a frustration
(e.g., induced by a second-neighbor hopping on a bipartite
lattice), CO and AF may be suppressed. The results of this
section can be thought of as describing the properties of such
frustrated systems.

We first show that the Coulomb interaction induces a
characteristic structure in the anomalous Green’s function.
Figure 1(a) plots normal and anomalous Green’s functions on
the imaginary-time axis. While the diagonal Green’s functions
are negative and symmetric (at half filling), the off-diagonal
Green’s functions are antisymmetric around τ/β = 0.5. In
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FIG. 1. (Color online) (a) Typical behavior of Green’s functions
on the imaginary-time axis, here for U = −2, g = 0, and β = 40.
(b) A close-up [blue region in (a)] of the anomalous Green’s function
for various g and U and fixed Ueff = −2 (ω0 = 6 and β = 40). HH
means the Green’s function is computed from the HH model, while
EM means that it is obtained with the effective model.

Fig. 1(b) we show the short-time behavior of the anomalous
Green’s functions for different sets of parameter values:
without retardation (Hubbard model with U = −2), with only
a retarded attractive interaction (U = 0 and ω0 > 0), and with
both retardation and Coulomb repulsion. In all three cases,
Ueff = −2, ω0 = 6, and T = 0.025. Without the retardation,
the anomalous Green’s function has its maximum at τ = 0. In
the presence of a retarded attractive interaction but without U ,
the position of the maximum remains at τ = 0, but the peak
is rounded off. If we then switch on a U > 0, the peak shifts
to τ > 0, which indicates that when electrons form pairs, they
tend to avoid the instantaneous repulsive interaction U while
exploiting the retarded attractive interaction.

One can explain the origin of this behavior with the effective
model, Eq. (16). The corresponding results are also shown in
Fig. 1(b). It turns out that the shift of the peak with U in the
anomalous Green’s function is well reproduced by the effective
model. This structure comes from the phonon part, Eq. (17),
which increases with τ near τ = 0 and becomes steeper with
U for a fixed Ueff .

Next, we clarify the effect of the two different interactions
on the phase diagram. In Fig. 2 we plot Tc as a function
of −Ueff . For all the parameter sets one can find that
Tc rises with −Ueff in the weak-coupling regime while it
decreases in the strong-coupling regime. This forms a Tc dome,
indicating a BCS-BEC crossover. The strong-coupling regime
is characterized by the condensation of bipolarons, which
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FIG. 2. (Color online) Tc against −Ueff for various sets of
parameter values. Solid markers are DMFT + QMC results. (a) shows
the dependence on ω0 for U = 0. The lines connecting symbols are
guides for the eye. (b) and (c) show the phase diagram when U is
switched on with a fixed value of (b) ω0 = 6 or (c) ω0 = 1.44. The
crosses in (a) show the results for the attractive Hubbard model with
−Ueff , and the black curve in each panel indicates the corresponding
Tc. The colored curves show the results from the effective model,
and open markers on these lines should be compared with the solid
markers with the same shape.

are electron pairs bound by the phonon-mediated attractive
retarded interaction.

Let us discuss the dependence of Tc on the retardation and
the Coulomb interaction in detail. Figure 2(a) illustrates the
effect of the retardation (controlled by ω0) on the SC phase for
the case U = 0. As ω0 decreases, the position of the peak in Tc

shifts to the weak-|Ueff| regime, while the height of the peak
decreases. We also note that the Tc in the weak-coupling regime
still agrees well with that of the attractive Hubbard model
with interaction Ueff . This result should be contrasted with the
behavior of CO in the Holstein model.41,42 The shift of the Tc

dome with ω0 is also observed in the CO case, while the height

of the Tc peak does not show a significant change. Furthermore,
in the case of CO, the transition temperature increases in the
weak-coupling regime when Ueff is fixed and ω0 decreases.41,42

The difference between SC and CO in the weak-coupling
region can be explained as follows: The important interaction
for SC is the interaction between electrons with opposite spins.
For CO, however, the phonon-mediated interaction between
electrons with the same spin is also relevant, as can be
understood from a mean-field analysis in the adiabatic limit
(see Appendix B). When the phonon frequency is reduced, the
lattice distortion takes so much time that an electron starts to
feel the attraction from another electron with the same spin
through this distortion. Due to this additional attraction, Tc

increases in the CO case, when ω0 decreases, while SC cannot
take advantage of it.

In Figs. 2(b) and 2(c), the effect of the Coulomb repulsion is
illustrated. As U increases, the position of the peak shifts to the
weak-coupling regime, and the height of the peak decreases.
It turns out that the Tc in the weak-coupling region is not
necessarily well reproduced by the attractive Hubbard model
with interaction strength Ueff [see, e.g., U = 8 in Fig. 2(b) or
U = 2 in Fig. 2(c)]. Here we note that the investigation of
larger Ueff is difficult since our sampling processes are not so
efficient in this regime. One possible solution is to add special
Monte Carlo updates suggested in Ref. 43, but we have not
implemented them.

Let us now examine the above properties in terms of the
low-energy effective static model in the polaron representation,
which is a Hubbard model with interaction Ueff and a
renormalized hopping parameter [reduced by the factor ZB ;
see Eq. (11)]. The resulting transition temperature provides
a qualitatively good description of the dependence of the
transition temperature on ω0, U , and λ (see colored curves in
Fig. 2). The effective model always somewhat overestimates
the transition temperature. An increase in U or a decrease in ω0

with Ueff fixed leads to an increase of ZB = exp(− λ
2ω0

) since
λ = U − Ueff. Therefore the band renormalization for the
polaron enhances the effect of interactions between polarons,
which may be characterized by the ratio between Ueff and the
bare-polaron band width ZBW , where W = 4t is the band
width of bare electrons. As a result, the peak of the transition
temperature shifts to smaller |Ueff|. Note that the effective
model also shows that, with larger U , the deviations from the
attractive Hubbard model (black lines in Fig. 2) increase in the
weak-coupling regime [see, for example, the colored lines for
U = 8 in Fig. 2(b) or U = 2 in Fig. 2(c)]. This is related to
the fact that the shape of Tc in the attractive Hubbard model
is convex in the weak-coupling (BCS) regime. Therefore the
enhancement of the correlations due to the renormalization of
the hopping parameter by ZB can lead to deviations from the
attractive Hubbard model if we do not rescale the Ueff axis.
Here one may wonder why, when ω0 is changed with U = 0
and Ueff is fixed, the deviation from the attractive Hubbard
model is not as apparent as it is when U is changed with
ω0 and Ueff is fixed. This is because we need smaller ω0 to
realize a given value of ZB when U = 0, while the reliability
of the effective model is degraded for smaller ω0. Related to
this, let us also comment on the relation between the present
work and conventional analyses or extensions thereof. Here
we have shown that the effective model provides a good
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FIG. 3. (Color online) The phase diagram with rescaled parame-
ters: Ũeff ≡ Ueff/ZB and T̃c ≡ Tc/ZB . (a) shows the result for various
values of ω0 at U = 0. (b) and (c) show the result when U is switched
on with a fixed (b) ω0 = 6 or (c) ω0 = 1.44. The black curve in each
panel shows Tc in the attractive Hubbard model with −Ũeff.

description of the effect of the retardation and the effect of
the Coulomb interaction when ω0 is comparable to or larger
than the bandwidth of the bare electrons W . On the other hand,
when ω0 is much smaller than W , the present picture becomes
inadequate. Instead, the Migdal theorem becomes applicable
for the phonons,30 and a description in terms of μ∗, which is
the reduced Coulomb interaction due to the retardation effect,
works well.29,32,33 A recent extension of these conventional
theories has revealed that the μ∗ picture works well even up
to the intermediate-coupling regime.29

If the effective model reproduces the Holstein-Hubbard
model results perfectly, the phase diagram in the space of
T̃c ≡ Tc/ZB and Ũeff ≡ Ueff/ZB should coincide with that of
the attractive Hubbard model. Our numerical data, replotted in
terms of Ũeff and T̃ in Fig. 3, cover the range 2 � |Ũeff| � 6. As
expected, the reliability of the effective model becomes better

0 1 2 3 4
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0.20
(b)

(a)

0 2 4 6 8
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0.5
0.3

ZB = 0 .7
0.5

0.3

ZB = 0.7

FIG. 4. (Color online) (a) Possible area (shaded) for the SC phase
in the Holstein-Hubbard model, defined by the envelope of the Tc

curves (red) for various values of ZB . The black solid curve represents
the behavior in the attractive Hubbard model with −Ueff, while the
dashed line shows the envelope of the curves when ZB is varied.
(b) Tc vs −Ueff for various values of ω0, plotted here for Ueff = −1,

ZB = Ueff/U0.

as ω0 increases [Fig. 3(a)]. For U = 0, the relative deviation
[δTc ≡ |Tc − Tc,eff|/Tc, where Tc,eff is defined in Eq. (13)] is
smallest at intermediate coupling (|Ũeff| ∼ 4) for each ω0. The
deviation decreases from δTc � 0.25 for ω0 = 4 to δTc � 0.1
for ω0 = 12. The dependence of δTc on Ueff is relatively small
at ω0 � 4. On the other hand, if ω0 � 2, the reliability of
the effective model strongly depends on Ueff , as shown in
Fig. 3(a). As for the effect of U , we find that δTc slightly,
but systematically, increases with increasing U , at least in the
weak-coupling regime [Figs. 3(b) and 3(c)], and at ω0 = 4,
δTc � 0.25 up to U = 4. The effective model is quantitatively
accurate up to larger values of U for larger ω0.

The above analysis enables us to discuss the region in
the T versus −Ueff space, where a superconducting phase
of the Holstein-Hubbard model can exist. The shaded area
in Fig. 4(a) shows this region as predicted by the effective
model. The boundary of this area is defined by the various
Tc curves with different ZB . It rises from the origin linearly
and touches the Tc curve of the attractive model before the
peak. This is because the Tc curves for various values of
ZB form a homologous series of phase boundaries of the
attractive Hubbard model, Eq. (13). In the weak-coupling
regime of the Hubbard model, the phase boundary is convex,
while the boundary is concave in the intermediate-coupling
regime, where the BCS-BEC crossover occurs. The envelope
indeed becomes a tangent to the original curve (black solid
curve in Fig. 4) at Ueff 
 −2.72 ≡ U0. The boundary of the
blue area is obtained by fixing Ueff , ZB = Ueff/U0 and taking
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FIG. 5. (Color online) Temperature dependence of the supercon-
ducting order parameter �(T ) (a) for Ueff = −2,U = 0 and various
values of ω0 and (b) for Ueff = −2,ω0 = 6 and various values of U .

the limit ω0 → ∞ (see Fig. 4). The effective model always
overestimates the transition temperature in the parameter
region studied here, so that we expect that the superconducting
phase of the Holstein-Hubbard model is contained within the
blue area. We note that when we take the limit ω0 → ∞ with
Ueff , ZB fixed, Ueff(ω) → Ueff for every finite ω, but because
λ → ∞, this does not mean that the Holstein-Hubbard model
becomes the attractive Hubbard model without bandwidth
reduction.

Next, we discuss the properties of the superconducting state
itself. We first consider the temperature dependence of the
superconducting order parameter �(T ). In Fig. 5(a) we fix
U = 0, Ueff = −2 and change the value of ω0. In Fig. 5(b)
we fix ω0 = 6, Ueff = −2 and change U . � monotonically
increases below Tc and saturates as the temperature is
decreased. As can be seen in Figs. 5(a) and 5(b), the retardation
and the Coulomb repulsion U both act to decrease �(T ).

In order to investigate the effect of the two types of
interactions on the superconducting order parameter more
systematically, we focus on the value of � in the limit of
T → 0 (Fig. 6). In Fig. 6(a), �(T → 0) is plotted as a function
of −Ueff . In the attractive Hubbard model, �(T → 0) saturates
at 0.5 in the strong-coupling limit.43 On the other hand, for
finite ω0, we find that it has a peak as a function of −Ueff .
Furthermore, the peak shifts to smaller |Ueff| as the retar-
dation increases (ω0 decreases) or the Coulomb interaction
U increases. We also note that, in the region investigated
(−Ueff � 1.5), �(T → 0) decreases as ω0 decreases or U

increases, as illustrated in Fig. 5. It turns out that this behavior
is qualitatively well described by the effective model, as shown
by the colored lines in Fig. 6(a).

One can understand the origin of the peak structure in
�(T → 0) as follows: Within the effective model, what

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8
(b)

(a)

Φ
Φ̃

=
Φ

/Z
2 B

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

FIG. 6. (Color online) The superconducting order parameter in
the limit of T → 0 [�(T → 0)]. Solid markers are DMFT + QMC
results. (a) plots the result against −Ueff for various sets of parameter
values. The crosses are �(T → 0) for the attractive Hubbard model,
and the black curve is an interpolation. The colored curves show the
results from the effective model, and open markers on these lines
should be compared with the solid markers with the same shape. (b)
plots the results on rescaled axes: Ũeff ≡ Ueff/ZB and �̃ ≡ �/Z2

B .

saturates at large Ueff for ω0 �= 0 is the density of pairs of
polarons, which can be expressed as 〈c↓c↑〉LF after the Lang-
Firsov transformation, while �, the order parameter defined
for electrons, has some correction coming from the phonon
dressing. This correction becomes large as the electron-phonon
coupling becomes large; see Eq. (12) (ZB decreases as λ

increases). Related to the discussion of Fig. 5, we also have
to note that the effective model, in the weak-coupling region,
predicts that there is some area where �(T → 0) increases as
ω0 decreases or U increases. However, within our approach
(CT-QMC based on the hybridization expansion), this region
is difficult to access since it is in the weak-coupling regime
and at very low temperature.

In order to assess the potential of the effective model to
reproduce the superconducting order parameter, we rescale
the axis of Fig. 6(a) as Ũeff ≡ Ueff/ZB and �̃ ≡ �/Z2

B and
show the result in Fig. 6(b). Again we focus on the range
2 � |Ũeff| � 6. It turns out that, with large enough |Ũeff|, the
rescaled curve underestimates �(T → 0), while for smaller
|Ũeff| (� 2.5), the effective model becomes better. A larger U

leads to a larger underestimation in the strong |Ũeff| regime.
Quantitatively, δ� ≡ |[�(T → 0) − �eff(T → 0)]|/�(T →
0) � 0.2 for ω0 � 4 at U = 0, where �eff is defined in Eq. (12).
As for the effect of U , we find δ� � 0.2 up to U = 6 at ω0 = 4.
The effective model is quantitatively accurate up to larger U

for larger ω0. The reliability of the effective model for � is
slightly better than in the case of the transition temperature.
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Now let us move on to discuss the energy gap in the spectral function and its relation with the transition temperature.
We express the self-energy, which is independent of momentum in DMFT, as

�̂(iωn) =
[

�(iωn) S(iωn)

S(iωn) −�∗(iωn)

]
, (18)

where � is the normal self-energy, while S is the anomalous one. Then the lattice Green’s function in momentum space is

Ĝ(k,iωn) =
[

G11(k,iωn) G12(k,iωn)

G21(k,iωn) G22(k,iωn)

]

= [|G0(k,iωn)−1 − �(iωn)|2 + |S(iωn)|2]−1

[
G0(−k, − iωn)−1 − �(−iωn) −S(iωn)

−S(iωn) −G0(k,iωn)−1 + �(iωn)

]
, (19)

where G0(k,iωn) = iωn − (εk − μ) is the bare lattice Green’s
function and εk is the dispersion relation for the bare electrons.
If we make an analytic continuation (iωn → ω + i0+) to
obtain the self-energy on the real-frequency axis, the spectral
gap in the single-particle spectrum is given by zS(ω = 0) if
the contribution to the self-energy from the terms higher order
in ω than O(ω) is neglected. Here z ≡ (1 − ∂�(ω)/∂ω|ω=0)−1

is the quasiparticle weight.
With Dyson’s equation and Eq. (9), one finds for the Bethe

lattice that

�̂(iωn) = iωnσ0 + μσ3 − t2σ3Ĝloc(iωn)σ3 − Ĝ−1
loc(iωn),

(20)

where σ0 is the identity matrix. If the quasiparticle picture is
good, we can express the self-energies for small |ωn| as

�(iωn) = �(0) + iωn�
(1) + O((iωn)2), (21)

S(iωn) = S(ω = 0) + O((iωn)2), (22)

where �(0) ≡ �(ω = 0), �(1) ≡ ∂�(ω)/∂ω|ω=0. One can
then evaluate z and S(ω = 0) with the information on
the Matsubara axis. If one approximates the quasiparticle
weight z by Z ≡ [1 − Im�(ωn=0)/ωn=0]−1 and S(ω = 0) by
S(0) ≡ [9S(ωn=0) − S(ωn=1)]/8, one finds that the gap in the
excitation spectrum is

� ≡ ZS(0). (23)

This provides a rough estimate of the spectral gap. We have
to note that this approximation, which uses the information
around ω = 0, is good in the weak-coupling regime and when
the gap is small enough. When Ueff becomes larger, this
analysis becomes worse. However, it turns out that the gap
estimated in this way is reasonable even in the strong-coupling
regime, judging from the comparison with a previous work for
the Hubbard model,44 although the structure of the spectrum is
different. In the BCS theory, the ratio between the energy gap
and the transition temperature [2�(T → 0)/Tc] is 3.528, so
that any deviation from this value is a measure for the deviation
from the BCS theory.

Figure 7 displays the gap � (estimated as described above)
in the limit of T → 0. � turns out to monotonically increase
with |Ueff| in all cases. When we decrease ω0 for a fixed U = 0,
� does not necessarily change monotonically with ω0 for each
value of Ueff , and the dependence on ω0 is small [see Fig. 7(a)].

On the other hand, for fixed ω0 and |Ueff|, the gap increases
with U .

Figure 8 plots 2�(T → 0)/Tc. We can notice that this
quantity significantly increases, again monotonically, with
|Ueff|. In the opposite limit of |Ueff| → 0, 2�/Tc approaches
the BCS value of 3.528 in all cases. This is not trivial since
even if |Ueff| is small, λ and U themselves can be large (as
in the case of U = 8). Therefore, there is no simple reason
why the BCS theory can be applied in that situation. Now, let
us take a closer look. In Fig. 8(a) for U = 0, one finds that
2�/Tc grows with |Ueff| faster for smaller ω0. In other words,
the region where the conventional theories work decreases
when the phonon becomes softer. However, in the small-|Ueff|
regime, the dependence on ω0 becomes weak, which reflects
the fact that Tc for small |Ueff| is approximately given by the
attractive Hubbard model result (hence weakly dependent on
ω0; see Fig. 2), while � also exhibits a weak dependence
on ω0. For larger |Ueff| an ω0 dependence of 2�/Tc results
from the behavior of Tc. Figures 8(b) and 8(c) show the
effect of the Coulomb interaction U . It turns out that 2�/Tc

grows faster for larger U , which suggests that, even though
both Tc and � increase with U in the small |Ueff| regime,
the latter increases faster. To sum up, the retardation and the
Coulomb interaction lead to deviations from the BCS theory,
but if Ueff is small enough, the gap is consistent with the BCS
prediction.

Finally, let us discuss the relevance of the present results
for organic superconductors, such as alkali-doped fullerides2–4

and aromatic superconductors.5–9 In these molecular solids, the
characteristic frequency of intramolecular phonons is reported
to be comparable to the electronic bandwidth or the inverse of
the density of states at the Fermi level. For example, Ref. 8
estimates that ωlnN (εF ) ∼ 0.89 for potassium-doped picene,
where ωln is the logarithmically averaged phonon frequency
and N (εF ) is the density of states at the Fermi energy. If
we identify ωnl with ω0 in our model with N (εF ) = 1

πt
, we

have ω0 ∼ 2.81t , while Ref. 5 for the same material estimates
0.95t � ωln � 1.35t . In addition, when ωln is compared with
the width of the relevant conduction band (∼0.3 eV),7,8

which in our case is W = 4t , we end up with ω0 
 1.69t

for the organic material. Since we have found here that the
effective static model is qualitatively reliable even for ω0 =
1.44t (∼ W/4), we expect that the static effective model
in the polaron picture is useful to analyze the qualitative
behavior such as the material’s pressure dependence. We
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FIG. 7. (Color online) The energy-gap parameter � [= �(T →
0)] against −Ueff for various sets of parameters. (a) is for various
values of ω0 at U = 0 and (b) and (c) are the results when U is
switched on with a fixed (b) ω0 = 6 and (c) ω0 = 1.44. The open
circles are the results for the attractive Hubbard model with −Ueff for
each panel. Note the different scales of the x and y axes in panel (c)
compared to the other panels.

caution, however, that in a realistic study of organic supercon-
ductors, one has to consider multiple molecular orbitals for
electrons,7 with associated multiple types of electron-electron
and electron-phonon couplings (Hund’s couplings, intraorbital
phonon couplings, and/or Jahn-Teller interactions).

B. Antiferromagnetism and charge order

To understand the competition of ordered phases in the
presence of two kinds of interactions, we now investigate
the Holstein-Hubbard model at nonzero temperatures around
Ueff = 0, without any constraint (i.e., allowing SC, com-
mensurate CO, and commensurate AF). In the following,
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FIG. 8. (Color online) The ratio of the energy-gap parameter
to the transition temperature [2�(T → 0)/Tc] against −Ueff . The
horizontal blue line indicates the BCS value 2�/Tc = 3.528. (a)
shows the result for various values of ω0 at U = 0. (b) and (c) are
the result with finite U and fixed (b) ω0 = 6 and (c) ω0 = 1.44.
Open circles show the results for the attractive Hubbard model
with −Ueff .

the order parameter of the CO phase (�CO) is defined as
�CO = [(nA,↑ + nA,↓) − (nB,↑ + nB,↓)]/4, where nA,σ (nB,σ )
represents the density of electrons on the A (B) sublattice
with spin σ . For the AF phase the order parameter is defined
as �AF = (n↑ − n↓)/2, where n↑ (n↓) is the density of
up-spin (down-spin) electrons. In the simulations, we use
the hybridization functions for Ueff = U − λ as an input for
the next step Ueff = U − λ − δλ, where δλ denotes a small
increment in λ.

Figure 9 shows the behavior of the order parameters around
Ueff = 0 obtained by varying λ to change Ueff for each value
of U . Here we fix ω0 = 0.6 and β = 20. There is no SC phase,
and AF and CO compete with each other. If the interaction U
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FIG. 9. (Color online) Order parameters against Ueff = U − λ

around U ∼ λ for a fixed ω0 = 0.6 at half filling. In (a), the result for
U = 6, 5 is shown, while (b) shows the result for U = 4 and 3 (both
at β = 20). For smaller U , CO and AF are separated by a PM region.

is strong enough [U = 5, 6; see Fig. 9(a)], the phase transition
is of first order, i.e., the order parameters show a hysteresis
around the phase boundary. In other words, there is a region
around Ueff = 0, in which both an AF and a CO solution of
the DMFT equations exist. In order to determine the stable
solution, one would have to compute the free energies, which
is beyond the scope of the present study. On the other hand,
if the interaction U is smaller [U = 3, 4; see Fig. 9(b)], a
paramagnetic metallic phase (PM) appears between the CO
and AF phases. This phase has also been found in a QMC
analysis of the two-dimensional Holstein-Hubbard model.17

The transition to PM is second order since the order parameter
continuously goes to zero as one approaches the boundary in
Fig. 9(b).

We summarize the results by plotting the phase diagrams
in the U -λ plane for various conditions in Fig. 10, the phase
diagrams in the plane of U and −Ueff in Fig. 11, and the phase
diagram in the plane of T and Ueff (weak-coupling regime)
with fixed U and ω0 in Fig. 12(a).

In the weak-coupling regime, there is a PM around Ueff = 0
as pointed out above. It turns out that the area of the PM
phase is wider on the U > λ side than on the opposite side.
This can be explained by a mean-field theory in the adiabatic
limit, which has been used to explain the first-order transition
in the strong-coupling regime at T = 0 in Ref. 27. This
approximation indicates that the interaction that appears in the
gap equation is U − 2λ for CO and U for AF, as elaborated
in Appendix B, and this explains the different extent of the
two regions. In the antiadiabatic limit, where the HH model
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8
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PMPM

PMPM
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(a)

(b)

(c)
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AFAF

COCO
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AFAF

FIG. 10. (Color online) Finite-temperature phase diagram in the
U -λ plane. PI stands for a paramagnetic insulating state. Colored
dotted lines represent the boundary between a paramagnetic phase
and ordered phases, which is continuous. Solid lines show the
boundary of the region where the stable solution for CO or AF exists.
Red lines shows the boundary of AF, and blue lines indicate the
boundary for CO.

becomes the Hubbard model with interaction Ueff , the Tc (black
curves in Fig. 2) translates to TN on the −Ueff < 0 side, so that
a paramagnetic metallic phase should exist between AF and
CO at finite T . Reference 27 points out that the physics in this
limit shows up in the weak-coupling regime as a continuous
transition between AF and CO. In that sense, the present
result is consistent with Ref. 27. However, we note that the
Hubbard model cannot explain the difference in the extent of
the PM region between U > λ and U < λ since the Hubbard
model solution should be symmetric around the line U = λ. In
addition, we also point out that the region of PM increases as
ω0 increases [compare Figs. 10(a) and 10(b)], which may be
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FIG. 11. (Color online) Finite-temperature phase diagram in the
plane of U and −Ueff . Colored dotted lines represent the boundary
between a paramagnetic phase and ordered phases (continuous phase
transition). Solid lines show the boundary of the region where the
stable solution for CO or AF exists. Red lines show the boundary of
AF, and blue lines indicate the boundary for CO.

because the cancellation between the instantaneous repulsive
interaction and the retarded interaction is more direct for larger
ω0. Figure 12(a) displays the phase diagram in the plane of
T and Ueff in the weak-coupling regime, and shows how
the PM state between AF and CO behaves towards T = 0.
We find that the transition temperatures of CO and AF rise
much faster as a function of |Ueff| than in the case of the
Hubbard model (ω0 → ∞). Then, the PM region shrinks as the
temperature decreases. As for the relation between our results
and previous works, which claim either a direct continuous
transition between CO and AF at T = 0 (Refs. 26 and 27)
or the existence of an intermediate PM phase,17 we cannot
judge from our results which scenario is correct. While the
extrapolatio of the data in Fig. 12(a) may suggest a finite
PM regime at T = 0, the phase boundaries for CO and AF
may be convex, as suggested by static mean-field theory, so
that we cannot draw a definite conclusion on whether a direct
continuous phase transition occurs between AF and CO at
T = 0 or a narrow PM region remains between CO and AF at
T = 0. Still, our results seem to suggest that a discontinuous
direct transition between CO and AF is unlikely to occur at
T → 0 and that the behavior of the ground state is qualitatively
different from that in the stronger-coupling regime.

In the intermediate-coupling regime, the transition between
AF and CO is of first order and takes place within the hysteretic
region, which is shown as the region surrounded by red and
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FIG. 12. (Color online) (a) Phase diagram at U = 2, ω0 = 0.6. (b)
− β

π
G(τ = β/2) [a measure of the spectral function A(ω = 0)] against

Ueff for several temperatures with fixed μ = 1, U = 2, ω0 = 0.6. The
blue horizontal line shows the bare density of states 1/π .

blue solid lines in Figs. 10 and 11. This coexistence region
of two solutions (AF and CO) is located near U ∼ λ and
decreases as the temperatures increases. This result agrees
with previous results at T = 0.26,27 We also find that in
the strong-coupling regime, the hysteretic region becomes
narrower with larger U (or λ) [Figs. 10(a), 10(b), and 11(a)].
In the large-U regime, the CO and AF solutions are separated
by a paramagnetic insulating phase [Figs. 10(c) and 11(b)].

Finally, we show evidence for the metallic nature of the PM
phase in the small-U regime and the behavior of the density
of states at the Fermi level. We use the relation between
the Green’s function on the imaginary axis and the spectral
function [A(ω) = −(1/π )ImGloc(ω)],

G(τ = β/2) = −
∫

dω
1

2 cosh(βω/2)
A(ω). (24)

If the temperature is low enough, 1/ cosh(βω/2) has a strong
peak at ω = 0. Then the value of −(β/π )G(τ = β/2) gives a
good estimate of the value of the spectral function A(ω = 0).
The result, shown in Fig. 12(b) for U = 2, μ = 1, ω0 = 0.6,
indicates that there is indeed a significant density of states at
the Fermi level in the PM phase. Note that we can only observe
a small value of −(β/π )G(τ = β/2) in the paramagnetic
state in the strong-coupling regime, so this phase must be
regarded as a paramagnetic insulating phase. The value of
−(β/π )G(τ = β/2) monotonically increases and saturates
towards the bare density of states, ρ0(ω = 0) = 1/πt , at low
enough temperatures, even though the region of PM itself is
strongly suppressed. Note that an increase of −(β/π )G has
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also been observed in the analysis of the two-dimensional
Holstein-Hubbard model.17

IV. CONCLUSION

We have systematically investigated the effect of the
electron-electron interaction and the electron-phonon coupling
on the ordered states of the half-filled Holstein-Hubbard
model, using DMFT and CT-QMC. In the study of the
superconducting state, we have found that the interplay of
the Coulomb interaction and the retarded attractive interaction
leads to a nontrivial structure in the anomalous Green’s
functions, and we have shown that the maximum transition
temperature decreases as a result of the retardation or the
Coulomb interaction and shifts to the small Ueff regime. The
superconducting order parameter shows a similar behavior.
We have explained these observations with an effective static
model derived from a Lang-Firsov decoupling and a projection
onto the zero-boson subspace, and we have investigated the
accuracy and reliability of the effective model. Then, we
discussed the region where a SC state can be realized in
the HH model in the Tc versus Ueff phase diagram. We
have revealed the effect of the electron-electron and electron-
phonon coupling on the gap in the spectral function, and we
have pointed out that the retardation or the Coulomb interaction
leads to deviations from BCS theory predictions but that if
|Ueff| is small enough, the BCS results are recovered. Finally,
we have investigated the HH model at T > 0 around Ueff = 0,
allowing for SC, AF, and CO phases. A PM appears between
CO and AF in the weak-coupling region, and a paramagnetic
insulating phase appears for strong enough coupling, while
in the intermediate-coupling regime, the transition between
CO and AF is direct and discontinuous and a hysteresis
region of AF and CO is located around Ueff = 0 at nonzero
temperatures.
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APPENDIX A: SC AND AF GREEN’S FUNCTIONS

When the system has a gap, the value of Green’s functions
around τ = β/2 becomes very small at low temperatures,
which provides a challenge for the CT-QMC measurement.
The error bars of the Monte Carlo estimate may become much
larger than the exponentially small mean value. Especially in
the case of the strong-coupling CT-QMC method, this noise
problem is rather severe, providing one of the main drawbacks
of an otherwise very flexible and powerful approach. While in
the present work we have chosen parameters (temperatures)
where these errors are under control and do not cause a
problem, we can make an interesting observation here on
this issue: the measurement of the SC order parameter has a
significantly less severe noise problem than the measurement
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FIG. 13. (Color online) Comparison between SC and AF Green’s
functions measured after one DMFT iteration at |U | = 4, related
through Eqs. (A1) and (A2).

of the AF order parameter, so Green’s function values as small
as 10−10 can be accurately measured in the SC (while in the
AF the accuracy is limited to about 10−5).

To demonstrate this, we compare a result for the SC in
an attractive model with that for the AF in a repulsive one
at half filling. The Hubbard model (on a bipartite lattice)
with a repulsive U at half filling can be transformed into the
model with an attractive interaction −U at half filling (Shiba
transformation). The corresponding local Green’s functions in
the SC and AF phases are related by

G11(iωn) = G22(iωn) = GA↑(iωn) + GA↓(iωn)

2

= GB↑(iωn) + GB↓(iωn)

2
, (A1)

G12(iωn) = G21(iωn) = GA↑(iωn) − GA↓(iωn)

2

= GB↓(iωn) − GB↑(iωn)

2
. (A2)

Using these equations to derive G11(iωn), G12(iωn) from
GA↑, GA↓, we compare the measurements in the SC and AF
phases in Figs. 13 and 14. In all calculations, we start from
the static mean-field theory (BCS) solution, and we fixed the
CPU time for each DMFT iteration to 12 min on 16 CPUs.
Figures 13(a) and 13(b) show G11(iωn) and G12(iωn), re-
spectively, after the first iteration, while Fig. 14 shows the
fully converged results after 50 iterations. As can be seen,
the measurement in the SC phase suffers from less noise and
provides an accurate estimate of the Green’s function even
around τ = β/2. This result is reminiscent of an observation
by Hirsch46 that in quantum Monte Carlo simulations of
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FIG. 14. (Color online) Comparison between fully converged SC
and AF Green’s functions measured after 50 DMFT iterations at
|U | = 4, related through Eqs. (A1) and (A2).

the Hubbard model, the accuracy of spin-spin correlations
measured in the z or x direction can be very different.

APPENDIX B: STATIC MEAN-FIELD TREATMENT
FOR AF AND CO

In order to gain some insights into the behavior of the CO
and AF phases, we briefly discuss a static mean-field theory
for the HH model.27 We treat both interactions in Eq. (1)
with a mean-field approximation by introducing the average
of the lattice displacement 〈b†i + bi〉/

√
2ω0 and the averaged

density 〈ni,σ 〉. The mean-field Hamiltonian is decomposed
as

HMF ≡ He
MF + H

ph

MF, (B1)

where

He
MF = −t

∑
〈i,j〉,σ

[c†j,σ ci,σ + H.c.] +
∑

i

[U (〈ni↑〉ni↓

+ 〈ni↓〉ni↑) − μni + g〈b†i + bi〉ni] (B2)

and

H
ph

MF = g
∑

i

(b†i + bi)(〈ni〉 − 1) + ω0

∑
i

b
†
i bi . (B3)

From H
ph

MF, we find 〈bi〉 = 〈b†i 〉 = − g

ω0
(〈ni〉 − 1). Then we

obtain

He
MF = −t

∑
〈i,j〉,σ

[c†j,σ ci,σ + H.c.] −
∑

i

(μ − λ)ni

+
∑
i,σ

niσ (U 〈niσ̄ 〉 − λ〈ni〉). (B4)

This Hamiltonian shows that the effective attractive interaction
−niσ λ〈ni〉 comes from electrons of both spins, which is
different from the case of the Hubbard interaction. In the
following, let us focus on half filling and consider the solution
of CO and AF.

For CO, 〈nA↑〉 = 〈nA↓〉 �= 〈nB↑〉 = 〈nB↓〉, and we define
the order parameter as �CO = (〈nA↑〉 − 〈nB↑〉)/2. On the other
hand, for AF, 〈nA↑〉 = 〈nB↓〉 �= 〈nA↓〉 = 〈nB↑〉, and we define
the order parameter as �AF = (〈nA↑〉 − 〈nA↓〉)/2. Then we
obtain a self-consistent equation,

1 = V

∫
dξρ(ξ )

tanh[βE(ξ,�,V )/2]

2E(ξ,�,V )
, (B5)

where ρ(ξ ) is the density of states for bare electrons and
E(ξ,�,V ) =

√
V 2�2 + ξ 2. For CO we put � = �CO,V =

|U − 2λ|, and for AF, we set � = �AF,V = |U |.
Note that if we consider CO and SC in the attractive

Hubbard model within the static mean-field approximation,
we put V = |U | = |Ueff| in Eq. (B5). On the other hand, when
we consider the Holstein model, we use V = 2|λ| = 2|Ueff|,
which corresponds to the effective interaction for both spin up
and down. This explains why the transition temperature for
CO is enhanced in the small Ueff regime as ω0 decreases, as
was pointed out in Refs. 41 and 42.

We also note that the static mean-field analysis can explain
the reason why the PM region is larger on the U > λ side than
on the U < λ side. This comes from the different dependences
of AF and CO on U and λ. At a given temperature T , let V0 > 0
satisfy

1 = V0

∫
dξρ(ξ )

tanh[βE(ξ,0,V0)/2]

2E(ξ,0,V0)
. (B6)

The mean-field analysis then dictates that the boundary of CO
and PM is located at λ = (V0 + U )/2, while the boundary
of AF and PM is at U = V0. The two boundaries cross at
U = λ = V0, and a first-order transition occurs for U,λ > V0.
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