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Motility of bacteria like Salmonella enterica is a highly regulated process that responds to a variety of internal and external stim-
uli. A hierarchy of three promoter classes characterizes the Salmonella flagellar system, and the onset of flagellar gene expression
depends on the oligomeric regulatory complex and class 1 gene product FlhD4C2. The flhDC promoter is a target for a broad
range of transcriptional regulators that bind within the flhDC promoter region and either negatively or positively regulate flhDC
operon transcription. In this work, we demonstrate that the RflM protein is a key component of flhDC regulation. Transposon
mutagenesis was performed to investigate a previously described autoinhibitory effect of the flagellar master regulatory complex
FlhD4C2. RflM is a LuxR homolog that functions as a flagellar class 1 transcriptional repressor. RflM was found to be the negative
regulator of flhDC expression that is responsible for the formerly described autoinhibitory effect of the FlhD4C2 complex on
flhDC operon transcription (K. Kutsukake, Mol. Gen. Genet. 254:440 – 448, 1997). We conclude that upon commencement of
flagellar gene expression, the FlhD4C2 complex initiates a regulatory feedback loop by activating rflM gene expression. rflM en-
codes a transcriptional repressor, RflM, which fine-tunes flhDC expression levels.

The biosynthesis, assembly, and rotation of flagella require a signif-
icant amount of biosynthetic resources and energy (1, 2). The

expression of flagellar genes is regulated in response to various envi-
ronmental conditions, which can determine the onset of flagellar bio-
synthesis and the overall degree of flagellation (3, 4). One difference
between flagellar gene expression in Escherichia coli and Salmonella is
that under low-nutrient conditions, the flagellar regulon can be either
induced (E. coli) or repressed (Salmonella) (5–8). In all systems ex-
amined to date, flagellar synthesis is repressed during biofilm forma-
tion and upon entry into host cells (9–12).

The more than 60 genes of the flagellar regulon are organized
into a transcriptional hierarchy of three promoter classes. The
flagellar master operon, flhDC (under the control of the fla-
gellar class 1 promoter), is transcribed to produce the FlhD4C2

transcriptional activator complex that is needed for the activation
of genes downstream in the flagellar transcriptional hierarchy,
which are transcribed from flagellar class 2 promoters. FlhD4C2-
dependent genes are required for the structure and assembly of
the flagellar hook-basal body (HBB), which functions as the
motor of the flagellum. Also transcribed from a class 2 flagellar
promoter is the fliA gene, which encodes the flagellum-specific tran-
scription factor �28, required to transcribe flagellar class 3 promoters.
Class 3 flagellar genes encode proteins required after HBB comple-
tion, including filament (fliC and fljB), motor force generators
(motAB), and components of the chemosensory system (che).

A broad range of factors positively and negatively regulate
expression of the flhDC operon. Transcription of flhDC from
the class 1 promoter is dependent on the binding of the cyclic
AMP-catabolite gene activator protein complex and can also be
activated by the iron-regulatory protein Fur and by the nucle-
oid proteins Fis and H-NS (13–17). Those regulatory factors
bind directly to the flhDC promoter region, as shown for Fis in
Salmonella and for Fur and H-NS in E. coli (15, 17, 18). There
are numerous negative regulators of flagellar biosynthesis, in-
cluding SlyA, a transcriptional regulator of flhDC (19) that is
also required for Salmonella virulence (20), RtsB, a Salmonella

pathogenicity island 1 (SPI-1)-encoded repressor of flagellar
class 1 transcription (21), LrhA (22), and RcsB. RcsB is re-
ported to positively regulate SPI-2 expression and favor Salmo-
nella growth in macrophages (23). RcsB also binds an RcsB box
in the flhDC promoter region to repress the flagellar master
operon (23, 24). Finally, flhDC transcription is reported to be
under autogenous control (13). FlhD4C2 is also under post-
transcriptional regulation. The flagellar protein FliZ is a prod-
uct of the fliAZ operon, which is transcribed from flagellar class
2 and 3 promoters. FliZ positively regulates additional flagellar
class 2 gene expression (25). According to Saini et al., FliZ
posttranslationally alters the concentration of FlhD4C2 (26).
Data provided by Wada et al. suggest that FliZ has a repressing
effect on YdiV, another posttranscriptional anti-FlhD4C2 fac-
tor (27). YdiV binds to FlhD and prevents the FlhD4C2 complex
from binding to class 2 promoters, either by physically keeping
the FlhDC complex away from free promoter DNA or by re-
leasing FlhDC from the DNA-bound state (7, 28).

In an earlier study, we identified RflM, previously known as EcnR
(see Materials and Methods), as a repressor of flhDC transcription.
RflM is encoded in close proximity to the antidote/toxin gene pair
ecnAB and exhibits the typical characteristics of an OmpR-like re-
sponse regulator (29). It was therefore originally named EcnR (en-
tericidin gene R), but experimental analyses showed ecnAB to be pos-
itively regulated by �S and negatively regulated by EnvZ/OmpR (29).
There is no evidence for regulation of ecnAB by RflM (EcnR). In our
previous work, we isolated flhDC promoter mutants that suppressed
RflM inhibition (30). The inhibitory effect of RflM on motility has
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been shown to be dependent on the RcsCDB system (30). An addi-
tional deletion of rcsDBC or an insertion in rcsB prevented the re-
ported loss of motility of PararflM. Here, we characterized the inhib-
itory effect of RflM on flhDC transcription. FlhD4C2 activates
transcription of rflM, and in turn, RflM represses flhDC transcrip-
tion. The RflM-FlhD4C2 feedback loop thereby accounts for the for-
merly described autoregulatory effect of FlhD4C2 on flhDC operon
transcription.

MATERIALS AND METHODS
Bacterial strains, plasmids, and media. All bacterial strains used in this
study are listed in Table 1. Cells were cultured in lysogeny broth (LB)
medium, supplemented with tetracycline (15 �g ml�1) or anhydrotetra-
cycline (AnTc) (1 �g ml�1) if needed. Gene expression from the arabinose
promoter was achieved by addition of 0.2% L-arabinose to the medium.
The generalized transducing phage of Salmonella enterica serovar Typhi-
murium P22 HT105/1 int-201 was used in all crosses (31). Experiments
using the virulent Salmonella enterica serovar Typhimurium ATCC
14028s background were performed under SPI-1-inducing conditions
(24, 32, 33). Cultures were grown under high-osmolarity (1% NaCl, final)
and low-oxygen (without agitation) conditions and if necessary supple-
mented with anhydrotetracycline and arabinose as described above. Phe-
notypic Lac activity was observed using MacConkey lactose (MacLac)
agar supplemented with 0.2% arabinose if required.

Nomenclature. The gene rflM was originally named ecnR since it was
a putative regulatory protein linked to the toxin-antitoxin genes ecnAB
(29). The change in nomenclature thereby displays the newly character-
ized function of RflM as a modulator of the flagellar master operon flhDC
(regulator of flagellar master operon).

Isolation of random T-POP insertions. Strain TH15941
[�araBAD1007::flhD�C� flhC5213::MudJ fliA5886(R91C L207P)] car-

ries the flhD�C� operon expressed from the chromosomal araBAD pro-
moter (ParaBAD) (19). It also carries a lac operon (via insertion of the MudJ
transposon into the flhC gene) transcriptional reporter fusion to the chro-
mosomal flhDC promoter (flhC5213::MudJ) and a fliA null allele that is
defective in binding DNA (34). The introduction of the fliA null allele was
to prevent any potential effects of �28 activity on the flhDC autoregulatory
control. Strain TH15941 is Lac� but becomes Lac� in the presence of
arabinose (Ara-Lac�) due to induction of flhD�C� transcription from
ParaBAD, resulting in autorepression of flhC-lac reporter transcription by
FlhD4C2. P22 phage prepared from T-POP donor strain TH3923 {pJS28
(Apr P22-9�) F=114(Ts) Lac� zzf-20::Tn10[tetA::MudP] (Tcs) zzf-3823::
Tn10dTc[del-25] leuA414 hsdSB Fels2�} was used to introduce T-POP
into strain TH15941 carrying plasmid pNK2881, which constitutively ex-
presses the Tn10 transposase gene carrying the ats-1 and ats-2 (altered
target specificity mutations) alleles, which result in the random insertion
of Tn10 derivatives into the chromosome (35). About 30,000 T-POP in-
sertions in TH15941 were screened for loss of FlhD4C2 autorepression, an
Ara-Lac� phenotype, in the presence of tetracycline (Tc-Ara-Lac�).
Thirty T-POP insertions that had an initial Ara-Lac� phenotype in the
presence of Tc were isolated and were further characterized as described in
Results.

�-Galactosidase assays. �-Galactosidase activity was measured ac-
cording to method of Zhang and Bremer (36) with minor modifications as
described in the following. For each strain, a minimum of three indepen-
dent biological replicates were picked from individual colonies. For ex-
periments performed with LT2, cells were grown overnight in general LB
medium. Strain 14028s was grown under SPI-1 inducing conditions in LB
medium supplemented with 1% NaCl (final) and without shaking. LT2
samples were diluted 1:100 in LB medium supplemented with 0.2% L-ar-
abinose and 1 �g ml�1 anhydrotetracycline if needed. Cultures were
grown until mid-log phase at 37°C before permeabilization of the cells

TABLE 1 Salmonella enterica serovar Typhimurium LT2 and ATCC 14028s (ST14028) strains used in this study

Strain or plasmid Relevant characteristics Reference or source

EM57 LT2 �araBAD1007::flhD�C� �rflM32 flhC5213::MudJ This study
EM59 LT2 �araBAD1007::flhD�C� flhC5213::MudJ This study
EM71 LT2 �araBAD925::tetRA flhC5213::MudJ �rflM32 This study
EM153 LT2 �araBAD921::rflM� rflM3::MudJ P(flhDC)5451::Tn10dTc[del-25] This study
EM154 LT2 �araBAD1005::FCF P(flhDC)5451::Tn10dTc[del-25] rflM3::MudJ This study
EM635 14028s �rcsB::tetRA luxCDABE (Kmr)::ybaJ This study
EM636 14028s �rflM5::FCF luxCDABE (Kmr)::ybaJ This study
EM642 14028s �araBAD925::rcsB� luxCDABE (Kmr)::ybaJ This study
EM643 14028s �araBAD921::rflM� luxCDABE (Kmr)::ybaJ This study
EM666 14028s �araBAD1005::FRT luxCDABE (Kmr)::ybaJ This study
EM672 14028s �araBAD1007::flhD�C� rflM3::MudJ This study
EM673 14028s �araBAD1005::FRT rflM3::MudJ This study
EM700 14028s �araBAD1007::flhD�C� rflM3::MudJ �invH-sprB::FCF This study
EM701 14028s �araBAD1005::FRT rflM3::MudJ �invH-sprB::FCF This study
TH437 LT2 J. Roth
TH3923 pJS28 (Apr P22-9�) F=114(Ts) Lac� zzf-20::Tn10[tetA::MudP] (Tcs)

zzf-3823::Tn10dTc[del-25] leuA414 hsdSB Fels2�

Lab collection

TH5971 �hin-5717::FCF
TH6701 LT2 �araBAD925::tetRA Lab collection
TH8972 LT2 �araBAD925::tetRA flhC5213::MudJ P. Aldridge
TH9386 LT2 �araBAD921::rflM� J. Karlinsey
TH10068 LT2 rflM3::MudJ Wozniak et al., 2009 (30)
TH13067 LT2 �araBAD996::rcsB� flhC5213::MudJ Lab collection
TH13069 LT2 flhC5213::MudJ �araBAD921::rflM� Lab collection
TH14156 LT2 �araBAD1007:: flhD�C� Erhardt and Hughes, 2010 (19)
TH15941 LT2 �araBAD1007::flhD�C� flhC5213::MudJ fliA5886 (R91C L207P) This study
TH16205 LT2 �araBAD1007::flhD�C� rflM3::MudJ This study
TH16952 �rflM4::FKF �hin-5717::FCF This study
TH16964 �rcsB::tetRA �hin-5717::FCF This study
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using 100 mM Na2HPO4, 20 mM KCl, 2 mM MgSO4, 0.08% CTAB (hexa-
decyl-trimethyl ammonium bromide), 0.04% sodium deoxycholate, and
5.4 �l ml�1 �-mercaptoethanol.

To start the reaction, substrate solution containing 60 mM Na2HPO4,
40 mM NaH2PO4, 1 mg ml�1 o-nitrophenyl-�-D-galactoside (ONPG)
and 2.7 �g ml�1 �-mercaptoethanol was added, and the time was mea-
sured until sufficient color had been developed. The enzyme reaction was
then stopped by addition of 1 M sodium carbonate (Na2CO3), and re-
maining cell fragments were pelleted by centrifugation at full speed. The
optical density of the supernatant at 405 nm was measured, and Miller
units were calculated according to the method of Miller (37).

All samples were normalized against their corresponding arabinose-
induced wild-type control in the presence or absence of anhydrotetracy-
cline.

For statistical analysis, an unpaired t test was performed using the
software program GraphPad Prism version 5.0d for Mac (GraphPad Soft-
ware, San Diego, CA, USA). The P value summaries are displayed above
the respective bars.

RNA isolation and quantitative real-time PCR. RNA isolation was
performed for three independent biological replicates using the RNeasy
minikit (Qiagen). For removal of genomic DNA, RNA was treated with
DNase I for 30 min at 37°C using a DNA-free RNA kit (Zymo Research) or
on-column treatment was performed using kit 79254 (Qiagen). Subse-
quently, RNA samples were reverse transcribed according to the Rever-
tAid first-strand cDNA synthesis kit (Fermentas). Quantitative real-time
PCRs were carried out using the EvaGreen quantitative real-time PCR
(qPCR) master mix (Bio-Rad) and primers 5=-TCTCAACGATGCCTTA
CCCGAACA plus 5=-GCAAGCTCATGTAAAGGCGTGTGT (rflM), 5=-
CTGCTCAAAGAGCTGGTGTATCA plus 5=-AGCGCGTTACAGTCTG
CTCAT (gyrB), 5=-CAACCTGTTCGTACGTATCGAC plus 5=-CAGCTC
CATCTGCAGTTTGTTG (rpoB), 5=-CAACAGTATGCGCGTGATGAT
plus 5=-CGACGCAGAGCTTCATGATC (rpoD), 5=-TTGCAGAAATGA
GCCATTACGCCG plus 5=-GACGTTCAGC GCGAATGATGGTTT
(gmk), 5=-GTAGGCAGCTTTGCGTGTAG plus 5=-TCCAGCAGTTGTG
GAATAATATCG (flhDC), 5=-AACGTCTATTTTGTGAAAACCAAAG
plus 5=-AGACTCCAGAATCCCGTTTTC (flgE), and 5=-AACGACGGTA
TCTCCATTGC plus 5=-ATTTCAGCCTGGATGGAGTC (flagellin, con-
served region of fliC and fljB). Experiments were performed on a CFX96
real-time PCR instrument (Bio-Rad), with the exception of the experi-
ment leading to Fig. 5. Here we used a Rotor-Gene Q 2plex real-time PCR
system (Qiagen). Relative changes in mRNA levels were analyzed accord-
ing to the Pfaffl method (38) and normalized against the transcript levels
of the reference genes rpoB, rpoD, gyrB, and gmk.

Motility plates. Motility plates were prepared as described previously
(30, 39). Strains were picked from fresh individual colonies grown on LB
and pocked into 0.2% arabinose-containing (�Ara) and arabinose-free
(�Ara) motility agar. Plates were kept at 30°C and grown for 5.5 h (�Ara)
and 6.5 h (�Ara), respectively. The diameter of the motility swarm was
measured using the software program NIH ImageJ 1.44g. In order to
increase the contrast between motility and background, contrast levels
were equally adjusted using iWork Pages software.

Flagellar staining. For immunostaining of flagellar filaments, fliC-ON
phase-locked (�hin-5717) Salmonella bacteria containing a deletion of
either rflM or rcsB were grown to mid-log phase and immobilized on
poly-L-lysine-treated coverslips. The bacteria were fixed by addition of 5%
formaldehyde and 0.5% glutaraldehyde. Membrane staining was per-
formed using FM-64 (0.5 mg ml�1). Flagella were stained using poly-
clonal anti-FliC antibodies (rabbit) and anti-rabbit-Alexa 488 secondary
antibodies (Invitrogen). Images were collected using an inverted Axio
Observer.Z1 fluorescence microscope (Zeiss).

RESULTS
FlhD4C2 activates its own repressor, RflM. The master regulatory
operon of flagellar gene expression, flhDC, is under autogenous
repression (13). It was reported that increased levels of active

FlhD4C2 complex resulted in decreased flhDC transcription in
cases where �28 (FliA) was absent or where �28 was in the presence
of its cognate anti-�28 factor FlgM (13). We confirmed the auto-
regulatory effect of FlhD4C2 on flhDC operon transcription in the
presence of both �28 and FlgM as shown in Fig. 1. When FlhD4C2

was overexpressed from the arabinose promoter upon addition of
0.2% arabinose, a chromosomal flhC-lac transcriptional fusion
under the control of the flhDC promoter reported a drop in flhC-
lac expression of about 2-fold (Fig. 1A). It was shown previously
that tuning expression of FlhD4C2 from the arabinose promoter
by addition of 0.05% to 0.6% arabinose resulted in a steady 60-
fold increase in flhDC mRNA levels compared to flhDC expressed
from the native PflhDC promoter (19). In addition, the FlhD4C2

levels needed for maximal activation of downstream flagellar
genes appear to be rapidly saturated, since class 2 and class 3 gene
expression increased only 3- to 5-fold in the tested range of
ParaflhDC overexpression (19).

To address whether FlhD4C2 could directly repress its own
transcription or if FlhD4C2 mediated autorepression indirectly by
activating the transcription of an unknown flhDC operon repres-
sor, we performed T-POP transposon mutagenesis and screened
for potential FlhD4C2-dependent repressors of flhDC gene tran-
scription. T-POP transposons are derivatives of transposon Tn10
that can transcribe chromosomal genes adjacent to the site of in-
sertion from tetracycline-inducible promoters within the T-POP
element (40). T-POP lacks transposition functions, which can be
provided in trans by a Tn10 transposase expression plasmid pres-
ent in recipient cells (40). After transposon insertions have been
isolated and moved into a strain lacking Tn10 transposase, the
T-POP transposon is no longer capable of further transposi-
tion. Strain TH15941 (�araBAD1007::flhD�C� flhC5213::MudJ
fliA5886) carries an flhC-lac transcriptional fusion and the
flhD�C� operon expressed from an arabinose-inducible pro-
moter (ParaflhD�C�). This strain is Lac� in the presence of arabi-
nose due to FlhD4C2 autorepression. The phenotype on lactose
MacConkey (MacLac) agar is shown in Fig. 2. MacLac indicator
medium shows the optimal sensitivity in the intermediate lac
operon expression range (41). It thus represents the indicator me-
dium of choice to visualize repression of flhDC, such as flhDC
autorepression (ParaflhD�C�) or repression of flhDC by the
known transcriptional regulator RcsB (PararcsB�). Using MacLac
indicator medium, a transition from white (Lac�) to dark-pink
(Lac�) colonies can be readily observed (Fig. 2). Strain TH15941
was mutagenized with the T-POP transposon Tn10dTc[del-25]
and screened for insertions that were Lac� (dark pink) in the
presence of arabinose due to loss of FlhD4C2 autorepression. The
T-POP transposon Tn10dTc[del-25] is deleted for the terminator
of the tetA tetracycline resistance gene transcript, allowing tran-
scription from the tetA promoter (PtetA) within the T-POP trans-
poson into adjacent chromosomal DNA (40). Four groups of T-
POP transposon insertion mutants that resulted in the
apparent loss of FlhD4C2 autorepression (i.e., Lac� in the pres-
ence of arabinose [Ara-Lac�]) were obtained. One group in-
cluded T-POP insertions linked to the arabinose region and are
presumed to have disrupted the flhDC operon. A second group
included T-POP insertions linked to the flhC-lac operon fusion
and are presumed to be polar insertions between the flhDC
promoter and the lac operon inserted in flhC, thereby putting
lac directly under PtetA control. These two groups of Ara-Lac�

T-POP insertions in strain TH15941 were not further charac-
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terized. The remaining two groups of Ara-Lac� T-POP inser-
tions were unlinked to both ara and flhC-lac fusion chromo-
somal positions and represented candidates for insertions in a
gene or genes responsible for FlhD4C2-dependent repression of
flhDC operon transcription. One group included two inser-
tions that exhibited an Ara-Lac� phenotype only in the pres-
ence of tetracycline (Tc). These were presumed to turn on an
activator of flhDC gene expression from PtetA that is currently
being subjected to further characterization. The final group of

FIG 1 RflM inhibits its own activator (flhDC). (A) Expression levels of an flhC-lac
transcriptional fusion under ParaBAD::flhD�C� inducing conditions (0.2% arabi-
nose), measured by �-galactosidase activity as described in Materials and Meth-
ods. Three independent biological replicates of the ParaBAD::flhD�C� flhC::MudJ
(EM59; lane 2) and ParaBAD::flhD�C� �rflM flhC::MudJ (EM57; lane 4) strains
were measured and compared to �araBAD::tetRA flhC::MudJ (TH8972; lane 1)
and �araBAD::tetRA �rflM flhC::MudJ (EM71; lane 3) control strains. (B) Rela-
tive flhDC expression compared to wild-type mRNA levels of strain TH6701
�araBAD::tetRA or TH437 LT2, respectively. Transcript levels were compared by
quantitative real-time PCR as described in the text. The effect of arabinose-in-
duced overexpression of RflM (TH9386; ParaBAD::rflM�) on flhDC expression was
monitored in independent experiments using total mRNA of three independent
biological samples grown in arabinose-containing medium. (C) �-Galactosidase
activity showing transcription levels in strain expressing RflM from the arabinose
promoter (TH13069 ParaBAD::rflM� flhC::MudJ, labeled1), compared to results
for the wild-type control (TH8972; �araBAD::tetRA flhC::MudJ). TH8972 con-
tains chromosomal rflM but lacks rflM expression due to the absence of functional
flhDC (labeled as �*). (D) rflM expression levels in a �-galactosidase assay show-
ing repression of rflM transcription in strains lacking flhDC. For each strain, four
independent replicates were analyzed. EM154 (�araBAD::FCF PflhDC::
Tn10dTc[del-25] rflM::MudJ; lanes 1 and 3) and EM153 (ParaBAD::rflM� PflhDC::
Tn10dTc[del-25] rflM::MudJ; lanes 2 and 4) were grown until mid-log phase in
arabinose-supplemented medium in the presence and absence of 1 �g ml�1 an-
hydrotetracycline (AnTc). The relevant genotype is labeled as followed: a chromo-
somal wild-type copy of the gene is present (�), the gene is chromosomally over-
expressed from an arabinose-inducible promoter (1), or the strain is deleted for
the respective gene (�). It is important to note that rflM requires the presence of
FlhDC in order to be expressed. The asterisk (�) indicates conditions where the
wild-type rflM gene is present but not transcribed due to the absence of flhDC.
Error bars represent the standard deviations of the means. Data were analyzed by
the Student t test. Gene expression levels that differed significantly are shown (��,
P � 0.01; ���, P � 0.001).

FIG 2 Phenotypes of different Para constructs on MacLac indicator plates in
the presence (�ara) and absence (�ara) of arabinose. Plates were incubated at
37°C overnight. TH8972 ParaBAD::tetRA, EM71 ParaBAD::tetRA �rflM, EM59
ParaBAD::flhDC, EM57 ParaBAD::flhDC �rflM, TH13069 ParaBAD::rflM�, and
TH13067 ParaBAD::rcsB are shown.
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insertion mutants was Ara-Lac� in either the presence or ab-
sence of added Tc, and their Ara-Lac� phenotype was pre-
sumed to be due to the loss of function of the gene into which
the T-POP was inserted. T-POP insertions of this group that
were linked to known negative regulators of flhDC expression
(e.g., lrhA, rtsB, and rcsB) were not characterized further. Of
the remaining unlinked T-POP insertions, we sequenced 10
Tc-independent Ara-Lac� insertion mutants, and DNA se-
quence analysis revealed transposition of the T-POP element
into the rflM locus (Table 2). This indicated that rflM encodes
an FlhD4C2-induced repressor of flhDC transcription (the “au-
torepressor”).

RflM inhibits flhC gene transcription. The results of the
random T-POP transposon mutagenesis suggested that RflM
functions as an FlhD4C2-dependent inhibitor of flhDC operon
transcription. Accordingly, we tested autoinhibition of flhDC
transcription upon induction of ParaflhD�C� in the absence of the
putative regulator RflM (Fig. 1A). The inhibitory effect of
ParaflhD�C� induction on flhDC gene transcription was lost in
the rflM deletion strain, confirming that RflM was responsible for
the FlhD4C2 autoregulation effect observed by Kutsukake (13). In
order to confirm that RflM represses flhDC operon transcription,
we analyzed flhDC mRNA levels in a strain that expresses excess
rflM from an arabinose-inducible promoter (PararflM�). As
shown in Fig. 1B, under PararflM�-inducing conditions, flhDC
expression decreased about 4-fold in a reverse transcriptase qPCR
(RT-qPCR) assay. Reduction in flhDC transcription was also ob-
served under PararflM�-inducing conditions using an flhC-lac
operon fusion reporter shown in Fig. 1C.

Effect of RflM on rflM gene transcription. We investigated
whether RflM was under autogenous control. To test if RflM au-
toregulates its own transcription, we utilized a previously isolated
rflM-lac operon transcriptional fusion (30). A strain overexpress-
ing RflM from the arabinose promoter (PararflM�) was analyzed
in comparison to the wild-type control, where the arabinose genes
araBAD were deleted by inserting an Flp recombination target
(FRT)-chloramphenicol acetyltransferase-FRT (FCF) resistance
cassette (�araBAD::FCF). Both strains carried the above-men-
tioned rflM-lac reporter and a T-POP insertion in the promoter
region of flhDC. The latter allows the activation of flhDC tran-
scription upon addition of anhydrotetracycline (AnTc), which ac-
tivates T-POP-encoded tetA and tetR gene transcription, and pre-
vents flhDC autorepression. As shown in Fig. 1D, the absence of
FlhD4C2 (e.g., in the absence of the inducer AnTc, the flhDC
operon in these strains is not transcribed) resulted in a reduction

of rflM-lac transcription, presumably because the rflM gene re-
quired FlhD4C2 for its transcription. However, induction of rflM
from the arabinose locus had no effect on the remaining rflM-lac
transcription, suggesting that RflM does not play an additional
role in its own transcriptional regulation except through regula-
tion of flhDC.

FlhD4C2 activates its own repressor, RflM. The results de-
scribed above indicate that FlhD4C2 activates its own repressor,
RflM. To analyze the effects of ParaflhD�C� induction on rflM
gene expression, we analyzed �-galactosidase activity of a tran-
scriptional rflM-lac reporter in Salmonella enterica LT2 and the
virulent strain Salmonella enterica ATCC 14028s to exclude strain-
specific effects and in addition analyze a potential cross talk be-
tween the interconnected virulence and flagellar gene regulation
networks. The attenuated strain, LT2, was grown under regular LB
conditions, whereas the virulent strain, 14028s, was grown under
high-salt and low-oxygen conditions, known to induce the viru-
lence-associated Salmonella pathogenicity island 1 (SPI-1) (24, 32,
33). In both strain backgrounds, a 3-fold induction of rflM was
observed under ParaflhD�C�-inducing conditions (Fig. 3A). We

TABLE 2 Locations of tetracycline-independent Ara-Lac� T-POP
insertions

T-POP no.

Location of insertion
(bp downstream of
rflM start site) DNA strand

4 157 Minus strand
5 and 9 39 Minus strand
6 and 24 200 Minus strand
10 157 Minus strand
11 191 Reference (plus) strand
17 542 Reference (plus) strand
22 473 Minus strand
25 149 Reference (plus) strand

FIG 3 FlhD4C2 activates its own repressor, RflM. (A) Expression of an rflM-
lac transcriptional fusion under flhDC overexpression conditions compared to
wild-type flhDC expression conditions. Transcription of rflM-lac as deter-
mined by �-galactosidase assays for Salmonella enterica serovar Typhimurium
LT2 and ATCC 14028s shows activation of rflM gene expression in a strain
expressing excess FlhD4C2. Three independent biological replicates were
grown in LB medium containing 0.2% arabinose. TH10068 (LT2 rflM::MudJ;
lane 1) and TH16205 (LT2 ParaBAD::flhD�C� rflM::MudJ; lane 2) were grown
shaking in normal LB medium. For ST14028s, strains EM673 (�araBAD::FRT
rflM::MudJ; lane 3), EM701 (�araBAD::FRT rflM::MudJ �invH-sprB::FCF;
lane 4), EM672 (ParaBAD::flhD�C� rflM::MudJ; lane 5), and EM700 (ParaBAD::
flhD�C� rflM::MudJ �invH-sprB::FCF; lane 6) were grown under SPI-1-in-
ducing conditions as further described in Materials and Methods. (B) Effects of
excess FlhD4C2 on rflM gene expression. Strain TH14156 ParaBAD::flhD�C�

(1) was grown to mid-log phase in LB medium containing 0.2% arabinose.
Total RNA of three biological replicates was isolated, and rflM transcript levels
were analyzed in independent experiments by real-time qPCR as described in
the text. Relative gene expression was determined using the Pfaffl method.
Individual mRNA levels were normalized against those for multiple refer-
ence genes (gmk, gyrB, rpoB, and rpoD) and are presented as fold change
relative to those for the wild-type control, TH6701 �araBAD::tetRA or
TH437 LT2. Data were analyzed by the Student t test. Gene expression
levels that differed significantly are indicated (���, P � 0.001). Error bars
represent the standard deviations of the means. The relevant genotype is
labeled as followed: a chromosomal wild-type copy of the gene is present
(�), the gene is chromosomally overexpressed from an arabinose-induc-
ible promoter (1), or the strain is deleted for the respective gene (�).
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also performed complementary quantitative real-time PCR as-
says. Upon ParaflhD�C�-inducing conditions, the rflM mRNA
level was significantly increased, as shown in Fig. 3B.

Effect of RflM on motility and flagellation. We have shown
above that overexpression of rflM resulted in a substantial repres-
sion of the flagellar master regulatory operon, flhDC. We therefore
analyzed the effect of a deletion of the rflM gene and rflM overex-
pression on motility and flagellar assembly. A deletion in rflM
resulted in an increase in motility compared to the wild type (Fig.
4A and B) and on average one additional flagellum per cell body
(Fig. 4C). Under rflM-overexpressing conditions (labeled rflM1),
a substantial loss of motility was observed and motility was signif-
icantly impaired compared to that with the known repressor RcsB
(Fig. 4B).

Additionally, we analyzed gene expression of the three flagellar
promoter classes by quantitative real-time PCR. Expression of all
the classes was upregulated in the �rflM background, with a de-
creasing effect along the transcriptional flagellar hierarchy (Fig.
5). While no significant difference could be observed between the
two regulators RflM and RcsB in terms of class 1 (flhDC) expres-
sion, the RflM effect is clearly visible at later class 2 (flgE) and class
3 (fliC and fljB) transcription. This effect supports the observation
that the RflM effect on motility and flagellation was more pro-
nounced than that of RcsB.

In summary, our results support a regulatory feedback loop for
the autogenous control of flhDC operon transcription. Expression
of flhDC leads to production of a functional FlhD4C2 activator
complex, which, in addition to activating flagellar class 2 pro-

FIG 4 Motility and flagellation of rflM and rcsB mutants. (A) Motility of rflM and rcsB mutants with or without induction by arabinose. Fresh colonies were poked into
motility plates and grown at 30°C for 5.5 h (�Ara) or 6.5 h (�Ara). (B) Motility diameter was measured using ImageJ, and values for EM636 (�rflM::FCF), EM635
(�rcsB::tetRA), EM643 (�araBAD::rflM�), and EM642 (�araBAD::rcsB�) are shown relative to those for the wild type (WT) EM666 (�araBAD::FRT). Relevant
genotypes are listed. For details, see the list of strains (Table 1). (C) Numbers of flagella per cell in a fliC-ON (�hin-5717) phase-locked background. Cell bodies were
stained using FM-64, and flagella were labeled using antibodies against the expressed filament subunit fliC as described in Materials and Methods. The number of flagella
per cell body was manually counted using ImageJ. TH5971 (�hin-5717), TH16952 (�ecnR �hin-5717), and TH16964 (�rcsB �hin-5717) were analyzed.

FIG 5 Flagellar class 1, 2, and 3 gene expression of rflM and rcsB mutants. Relative
expression of the different flagellar promoter classes under wild-type, �rflM, and
�rcsB conditions is shown. Quantitative real-time analysis was performed with
two independent mRNA purifications. Expression levels are shown for class 1
(flhDC), class 2 (hook subunit flgE), and class 3 (flagellin subunits fliC and fljB)
gene products. gyrB, rpoB, and gmk served as reference genes for normalization.
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moter transcription for hook-basal body assembly, activates rflM
gene transcription. RflM, when produced, acts to inhibit flhDC
transcription. We have thereby demonstrated that this feedback
loop is responsible for the formerly observed autoregulatory effect
of FlhD4C2.

DISCUSSION

In this study, we show that the formerly observed autoregulatory
effect of the flagellar master regulator FlhD4C2 is caused by
FlhD4C2-dependent production of a negative regulator, RflM.
FlhD4C2 and RflM thereby form a regulatory feedback loop, which
regulates the rate of flagellar gene expression with respect to the
level of already-initiated flagellar biosynthesis. Expression of rflM
is directly coupled to the presence of functional FlhD4C2, which
could be concluded from the fact that the amount of rflM mRNA
was significantly increased under FlhD4C2 overexpression condi-
tions. Conclusively, flhDC expression decreased in the presence of
excess RflM, and FlhD4C2 autoregulation was completely abol-
ished in an rflM deletion background.

Flagellar synthesis is dependent on a hierarchy of three tran-
scriptional promoter classes, with the master regulator, FlhD4C2,
at the top. FlhD4C2 is a known DNA binding complex that has
been shown to bind to the �40 to �80 regions of multiple flagellar
operons (42, 43) and together with �70 targets RNA polymerase to
transcribe class 2 flagellar promoters (44). FlhD4C2 allows expres-
sion of the subsequent flagellar genes (under the control of the
FlhD4C2-dependent class 2 promoters) needed for hook-basal-
body assembly. The presence of functional FlhD4C2 thereby plays
the main role in determining whether or not flagella are synthe-
sized. Accordingly, negative feedback between the FlhD4C2 pro-
tein and flhDC operon expression would prevent the cell from
synthesizing an excess of flagella. Overexpression of flhDC has
previously been described to turn off flhDC operon transcription
and was attributed to a direct inhibition of the flhDC operon by
the FlhD4C2 complex (13). It was unclear, however, whether this
inhibitory function was direct or indirect. Thus, we designed a
genetic selection and screen to differentiate between two possibil-
ities: in addition to the known role of FlhD4C2 as a transcriptional
activator of flagellar class 2 promoters, FlhD4C2 could either act as
a direct repressor of its own (flhDC operon) transcription or as an
activator of an unknown repressor of flhDC operon transcription.
Our results support the latter possibility.

The identification of an FlhD4C2-dependent flhDC regulator
allows us to postulate a novel regulatory feedback loop that ac-
counts for the previously described autoregulation of FlhD4C2.
The loop consists of two mechanisms: (i) FlhD4C2 activates rflM
and (ii) RflM represses flhDC transcription. With this study, we
added a new component to the complex regulatory mechanisms
that controls expression and activity of the flagellar master regu-
lator FlhD4C2. Many environmental and regulatory stimuli are
integrated at the level of �70-dependent transcription of the flhDC
operon. Expression of FlhD4C2 therefore forms the prerequisite
for the initiation of flagellar synthesis by activation of flagellar
class 2 and 3 gene expression. Regulation at the level of flhDC
operon transcription is thus the main target by which flagellar
synthesis is regulated. In this study, we further characterized the
flhDC master operon regulation that is placed on top of the flagel-
lar gene expression cascade. In addition to environmental (exter-
nal) stimuli that control expression of flhDC, an endogenous (in-
ternal) regulation mechanism that directly provides feedback of

FlhD4C2 protein levels exists. An increase in flhDC expression and
the subsequent flagellar synthesis requires a mechanism of coun-
terbalance. Such an effect was previously referred to as FlhD4C2

autorepression (Fig. 6A), which our results show to be a regulatory
feedback loop via RflM. A previous study indicated an additional
role of the RcsCDB system in the RflM-mediated repression of
flhDC (30). The response regulator RcsB has been shown to di-
rectly bind to the flhDC promoter region (23, 24). Accordingly,
different scenarios of RflM-dependent repression of flhDC can be
envisioned, and follow-up experiments are currently in progress
to test the role RcsB in this regulation network. RflM could di-
rectly repress flhDC, while RcsB takes over a supporting role (Fig.
6B). Alternatively, RcsB could directly repress flhDC indepen-
dently of RflM, and both proteins might compete for binding to
the flhDC promoter region (Fig. 6C). Finally, RflM could act as a
corepressor of RcsB (Fig. 6D).

The complexity and the hierarchical structure of the flagellar
system explain the frequency by which endogenous regulation
mechanisms occur. Feedback regulation in the flagellar system
targets multiple levels throughout biosynthesis of the flagellum:
(i) on the level of flhDC gene expression via FlhD4C2-dependent
activation of the LuxR-type repressor RflM, (ii) on the level of
FlhDC protein complex via posttranscriptional repression (FliT
and YdiV) and activation (FliZ) of FlhDC-dependent class 2 gene
expression, and (iii) on the level of flagellar class 3 gene expression
by secretion of the anti-�28 factor FlgM after HBB completion and
positive regulation of flgM translation by FlgN (45–47). In sum-
mary, the following scenario could be envisioned to couple the
assembly process of the flagellum to flagellar gene expression. �70-
dependent class 1 transcription of flhDC leads to formation of the
flagellar master regulatory complex FlhD4C2. FlhD4C2 activates
class 2 gene transcription, as well as that of its own repressor, rflM.
While class 2 products build up the HBB, FliZ activates FlhDC
complex and RflM acts as a repressor of flhDC transcription.
Upon completion of the HBB, the secretion specificity switch re-

FIG 6 Possible models of the regulatory flhDC feedback loop. Panel A shows
the formerly described autoregulatory effect of flhDC, where FlhD4C2 directly
represses flhDC operon transcription. In contrast to this previous model,
FlhD4C2 induces expression of rflM, and the RflM protein acts as a repressor of
flhDC transcription. Repression of RflM might be direct but facilitated by RcsB
(B). Alternatively, RflM might repress flhDC independently of RcsB (C) or act
as a corepressor of RcsB (D).
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sults in secretion of FlgM and FliD, and class 3 gene expression
takes place. Secretion of FliD upon HBB completion allows FliT to
bind FlhDC complex and inhibit FlhD4C2 activity. Reduced activ-
ity of FlhDC decreases expression of rflM and allows a new cycle of
flagellar gene expression and assembly starting with derepression
of the flhDC promoter.
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