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We present a study of the elastic alignment, accompanying director field distortions, and elastic pair

interactions of star-shaped colloids suspended in aligned nematic liquid crystals. We design and

fabricate lithographic colloids, “N-stars”, containing N rod-like protrusions (i.e. “rays” or “arms”) each

having a constant angle between adjacent rays. N-star geometries contain concave regions while

retaining the rotational and mirror symmetries of regular polygonal platelets having N sides. Planar

anchoring of the nematic director at N-star surfaces induces elastic deformations of the uniform

background director, resulting in distinct orientational states and pair interactions that depend upon N.

Director fields around isolated N-stars are characterized using polarized optical microscopy. For each N-

star, we observe long-lived metastable orientational states with accompanying metastable director

configurations, which are topologically distinct from the ground state director field. We develop a

model, based on a superposition of the elastic energy of rod-like inclusions at appropriate angles to the

far-field director, to estimate the energies in both cases. Numerical calculations of the director field

around an individual ray elucidate the effect of azimuthal degeneracy in the anchoring and cross-

sectional shape of the ray. The analytical results agree with the simulations, however, we find that the

total elastic energy must be rescaled to account for weaker anchoring. The long-range elastic pair

interactions between N-stars are probed using optical tweezers and video microscopy. We observe a

distinct multipole depending on whether N is even or odd, which dominates the distance-dependence

for attractive elastic forces between pairs of N-stars. Finally, we discuss assemblies made up of mixtures

of different types of N-stars that display a variety of aggregated states.

1 Introduction

Control over the detailed geometry, composition, and interfa-
cial properties of colloidal particles is providing exciting
opportunities for either their spontaneous or directed
assembly, which may lead to new types of potentially useful so
materials. The advent of colloidal fabrication techniques that
allow for the mass production of a large variety of colloidal
shapes1–8 with high delity has led to a growing appreciation of
the role that geometrical shape may play both fundamentally as
well as in the design or exploitation of such interactions.8–19 For
instance, micron-sized spherical colloids pinned to a uid–uid
interface experience capillary forces mediated by surface
tension, which can induce crystallization at a at meniscus,20,21

whereas elongated colloids at a curved interface experience
aligning torques as well as forces.22–24 In another important
example, entropic depletion interactionsmediated by a solution

of solvated polymers or smaller colloidal particles have been
utilized to design and drive the assembly of a wide-range of
colloidal aggregates having shape-selective structures.8,11–14,19

Along these lines, anisotropic colloidal interactions mediated
by orientational elasticity within nematic liquid crystals (NLCs)
have also received considerable attention.15,25–59 Thermotropic
NLCs are oen composed of rod-shaped molecules that align
parallel to one another while within the nematic phase, whereas
at temperatures above the nematic–isotropic transition TNI in the
isotropic phase, they are randomly oriented. Micron-scale colloids
suspended within NLCs deform the uniform alignment of the
molecules due to the preferential alignment at the curved surfaces
of the colloids (i.e. surface anchoring). The local alignment
direction is oen represented with a vector eld, referred to as the
director eld, n(r), which has unit magnitude (|n(r)| h 1), and
must also be invariant with respect to an inversion, n(r)/ �n(r),
due to the non-polar orientational ordering of NLCs.47 The ground
state is uniform, i.e. n(r) ¼ n0, whereas introducing deformations
of n(r) away from n0 cost elastic energy. These are known to
engender strong, anisotropic interactions when the deformation
elds of two or more colloids overlap. Analogous to the electro-
static forces that act between localized charge distributions,
elastic colloidal interactions exhibit multipolar symmetries at
long-range, such as dipolar and quadrupolar to lowest order.25–28

aDepartment of Physics and Astronomy, University of California-Los Angeles, Los

Angeles, CA 90095, USA. E-mail: clayton.lapointe@unifr.ch; mason@chem.ucla.edu
bDepartment of Chemistry and Biochemistry, University of California-Los Angeles, Los

Angeles, CA 90095, USA
cPhysics Department, University of Fribourg, Fribourg, CH-1700, Switzerland
dCalifornia NanoSystems Institute, University of California-Los Angeles, Los Angeles,

CA 90095, USA

1

Published in " "
which should be cited to refer to this work.

ht
tp

://
do

c.
re

ro
.c

h



For a colloidal particle of a given size, the particular n(r)
conguration surrounding the particle can bemodied through
applying external elds, conning surfaces, as well as altering
the interfacial surface anchoring properties of the colloid.30 In
addition, for a particular type and strength of surface
anchoring, n(r) surrounding isolated colloids, and consequently
their elastic pair interactions, can be altered dramatically
through a small change of the colloids' shape. This was
demonstrated using convex regular polygonal colloids such as
triangular, square-shaped, and pentagonal platelets that
promote planar anchoring of n(r) with no in-plane azimuthal
preference for n(r) at their surfaces,15 an anchoring condition
oen referred to as planar degenerate anchoring.47 On the other
hand, polymer colloidal spheres which display planar degen-
erate anchoring are known to only produce elastic quadrupoles
with this type of anchoring.28,30,35

In this work, we study the shape-induced n(r) congurations
and elastic pair interactions of lithographically fabricated star-
shaped colloids, which we refer to as N-stars. Their geometries
were specically designed to contain regions of concavity while
having the same mirror and rotational symmetries as regular
convex polygons. We characterize n(r) surrounding isolated N-
stars suspended in aligned NLCs using polarized optical
microscopy. Interestingly, N-stars readily form metastable
director congurations, which have not been observed for other
shapes such as regular polygons. Using a combination of
analytical and numerical techniques, we develop a simple
model in which the elastic energy of an N-star as a function of
its orientation can be approximated as a superposition of rods
held at appropriate angles to the NLC's far-eld alignment
direction. In addition, we characterize their pair interactions
using optical tweezers and particle tracking video microscopy.
At large separations, a strong, elastic orientational potential
constrains the orientation of each N-star, whereas at short-
range, near-eld elasticity can induce signicant body rotations
via elastic torques. This near-eld interaction affects the
detailed structure of twoN-stars near contact. Consequently, the
nal colloidal aggregate's structure depends on both the nature
of the long-range pair interaction as well as short-range effects
when two N-stars are close to one another.

2 Experimental
2.1 Lithographic N-star colloid fabrication and dispersion in
5CB

We fabricate three different star-shaped particles (i.e. “N-stars”)
having N¼ 3, 4, or 5 rod-like rays joined to a central core, where
aN¼ 2p/N are the angles between adjacent rays. Within aN-star,
each ray is L ¼ 3.0 mm in length and has a rectangular cross-
section having width w ¼ 0.4 mm and height h ¼ 1.0 mm set by
the thickness of the resist layer during fabrication. The central
core geometry that connects the N rays was designed to be a
regular polygon having N in-plane sides of 0.4 mm, corre-
sponding to the designed width w of the rays. For all three
N-stars, the largest difference from the center to the end of an
ray is very small,z50 nm, well below thez300 nm feature size
of our lithography system and the resolution of our optical

microscope.7 Also, the fabrication process results in some
rounding of corners and edges of the printed features; radii of
curvatures are typically in the range from about 100 to 200 nm
depending on the opening angle of the corner and the distance
between adjacent corners. Different than regular polygons,
which contain convex curvature concentrated at N vertices, a key
feature ofN-star geometries is the presence of concave curvature
at (N � 1) locations where adjacent rays meet near the core in
addition to convex curvature at the rays' ends.

Briey, we describe our protocol used to lithographically
fabricate star colloids and transfer them from an organic
solvent to a NLC.15 First, a release layer consisting of a 28 wt%
solution of SU-8 resin in cyclopentanone (Sigma-Aldrich) is
spin-coated onto a 5 inch Si wafer and so baked resulting in a
1.0 mm thickness. A second 1.0 mm layer of SU-8 2001 (Micro-
chem) resist is spun onto the release layer, so baked, and then
exposed in a 5 : 1 reduction i-line stepper (Ultratech). Aer a
post exposure bake, the wafers are immersed in SU-8 developer,
1-methoxy-2-propyl acetate (PGMEA), and agitated in an ultra-
sonic bath, liing off the cross-linked particles into the devel-
oper. Dissolved SU-8 resin was removed from the suspension by
repeated centrifugation, decanting, and washing with fresh
PGMEA. A small volume of N-star/PGMEA dispersion (z200 mL)
was added to high-purity pentylcyano-biphenyl (5CB) at a 1 : 1
ratio by volume, mixed thoroughly, and placed in a convection
oven evacuated with a rotary pump and held at a temperature
T ¼ 60 �C for at least 24 hours. The low vapor pressure of 5CB
(z0.2 Pa at T ¼ 90 �C)60 and high solubility with PGMEA allows
for the removal of residual PGMEA under vacuum.

Single-crystal nematic cells were assembled using two glass
plates coated with thin layers of rubbed polyimide (PI-2555, HD
Microsystems). Polyimide anchors n(r) parallel to the rubbing
direction with a small out of plane tilt angle z1–2�. The
rubbing directions at the opposing alignment layers were
oriented anti-parallel so that n(r) was uniform throughout the
bulk and dened the direction of the far-eld director n0.
Monodisperse glass beads having 10 mm diameters served as
spacers to dene the cell gap. Sample cells were lled with N-
star/5CB dispersions by capillary action such that the air-5CB
interface traveled either predominately parallel to or perpen-
dicular to the rubbing direction while 5CB was in the nematic
phase. Volume fractions of N-star/5CB dispersions were kept
dilute (�10�5 to 10�4) so that individual particles and isolated
pairs of particles could be readily studied.

2.2 Optical tweezers

We use single beam gradient optical tweezers based on a
647 nm diode laser (Toptica iBeam-Smart-640.5) and an inver-
ted microscope (Nikon Ti-Eclipse/A1R-MP) to assemble collec-
tions of N-stars for interaction studies. Since the beam mode
from the diode is of low quality, we rst spatially lter the beam
using a polarization preserving single mode optical ber. An air-
spaced doublet collimator attached to the ber expands the
beam to a size that slightly overlls the back aperture of the
microscope objective. A rotatable half-wave plate is used to
control the orientation of the linear polarization state of the
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laser. A dichroic mirror directs the beam towards either a 40�
(Nikon Plan Fluor 40� Oil, NA¼ 1.3) or a 100� objective (Nikon
Apo 100� TIRF, NA ¼ 1.49), which are used to both focus the
laser and image the focal plane. A CCD camera (Andor iXon+) is
used to obtain digital video of the eld of view.

The laser polarization is oriented perpendicular to n0 so that
the uniform n(r) ¼ n0 away from a N-star presents an effective
refractive index neff ¼ nt ¼ 1.5. Regions of an N-star having a
refractive index nSU-8 z 1.6 as well as the locations near the rays
of a star with signicant n(r) distortions (1.5 # neff # 1.7) are
drawn into the focus of an optical tweezer since both nSU-8 and
neff are greater than nt.15,61–63 By moving the trap away from a
specic ray using a translation stage, N-stars can be dragged at
average speeds up to roughly 2 mm s�1. Raising the optical
power above z15 mW results in a distorted spot at the focus
due to the optical Fréedericksz effect.62–64 The optical eld
interacts with the local dielectric anisotropy of the NLC and
torques n(r) away from n0. In this case, selective rays of the N-
stars are attracted to the spot with a different overall force
depending on the sense of the n(r) rotation relative to that of a
specic ray.

To study elastic pair interactions, we position isolated pairs
of N-stars to prescribed locations and track their subsequent
motion under elastic forces using video microscopy. Digital
videos are stored on a computer and image analysis routines are
used to measure the positions of both N-stars within each frame
in order to construct trajectories. Due to the complexity of their
shapes, signicant rotations of N-stars about n0 result in
complicated brighteld images that are difficult to deconvolve
using image analysis. We mitigate this by using cells with gaps
(Dz 10 mm) somewhat larger than the lateral size of the N-stars
(lz 5.6 mm). When D� l, the elastic repulsion between each ray
from the top and bottom alignment layers constrains rotations
of theN-stars about n0 so that they lie with all of their rays nearly
parallel to the glass substrates. This facilitates quantitative
tracking of the N-stars' motion using video microscopy over
longer time periods (�hours) than can be accomplished in cells
having larger gaps (�1–10 s). Although this method works for
isolated N-stars, when two or more N-stars are within a distance
� D of each other, in many cases, these nearby N-stars rotate
about n0 to alleviate distortions in the director eld and reduce
elastic energy.

3 Results and discussion
3.1 Shape-dependent elastic alignment and symmetry of
director deformations

Shown in Fig. 1 are microscopy images of N-stars in their
respective ground state congurations suspended in a
uniformly aligned nematic 5CB. As can be seen in Fig. 1a, 3-
stars align such that one ray is parallel to n0 with no accom-
panying distortions due to the planar surface anchoring of n(r)
on SU-8, and the two adjacent rays oriented at 30� to n0 are
surrounded by bright textures. Fig. 1d shows a microscopy
image taken under parallel polarizers with their transmission
axes parallel to n0. In Fig. 1g, we schematically depict n(r)

surrounding the 3-star inferred from images such as the ones
shown in Fig. 1a and d.

Both 3-stars and 5-stars give rise to dipolar n(r) with one ray
parallel to n0, whereas 4-stars induce quadrupolar n(r) defor-
mations with all four rays oriented at 45� to n0 as shown sche-
matically in Fig. 1g–i. These ground state orientations can be
understood by considering the particle's shape, the planar
surface anchoring boundary conditions at the colloid's edges,
and the possible orientations which give at the very least dipolar
symmetry [i.e. at least one horizontal and one vertical mirror
symmetry plane for n(r)].15,46–51 All orientations for which all
planes of n(r)'s mirror symmetry are broken requires an external
torque to act on the uid.46–48 Therefore, this set of orientations
are mechanically unstable, since an elastic torque will tend to
rotate the colloid such that at least one vertical plane of mirror
symmetry exists, leaving only either dipolar or quadrupolar
congurations as possibilities. This process must occur aer
the 5CB solvent is thermally quenched from the isotropic phase
to the nematic phase during sample preparation, and it has
been directly observed using SU-8 triangular platelets in 5CB.15

Similar to N-sided regular polygonal platelets, N-star
geometrical shapes exhibit N-fold rotational symmetry about
the axis passing through the center of the N-star and orthogonal
to all rays. Considering N-star geometry in two-dimensions as
depicted in the bottom rows of Fig. 1 and 2, each N-star displays
N mirror planes parallel to and passing through each of the N
rays. In the presence of a NLC, the dominant multipole of n(r)
deformations, either dipolar or quadrupolar, of both the ground
and metastable congurations follow from these reection

Fig. 1 Optical microscopy images under crossed polarizers (a–c) and parallel
polarizers (d–f) showing isolated N-star colloids in their respective ground states.
N-stars having odd N, such as (a and d) 3-stars and (c and f) 5-stars, align in the
ground state with one ray parallel to n0 and give rise to elastic dipoles with pel k
n0. 4-stars having even N give rise to quadrupolar n(r) deformations in the ground
state and align such that all rays are at 45� to n0 (b and e). (g–i) Schematics of the
ground state director field n(r) (red curves) for each N-star. Dashed lines indicate
mirror symmetry planes of n(r). Scale bar: 5 mm.
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symmetries. N-stars having odd N such as 3-stars lack fore-a
reection symmetry, and therefore, give rise to dipolar n(r),
whereas 4-stars possess this symmetry and quadrupolar
congurations are stable. Following refs. 51 and 54 we refer to
these mirror planes as “vertical”. In three-dimensions, for each
N-star, there is an additional mirror plane passing through the
mid-plane of the particle's thickness. In the subsequent
discussion we omit this mirror plane from the analysis and
consider a two-dimensional system – the mid-plane of the N-
star – since only the mirror symmetry of vertical planes are
broken in our experiments.

Orienting a 3-star such that one ray is parallel to n0 along
with planar anchoring boundary conditions would give a
mechanically stable n(r) conguration similar to the one
depicted in Fig. 1g. The deformations are dipolar with the
elastic dipole moment pel k n0 since the normal of the vertical
plane of mirror symmetry that is broken is parallel to n0.
Another possible ground state orientation for a 3-star would be
the conguration shown in Fig. 2g. The director eld in this
case has a broken-vertical mirror plane with its normal
perpendicular to n0, and therefore, pel t n0. Any other inter-
mediate orientation will give rise to n(r) deformations that
break all planes of mirror symmetry, and must be mechanically
unstable. The same argument applies to N-stars having any N,
with the caveat that for even N, the equilibrium states have
quadrupolar symmetry as shown for a 4-star colloid in Fig. 1h,
and dipolar symmetry for odd N, as is the case for 3-stars and
5-stars shown in Fig. 1g and i respectively.

Just as regular polygons give rise to elastic dipoles for odd N
and quadrupoles for even N,15 N-stars also induce elastic

quadrupoles if N is even and dipoles if N is odd. However,
beyond this qualitative similarity, there are important differ-
ences between the behavior of N-stars and regular polygons. By
contrast to regular polygons, N-stars with odd N rays induce an
elastic dipole moment pel parallel to n0 in equilibrium whereas
odd N regular polygons induce pel orthogonal to n0. Further-
more, for both N-stars having odd N studied in this work, in
addition to an equilibrium ground state in which pel is parallel
to n0, a higher energy metastable state wherein pel is orthogonal
to n0 is also observed. For the even N case (e.g. 4-stars), the
metastable n(r) conguration is also quadrupolar; however, the
N-star orientation is rotated by p/4 relative to the ground state
orientation. For the two dipolar metastable congurations, N-
star body frame orientations are shied by an angle aN/4 (e.g.
p/6 and p/10 for 3-stars and 5-stars, respectively) relative to the
ground state orientation and aN/2 for the quadrupolar N ¼ 4
case. Moreover, the same degree of mirror symmetry of n(r) is
preserved when comparing the ground andmetastable n(r) for a
given N.

For a particular N-star, of the two possible orientational
states and accompanying n(r), the ground state corresponds to
the one that costs less total elastic energy. We have identied
the states shown in Fig. 1 as the lowest energy congurations in
light of their much higher prevalence over the states shown in
Fig. 2. We speculate that the metastable congurations could be
induced by strong shear ows while lling the sample cell as
5CB is within the nematic phase or they may arise when the
dispersion is initially quenched to the nematic phase. Typically,
if a sample cell is lled such that the capillary ow is predom-
inantly perpendicular to the rubbing direction, we nd that
anywhere from 0 to 5% of N-stars are in their respective meta-
stable states aer the ow has ceased, whereas the probability
of observing such metastable states is much less when lling
the cell parallel to the rubbing direction. These higher energy
metastable states remain stable over long periods of time,
indicating that there is a large energetic barrier to transition via
a mechanical rotation of the N-star to the ground state
orientation.

3.2 Model for elastic orientational potential

We estimate the elastic energies corresponding to the observed
equilibrium ground states and metastable orientational states
of N-stars in 5CB using a model in which the n(r) deformations
for a given state are represented as a superposition of rod-like
inclusions held at the same orientations relative to n0 as the
rays of the N-star. For planar anchoring of n(r) along the long-
axis of the rod and making the approximation that the three
independent elastic constants of the NLC are equal to their
average value, the elastic energy Uel as a function of the angle
between the long-axis of the rod and n0, f, can be expressed as,
Uel(f) ¼ 2pKCf2, where K is an average elastic constant of the
NLC and C is the effective capacitance of the rod in units of
length.46,56 In general, the effective capacitance depends on the
dimensions of the rod as well as the distance between the rod
and the conning walls.55,56

Fig. 2 Optical microscopy images showing metastable configurations under
crossed polarizers (a–c) and parallel polarizers (d–f). Metastable states for odd N
[e.g. 3-stars (a, d) and 5-stars (c and f)] align with one ray perpendicular to n0 and
give rise to elastic dipoles with pel t n0. Metastable 4-stars (b and e) are elastic
quadrupoles and orient such that two rays are at 90� to n0. (g–i) Schematics of the
director field n(r) (red curves) surrounding each type of N-star. Dashed lines
indicate mirror symmetry planes of n(r). Scale bar: 5 mm.
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Using N rods to represent the N rays of a given N-star, we
label each ray with an index i, and estimate the total elastic
energy as a sum:

UG;M ¼ 2pKC
XN
i¼1

fi
2; (1)

where fi is the angle between the long-axis of ray i and n0 as
dened in Fig. 3, and the subscripts G andM refer to the ground
and metastable state, respectively. Using the observed orienta-
tions of both ground and metastable states for all three N-stars,
we calculate the elastic energy scaled by 2pKC, uG,M ¼ UG,M/
(2pKC) ¼P

fi
2, for all six observed states and tabulate them in

Fig. 3. Note that uG,M is unitless since KC has units of energy.
Also included in Fig. 3 are estimates for the elastic energies UG,M

in SI units using an expression for the capacitance C of an
individual ray valid for high aspect ratio cylinders,66 C z
L/[ln(2L/a)] z 1.6 mm, where L ¼ 3 mm and the cylinder radius
a ¼ h ¼ 1 mm. For all N-stars, the scaled elastic energy of the
metastable state uM is always greater than that of the ground
state uG within this model. The difference Du ¼ uM � uG is
greatest for 4-stars Du z 2.47, while for 5-stars the difference is
less Duz 0.49, which may result from the increasing symmetry
of N-star shapes with increasing N. These results are in quali-
tative agreement with the experimentally observed relative
probabilities of such states. In our experiments, the presence of
metastable 5-stars is much more likely than 4-stars.

The model includes a number of approximations: (1) elastic
interactions between the rays are neglected, (2) the elastic
energy arising from deformations near the central core is not
included, (3) the one elastic constant approximation, and (4) the
analytical result in eqn (1) is valid for uniform longitudinal
anchoring over the entire surface of the ray.46 For many nematic
liquid crystals, anisotropy of the three independent elastic
constants is signicant at temperatures far from TNI (e.g. for
5CB at room temperature: K11/K33 z 5.8 pN/8 pN z 0.7 where
K11 and K33 are the elastic constants associated with splay and
bend deformations, respectively).65 However, including anisot-
ropy in the elastic constants would only change uG and uM a
comparable amount, assuming that no qualitative features of
n(r) are altered signicantly. Indeed, the director elds we
observe by direct imaging of the ground and metastable state

n(r) for any N-star appear qualitatively similar. Quantitative
predictions of the effects due to (1) and (3) would require
accurate three-dimensional numerical calculations that capture
the complicated geometry of N-stars and the resulting complex
boundary conditions for n(r). We address (4) in Section 3.3
where results for the elastic energy of a rectangular cross-
section ray that agree quantitatively with eqn (1) are discussed.

For each conguration, the stiffness k of the orientational
potential well, Uel(q) ¼ kq2, can be determined by considering
the change in the total elastic energy for a set of N rays rotated
by an angle q as depicted for a 3-star in the ground state in
Fig. 4a. Using eqn (1), and keeping track of the sense of the
rotations (e.g. fi / fi � q, where fi / fi + q, if the i-th ray's
angle relative to n0 increases aer the whole N-star is rotated

Fig. 3 Schematics showing the definition of the angles between each individual ray and the far-field director n0, fi, for both the ground state (left) and metastable
state (right) of eachN-star: (a)N¼ 3, (b)N¼ 4, and (c)N¼ 5. Values for the scaled elastic energies, uG and uM, along estimates for the energies in real units are tabulated
below each schematic as discussed in the text.

Fig. 4 (a) (Left) A 3-star in the ground state configuration. Numbers refer to the
index i used to label each ray and dashed lines denote mirror symmetry planes of
n(r) (red curves). (Right) Following a clockwise rotation by q ¼ p/6 about an axis
perpendicular to n0, all planes of mirror symmetry are broken, and the sense of
the restoring elastic torque Gel is shown with the arrow. The sense of the n(r)
curvature changes when crossing ray 2, which is different than the symmetric n(r)
surrounding the corresponding ray 1 in the metastable configuration as shown
on the left of (b). Rotating a metastable 3-star by q ¼ p/6 counter-clockwise
results in the n(r) shown on the right. Similar to the rotated ground state 3-star
shown in the right hand side of (a), n(r) has no planes of mirror symmetry and a
restoring torque acts with opposite sense to the imposed rotation. A defect would
be necessary to transition from the n(r) shown on right side of (b) to that on the
left side of (a).
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clockwise), we nd Uel f Nq2, and the stiffness k scales linearly
with N. For example, considering a 3-star in the ground state
rotated by an angle q clockwise about an axis perpendicular to
n0, the sum

P
fi

2 in eqn (1) is
P

fi
2¼ 3q2 + 2p2/9. Including real

units, this potential can be written Uel(q) ¼ 6pKCq2 + 4p3KC/9¼
6pKCq2 +U0, where U0 ¼ 4p3KC/9 is the equilibrium elastic
energy at q ¼ 0. Rotations past p/2 (i.e. for q > p/2) should in
principle result in the same energy as a corresponding rotation
q / q � p/2, because of the inversion symmetry of the director
eld.46 However, experiments and simulations on cylindrical
particles in 5CB have shown that rotations past p/2 result in
metastable director congurations all the way up to q z p.55,66

Observations have shown that N-star metastable states are
stable over long time periods (�months) if the sample is stored
without ever heating and melting the NLC solvent into the
isotropic phase. The long-lived stability of the metastable
congurations arises from a topological mismatch between the
director elds associated with the ground and metastable
states. In Fig. 4a, schematic drawings of n(r) show the sense of
n(r) curvature aer rotating the 3-star by 30�. Comparing n(r) for
the metastable conguration on the le hand side of Fig. 4b to
n(r) on the right of Fig. 4a for the rotated ground state shows
that the director eld cannot transition to the ground state n(r)
without introducing a defect and/or possibly rotating out-of-
plane. Furthermore, the sense of the restoring elastic torque in
both cases opposes the imposed rotation and tends to rotate the
3-star back to its original n(r) conguration. In addition to this
topological barrier, there is an elastic potential energy cost that
constrains thermally-activated rotations to be small at all time-
scales. We typically measure orientational uctuations that are
on average less than 1� at room temperature. Again estimating
the order of magnitude capacitance of a singe ray using an
expression valid for a high aspect ratio cylinder,66 C � L/ln(2L/a)
� 1 mm, where the ray's length and radius are L ¼ 3 mm and a ¼
h ¼ 1 mm, respectively. Using a representative value for the
average elastic constant of 5CB, K ¼ 4 pN at T ¼ 23 �C,65 the
stiffness for the metastable branch is of order k � 10�17 J rad�2.
Rotating a metastable 3-star by 30� so that it matches the
orientation of a ground state 3-star would cost DUel � 10�18 J
which is �103 times larger than kBT at ambient temperatures.
We note that if n(r) singularities such as line disclinations or
point defects are necessary to transition from the metastable
branch to the ground state branch, as is the case for externally
torqued axially-symmetric bodies such as cylinders66 and disks59

in NLCs, then the appropriate core energies of the defects would
also contribute to DUel.

3.3 Numerical calculation of the director eld near a ray

In our model of the orientational elastic potential of N-stars, we
use the harmonic, f2 dependence of the elastic free energy of
single rays to calculate the total elastic energies of various
orientational states for different N. The result is valid, within
the one elastic constant approximation, for large f (f � 1), and
has been derived analytically for the case of arbitrarily shaped
bodies with strong planar anchoring of n(r) within an innite
NLC using an analogy to the electrostatic problem of a charged

conductor held at xed voltage in innite free space.46 Lattice
Boltzmann simulations of this problem, which included
anisotropy in the elastic constants, showed slight deviations
from a harmonic potential.66 The presence of a wall that
promotes strong, planar anchoring allows for elastic forces in
addition to torques, yet the f2 dependence of the energy still
holds.55,68 However, as detailed Monte Carlo and molecular
dynamics simulations of cylinders with nite homeotropic
anchoring have shown, the elastic orientational potential of a
non-spherical body is not always harmonic and can depend
upon the locations of bulk defects as well as the nite nature of
the surface anchoring strength.71 Analytical work also suggests
that surface anchoring type and strength can be a crucial factor
in these problems.69,70

In this section, we calculate numerically the elastic free energy
of a ray held at various angles f to n0 using a realistic geometry as
well as more reasonable boundary conditions for n(r), and verify
that the energy is indeed harmonic to large f. The elastic free
energy as a function f is calculated, and the result is used to
determine explicit values for the capacitance per unit length of a
single ray. In particular, we consider a rectangular cross-sectional
rod having widthw¼ 0.5 mmand height h¼ 1 mm immersed in an
NLC with the long-axis of the rod held at an angle f relative to the
anchoring direction on two adjacent plates 5 mm above and below
the rod (i.e. cell gap, D¼ 10 mm).We dene the long-axis of the ray
to lie parallel to the planes of the bounding walls as well as the
x-axis of a right-handed Cartesian coordinate system with the
origin at the center of the ray. Since the long-axis of the rod lies
in a plane parallel to the bounding walls and the anchoring
is planar, we make the assumption that there is no tilt of the
director out of the x-y plane and express the director eld as
n(r) ¼ cos(a( y, z))x̂ + sin(a( y, z))ŷ where a( y, z) is the local angle
between n(r) and the x-axis.

The elastic free energy arising from spatial gradients of n(r)
can be expressed using the Frank–Oseen free energy, which can
be written as

Uel ¼ 1

2

ð
d3r

h
K1ðV$nÞ2 þ K2ðn$V� nÞ2 þ K3ðn� V� nÞ2

i
; (2)

where K1, K2, and K3 are elastic constants for splay, twist and
bend deformations of n(r), respectively.47 Setting all three elastic
constants equal to their average value K simplies the integrand
in eqn (2) to (K/2)[(V$n)2 + (V � n)2]. In terms of a(y, z), eqn (2)
simplies to

Uel ¼ K

2

ð
d3rðVaÞ2: (3)

Minimizing Uel with respect to the functional a gives Lap-
lace's equation

V2a ¼ 0. (4)

We obtain numerical solutions to eqn (4) within the y–z
plane, a( y, z), using a relaxation method on a 300 by 200
square grid. To obtain reasonable spatial accuracy near the
edges of the ray where large gradients of a are expected, the
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grid spacing is dened to be 1/10 of the width of a ray w ¼ 0.5
mm. Periodic boundary conditions are imposed along the y
direction at the boundaries of the grid ( y ¼ �7.5 mm).73 To
simulate the strong, uniform anchoring at the polyimide
alignment layers used in the experiments, xed boundary
conditions for a at the top and bottom wall are dened such
that the angle between n0 and the x-axis is f [a( y, z ¼ 5 mm) ¼
a( y, z ¼ �5 mm) ¼ f]. For comparison, two sets boundary
conditions are used at the edges of the ray: (1) all four edges
promote strong planar anchoring along the long-axis of the
ray, or longitudinal anchoring [a( y, z ¼ �h/2) ¼ 0, for �w/2 #

y # w/2 and a( y ¼ �w/2, z) ¼ 0 for �h/2 # y # h/2] as shown
schematically in Fig. 5a and (2) longitudinal anchoring on the
two vertical side walls of the ray [a( y ¼ �w/2, z) ¼ 0 for �h/2 #

y # h/2] and degenerate planar anchoring on the top and
bottom horizontal surfaces of the ray, which is a more accurate
representation of the boundary conditions in the experimental
system (Fig. 5b).

Calculations are initiated using a uniform solution, a( y, z) ¼
f, and a simple checkerboard updating scheme in which the
local solution at every lattice point is replaced with the average
of the four nearest neighbors was implemented to iteratively
relax the solution.72 Roughly 2 � 104 iterations are needed to
achieve 0.1% accuracy in the convergence of the elastic free
energy per unit length Uel/L. To monitor the convergence of the
solution, every 103 iterations, Uel/L is evaluated by numerical
differentiation of a, and subsequently integrated over the y–z
plane excluding the area of the ray. In Fig. 5c and d, false color
plots of a( y, z) with f ¼ p/2 for both sets of boundary condi-
tions are shown. Comparing the plots in Fig. 5c and d, a clear
consequence of allowing for azimuthal degeneracy in the
surface anchoring on top and bottom edges of the ray is that
there are signicantly less deformations of n(r) near those
edges, whereas for the longitudinal case the n(r) distortions
propagate in all directions away from the ray.

The elastic energy per unit length Uel/L as a function of f is
determined from solutions a( y, z) at various f (Fig. 5e) with the
average elastic constant K ¼ 4 pN. For longitudinal anchoring,
Uel/L (squares) is larger than Uel/L for degenerate anchoring
boundary conditions (circles) at all f > 0. Both are harmonic up
to f¼ p/2 in light of the high quality ts to a quadratic potential

Uel/L ¼ 2pK(C/L)f2, (5)

where C/L is the capacitance per unit length. Using C/L as the
only free parameter in the ts shown in Fig. 5e, we obtain C/Lz
0.181 and C/L z 0.151 for longitudinal anchoring and degen-
erate planar anchoring, respectively. To estimate the stiffness
k¼ 2pKNC of the orientational potential well for a 4-star, we use
C/L¼ 0.151 for a single ray,N¼ 4, L¼ 3 mm, and nd k¼ 2pKNC
z 4.55 � 10�17 J rad�2. The discrepancy between C/L for
longitudinal anchoring and C/L for degenerate planar
anchoring could be larger if end effects and elastic interactions
between the rays were taken into account. More sophisticated
numerical methods in three dimensions, such as Landau-de
Gennes free energy minimization67 or lattice Boltzmann simu-
lations,66 would be necessary to fully understand these effects.

3.4 N-star elastic interactions

At long range, the separation dependence of the elastic inter-
actions between pairs of N-stars should follow from the
symmetry of n(r) deformations surrounding each isolated
particle. We test this by positioning pairs of N-stars such that
the attraction along their center-to-center separation vector R is
a maximum. The optical tweezers are turned off and the motion
of the N-star pair under elastic forces is determined by taking
digital video. To provide contrast in the microscopy images, we
place the sample between crossed polarizers and observe the
bright birefringent textures from the rays having n(r) distortions
on top of a dark background.

Fig. 5 Numerical solutions for n(r) around the rectangular cross-section ray of an N-star using two sets of boundary conditions on the rays edges (width w ¼ 0.5 mm
and height h ¼ 1 mm). Cell gap D ¼ 10 mm. (a) Longitudinal anchoring on all four edges of the ray, and (b) longitudinal anchoring on the two vertical edges of the ray
and degenerate planar anchoring on the top and bottom edges. Strong anchoring is enforced at the top and bottom boundaries. (c and d) False color plots of results for
the angle between n(r) and the x-axis, a(y, z), for the boundary conditions shown in (a) and (b), respectively. The angle between the ray and n0, f ¼ p/2, in both cases.
(e) Elastic energy per unit length Uel/L as a function of f for longitudinal anchoring (squares), and Uel/L for degenerate anchoring on the top and bottom edges (circles).
Red curves show fit results using a harmonic Uel/L ¼ 2pK(C/L)f2 with K ¼ 4 pN.
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A pair of 3-stars having their elastic dipole moments pel
parallel to n0 were positioned using optical tweezers such that
their center-to-center separation vector R was also parallel to n0.
This particular orientation of R relative to pel results in the
strongest attraction under dipole–dipole forces. Their subse-
quent motion aer being positioned and released was probed
using video microscopy and particle tracking to determine both
3-star's position in every frame. For each frame in a video, our
tracking algorithm rst thresholds the frames appropriately
giving an accurate binary representation of the two N-stars. The
center of mass of the intensity distribution of eachN-star is then
determined to an accuracy of z0.5–1 pixels z 50–100 nm,
which is a small fraction of the lateral size of an N-star.

Signicant attractive forces between two 3-stars occur over
large separations R z 12 mm (Fig. 6a), and they subsequently
come in contact such that the ray parallel to n0 of one 3-star
touches the inner vertex opposite to the ray parallel to n0 of the
second 3-star. We also observe a strong screening of the elastic
force at separations greater than the cell gap R > D z 10 mm as
has been measured for micron-sized spheres in thin cells.41

Interestingly, anti-parallel 3-stars that are aggregated such that
one ray's tip contacts the end of the adjacent ray rotate their
bodies signicantly about n0 due to an effective short range
repulsion between the rays (Fig. 6d), whereas parallel 3-stars
tend to aggregate without as much out of plane twisting at short
range (Fig. 6c). Presumably, this is because the neighboring rays
on opposite 3-stars in Fig. 6c are attracted strongly to each other
whereas for anti-parallel 3-stars there is a repulsion between the
out of focus ray of the bottom 3-star and the upper 3-star's ray
oriented parallel to n0.

In Fig. 6b, a plot of the time dependence of the interparticle
separation R(t) is shown for the two 3-stars in Fig. 6a. While the
elastic force Fel drives the two 3-stars towards each other, uid
ow due to their motion is Stokes-like with a corresponding
Reynolds number that is small, Re � rvL/h � 10�7 where the
density of 5CB, r z 103 kg m�3, and the highest velocities
and viscosities in our experiments are of order v� 1 mm s�1 and

h � 0.1 Pa s. Thus, inertial forces are negligible, and the elastic
force driving their motion, Fel, is balanced by viscous drag, Fd ¼
gdR/dt, where g is the drag coefficient for a 3-star translating
parallel to n0. In addition, the Erickson number, a dimension-
less ratio of viscous to elastic forces, which describes the degree
of coupling between the director eld and hydrodynamic
velocity eld, is small (Er � hvL/K� 1), and consequently, non-
linear drag effects due to coupling between n(r) and shear ows
are also negligible. This is evident from the fact that the bire-
fringent textures around the two 3-stars do not change outside
of small thermal uctuations even while they are traveling at the
highest velocities z2 mm s�1 near contact (Fig. 6a). Moreover,
estimating the Erickson number for a 3-star traveling at 2 mm
s�1 in 5CB we nd Er � 10�2 where we have used the largest
value of the three Miesowitz viscosities for 5CB, h� 0.1 Pa s, K¼
4 pN, and L ¼ 3 mm.

For R k pel, elastic dipole–dipole forces are expected to decay
with separation as a power-law: Fel ¼ k/R4, where k is a constant
that depends on the elastic constants of 5CB, the strength and
type of surface anchoring, as well as the detailed geometry of the
3-star. The equation of motion, k/R4 � gdR/dt ¼ 0, can be inte-
grated analytically to arrive at the solution, R(t) ¼ (R0

5� 5At)1/5,
where R0 ¼ 14.1 mm is the separation between the two 3-stars at
t ¼ 0 and the parameter A ¼ k/g is the ratio of k and the drag
coefficient g. A least squares t using A as the only adjustable
parameter to the trajectory data yields A z (8.4 � 0.2) � 103 mm5

s�1 as shown with the red curve in Fig. 6b. For comparison, an
estimate for A can be obtained using dimensional analysis. In
particular, kmust be proportional to an elastic constant of 5CB K
and a characteristic length L to the fourth power, whereas the drag
coefficient scales linearly with L, g� 2hL, and h is a shear viscosity
of 5CB. Using the average elastic constant of 5CB, K ¼ 4 pN, the
length of one ray of a 3-star Lz 3 mm, and theMiesowicz viscosity
for shear ow predominantly parallel to n0 h z 0.04 Pa s at T ¼
23 �C,78,79 we obtain k� 2KL3/hz 5.4� 103 mm5 s�1 which agrees
qualitatively with the experimentally determined value for A. For
general attractive power-law pair interaction forces, Fel ¼ An/R

n,
where the exponent n is a positive integer greater than 1 and An is
the amplitude, the solution to the equation of motion is R(t) ¼
[R0

n+1 � (n + 1)Ant/g]
1/(n+1). We are unable to t the trajectory data

as well as the case of n ¼ 4 using any other possible n, and, to
demonstrate the larger discrepancy for n s 4, the t results for a
quadrupolar power-law with exponent n ¼ 6 are also shown in
Fig. 6b (dashed curve).

Two 4-stars are expected to interact at long-range via quad-
rupole–quadrupole forces, which provide the strongest attrac-
tion when R is oblique to n0. As shown in a series of video
frames in Fig. 7a, two 4-stars move laterally and R decreases
while the angle between R and n0 approaches z42�. Over the
duration of the last two frames displayed in Fig. 7a, the 4-stars
attract and aggregate when the tips of adjacent rays contact.
Data for R(t) are shown in Fig. 7b along with ts to both a
quadrupolar n ¼ 6 and dipolar n ¼ 4 trajectory. A t to R(t) ¼
(R0

7 � 7A6t)
1/7 using R0 ¼ 11.9 mm gives A6 z 1.4 � 105 mm7 s�1.

Again, using dimensional analysis to estimate the parameter A6
yields A6 � 4KL5/h z 105 mm7 s�1, which also agrees qualita-
tively with the measurement. The value we use for the shear

Fig. 6 (a) Series of video frames showing a pair of parallel, ground state 3-stars
interacting under long-range elastic forces. (b) Data for center-to-center separa-
tion R as a function of time for the 3-stars are shown. Red curve displays fit results
for the expected trajectory of a pair of parallel dipoles and the dashed curve
shows the fit results for a pair of attractive quadrupoles. (c) Image under parallel
polarizers of the final state of the pair of 3-stars in (a). (d) Anti-parallel dipoles
attract strongly when R is orthogonal to n0 and assemble in a highly twisted state.
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viscosity of 5CB, h � 0.04 Pa s, is most likely an under-estimate
since the shear ow is predominantly along a 45� angle to n0. At
short-range, there are a number of possibilities for how 4-stars
assemble together. For example, in the case of the two 4-stars
shown in Fig. 7, the two aggregate with the tips of their rays
touching while in other cases we observe aggregated states with
adjacent rays interlocking.

In Fig. 8a, a series of video frames show two 5-stars oriented
such that pel is anti-parallel and R is approximately orthogonal
to n0. Aer release from the optical trap, the two 5-stars attract
while moving laterally to one another resulting in the angle
between R and n0 decreasing from z85� to z74� over the
course of their motion. In Fig. 8b, data for the time dependence
of R(t) determined with image analysis is shown along with ts
to the expected R(t) for both a dipolar pair interaction (red
curve) and quadrupolar interaction (dashed curve). The dipolar
R(t) ts the experimental data more reasonably than the quad-
rupolar case and gives a value for A4 z 2350 mm5 s�1 which is
roughly a factor of 2 smaller than A4 found for parallel ground
state 3-stars (A4 z 5.4 � 103 mm5 s�1). This difference could
arise from the fact that pel's are antiparallel for the 5-stars in
Fig. 8 and parallel for the 3-stars in Fig. 6; however, the differ-
ence in shape between 3-stars and 5-stars will result in different
dipole moments and the drag coefficient is larger for 5-stars.

We have also studied the elastic interactions between similar
N-stars in different states (Fig. 9b and e) or different N-stars in
their respective ground states such as ground state quadrupolar
4-star and ground state dipolar 5-star (Fig. 9c and f). In the case
of the metastable 5-star interacting with a ground state 5-star,
the elastic dipole moments of the two particles are orthogonal,
one parallel to n0 and the metastable pel orthogonal to n0, so the
attractive force is largest when the relative position of the two
dipoles are nearly 45� to n0. They assemble in a state with their

rays interlocking and their center-of-mass positions closer (Rz
3.2 mm) than for other assemblies (R typically ranges from 6 to 7
mm aer aggregation). For the quadrupolar 4-star and dipolar 5-
star having pel k n0, strong attraction occurs when R is at a 38–
43� angle to n0 and the two N-stars assemble with adjacent rays
touching and shied laterally by roughly the width of the ray
(Fig. 9a and d). This position overlaps distorted regions near

Fig. 7 (a) Three frames extracted from a video showing two 4-stars that are
positioned such that their center-to-center separation vector R is at a 45 degree
angle to n0. After release, they initially move laterally until R reaches a 42� angle
relative to n0. When R is at z42� to n0, elastic attraction drives them together
such that the tips of adjacent rays touch. Arrows illustrate the direction of the
elastic force acting on each 4-star. (b) Data for R(t) as a function of time (circles)
determined with image analysis on the video shown in (a) when the angle
between R and n0 is approximately 42�. A fit using the expected R(t) for a
quadrupole–quadrupole attraction is shown with the red curve. Dashed line
shows the results of a fit using a dipole–dipole attractive interaction.

Fig. 8 (a) Series of frames extracted from a video showing a pair of anti-parallel
5-stars positioned such that R is perpendicular to n0. After release, the 5-stars
attract and assemble into a stable aggregate such that their adjacent rays contact
end-to-end. (b) A plot of the time dependence of R(t). Fits using the expected R(t)
for a dipolar interaction (Fel� 1/R4) and a quadrupolar interaction (Fel� 1/R6) are
shown with the red and dashed curves, respectively.

Fig. 9 Images of aggregated N-stars made up of (a) a single 5-star and two 4-
star chain, (b) different states and equal N: metastable and ground state 5-star,
and (c) different ground state N-stars: 4- and 5-star. All three assemblies were
formed by positioning the N-stars using optical tweezers such that the angle
between R and n0 results in the largest elastic attraction at long-range. Within
certain combinations of N-star assemblies the rays of adjacent N-stars interdigi-
tate near contact such as the case of a ground and metastable state 5-star (b and
e). Often the tips of adjacent rays contact as for a 4- and 5-star in their respective
ground states as shown in (c and f).
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their rays, which alleviates the deformations lowering the
overall elastic energy. Interestingly, at long-range, a ground
state 5-star approaches a two 4-star chain at an oblique angle of
z30–35� and attracts to a selective ray of the chain at nearly a
45� angle at short-range (R < 8 mm).

4 Conclusions

We have found that concave star-shaped colloids exhibit very
different behavior than convex polygonal colloids when sus-
pended in uniformly aligned NLCs. Micron-scale N-star colloids
having anisotropic, rod-like protrusions, orient their body axes
relative to the alignment direction of a NLC in a manner that
reects the rotational and mirror symmetries of their geome-
tries, bulk elasticity, and the interfacial anchoring properties of
the NLC on their surfaces. In particular, concave N-stars having
odd-N such as 3-stars and 5-stars form elastic dipoles with the
dipole moment parallel to the far-eld director in equilibrium
whereas convex 3- and 5-sided polygons induce elastic dipoles
perpendicular to the director.

In addition to an equilibrium ground state corresponding to
the smallest overall elastic energy, a given N-star can also be
trapped at a different orientation, corresponding to a meta-
stable conguration having higher elastic energy. Whereas such
metastable states are readily observed for concave N-star
colloids, they have not been observed for dispersions of convex
regular polygonal platelets prepared in a similar fashion.
Evidently, the slender rays of N-stars facilitate metastable
congurations and either the metastable states of regular
polygonal platelets are too unstable to be observed at the aspect
ratios (z3–5) studied in ref. 15 or the energy of the metastable
state is much larger than the ground state.

We have characterized the relative elastic energies between the
observed ground and metastable congurations using a simple
model in which the total energy is approximated as a superposi-
tion of the known energy for rod-like inclusions held at appro-
priate orientations. Moreover, themodel allows for estimating the
energy cost for rotations of N-stars away from the global
minimum within the ground state as well as the local minimum
within the metastable conguration. Although elastic deforma-
tions resist a transition to the ground state through a body rota-
tion, an additional topological barrier exists which stabilizes the
metastable conguration. Experiments that probe the orienta-
tional uctuations within a local minimum of the orientational
potential well for various N-stars may provide a micro-scale
measurement of the numerous shear-viscosities of NLCs since the
ow elds for rotating high-aspect ratio rods are known.74,75

Future experiments and calculations could probe how the
relative energies of the metastable and ground state congu-
rations depend upon aspect ratio of the individual rays. For
instance, changing the shape of the rays from prolate to oblate
would result in a geometry similar to that of a regular convex
polygon (at some particular aspect ratio) allowing one to tune
between a concave N-star shape and a convex polygon shape
using one geometrical parameter. For oblate rays, the outer
convex vertices would play a greater role in the overall elastic
energy, and if the aspect ratio is high enough, the ground state

should switch to a n(r)-conguration having pel t n0 similar to
convex polygons, since in the limit of large oblate aspect ratio
the particle shape would essentially be a regular polygon.

Beyond isolated N-stars, we have also studied interactions
between pairs of N-stars using a combination of optical tweezers
and video microscopy. We have found that the mirror symmetry
of n(r) is sufficient to predict the dominant elastic power-law pair
interaction at long range. At short-range, depending upon the
symmetry of theN-stars, the ray of oneN-star tends to interdigitate
between the rays of an adjacent N-star, and penetrate to the
nearby core for N¼ 3, yet not as readily for N¼ 4 or 5. In the case
of two anti-parallel 3-stars that aggregate tip-to-tip, near-eld
elasticity drives out-of-plane rotations, minimizing the distortion
of the nematic director eld, whereas parallel 3-stars assemble tip-
to-core without signicant rotations at short-range. N-star
assemblies having more than two particles can display various
history-dependent low-energy congurations in which adjacent
rays may possibly interlock. In order to understand how these
short-range effects inuence the elastic energy of such complex
assemblies, more sophisticated three-dimensional modeling is
needed. Lastly, we anticipate that driving N-stars in NLCs using
applied elds could result in interesting hydrodynamic effects,
such as dynamic li,76 or elastic and dielectric effects such as
torques induced during a Fréedericksz transition.77
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J. Kotar, D. Babič and I. Poberaj, Phys. Rev. Lett., 2008, 101,
237801.

42 U. Ognysta, A. Nych, V. Nazarenko, M. Škarabot and
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