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Albéri L, Lintas A, Kretz R, Schwaller B, Villa AE. The
calcium-binding protein parvalbumin modulates the firing 1 prop-
erties of the reticular thalamic nucleus bursting neurons. J Neuro-
physiol 109: 2827–2841, 2013. First published March 13, 2013;
doi:10.1152/jn.00375.2012.—The reticular thalamic nucleus (RTN)
of the mouse is characterized by an overwhelming majority of
GABAergic neurons receiving afferences from both the thalamus and
the cerebral cortex and sending projections mainly on thalamocortical
neurons. The RTN neurons express high levels of the “slow Ca2�

buffer” parvalbumin (PV) and are characterized by low-threshold
Ca2� currents, IT. We performed extracellular recordings in ketamine/
xylazine anesthetized mice in the rostromedial portion of the RTN. In
the RTN of wild-type and PV knockout (PVKO) mice we distin-
guished four types of neurons characterized on the basis of their firing
pattern: irregular firing (type I), medium bursting (type II), long
bursting (type III), and tonically firing (type IV). Compared with
wild-type mice, we observed in the PVKOs the medium bursting (type II)
more frequently than the long bursting type and longer interspike
intervals within the burst without affecting the number of spikes. This
suggests that PV may affect the firing properties of RTN neurons via
a mechanism associated with the kinetics of burst discharges. Cav3.2
channels, which mediate the IT currents, were more localized to the
somatic plasma membrane of RTN neurons in PVKO mice, whereas
Cav3.3 expression was similar in both genotypes. The immunoelec-
tron microscopy analysis showed that Cav3.2 channels were localized
at active axosomatic synapses, thus suggesting that the differential
localization of Cav3.2 in the PVKOs may affect bursting dynamics.
Cross-correlation analysis of simultaneously recorded neurons from
the same electrode tip showed that about one-third of the cell pairs
tended to fire synchronously in both genotypes, independent of PV
expression. In summary, PV deficiency does not affect the functional
connectivity between RTN neurons but affects the distribution of
Cav3.2 channels and the dynamics of burst discharges of RTN cells,
which in turn regulate the activity in the thalamocortical circuit.

parvalbumin; reticular thalamic nucleus; firing properties

THE RETICULAR THALAMIC NUCLEUS (RTN) represents a unique
gateway in filtering and sorting sensory information that passes
through the thalamocortical and corticothalamic axis (Jones
1975; Yingling and Skinner 1976; Guillery et al. 1998). On the
basis of its interconnectivity, the RTN is thought to play an
important role in attention and information processing (Crick
1984; Steriade et al. 1987; Villa et al. 1999; Jones 2009;
Halassa et al. 2011). More recently attention deficit disorder
and schizophrenia have also been linked to dysfunction of the
RTN (Behrendt 2006; DeLorey et al. 2011). In all mammals
studied so far, the RTN appears as a thin sheath-like structure

of neurons, topographically located between the cortex and
dorsal thalamus, which is innervated by excitatory collaterals
of the thalamocortical and corticothalamic pathways (Jones
1975). It also receives cholinergic and serotonergic innervation
from the brainstem (Jones 1991). In return the RTN, which is
rich in parvalbumin (PV)-positive neurons, sends GABA-
mediated inhibitory projections to the thalamic relay nuclei
(Jones and Hendry 1989).

PV is a Ca2�-buffer protein that is highly expressed in RTN
neurons (Celio 1990). PV is characterized by a slow-onset
Ca2� binding that generally does not affect the initial ampli-
tude of Ca2� transients but then accelerates the decay phase,
thus often converting a monoexponential intracellular Ca2�

concentration ([Ca2�]i) decay into a biexponential one (Collin
et al. 2005; Lee et al. 2000). The acceleration of the early phase
of [Ca2�]i decay associated with PV activity limits or slows
down the buildup of residual [Ca2�]i in presynaptic terminals,
thus affecting short-term plasticity (Caillard et al. 2000;
Vreugdenhil et al. 2003). The presence of low-voltage-acti-
vated (LVA) Cav3 Ca2� channels allows transient low-thresh-
old Ca2� currents (IT) to trigger low-threshold spikes (LTS)
underlying the burst firing (Huguenard and Prince 1992; Perez-
Reyes 2003). Recently, it has been reported that these IT
currents are present both at the soma and distal dendrites
(Crandall et al. 2010) and that they are tightly regulated
through the competitive interaction with the Ca2�-dependent
small-conductance K� channels (SK) and the sarco(endo)plas-
mic reticulum Ca2�-ATPase (SERCA) (Coulon et al. 2009;
Cueni et al. 2008). All of the above mentioned proteins,
including PV, are important in maintaining Ca2� homeostasis
and conferring phenotypic stability (Schwaller 2012). There is
ample evidence that mutations in (or ablation of) Ca2� signal-
ing components in neurons lead to changes in the remaining
ones with respect to expression levels, localization, and even
change in cell morphology, e.g., of organelles implicated in
Ca2� signaling (Schwaller 2012).

Most RTN neurons fire with a characteristic bursting dis-
charge pattern, but a subpopulation of RTN neurons has been
reported to fire tonically (Contreras et al. 1992; Lee et al. 2007;
Villa 1990). These electrophysiological observations are in
agreement with the morphological observation of the presence
of several neuronal subtypes in the RTN (Clemence and
Mitrofanis 1992; Houser et al. 1980; Jones 1975; Lubke 1993;
Scheibel and Scheibel 1966; Yen et al. 1985). Synchronous
activity of RTN cells is likely to exert a powerful GABA-
mediated inhibition onto the dorsal thalamus and provoke spike
wave discharges that can resonate and result in oscillations
(Steriade et al. 1985, 1987). Thus, the physiological properties
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of RTN neurons have been recognized to play a key role in
spindle rhythmicity (Destexhe et al. 1993; Wang and Rinzel
1993). Our former study reported that loss of PV induced
frequency-dependent increases in GABAergic release (in-
creased short-term facilitation, Caillard et al. 2000; Vreugden-
hil et al. 2003). At the network level PV deficiency was found
to enhance susceptibility to epileptic seizure (Schwaller et al.
2004), thus supporting the hypothesis of PV being involved
in the precise regulation of Ca2� signaling.

The aim of the present work is to determine more precisely how
the activity of RTN neurons is affected by the changes in intra-
cellular Ca2� dynamics provoked by the deficiency of PV. We
investigate in vivo the firing properties of RTN neurons in anes-
thetized wild-type (WT) and PV knockout (PVKO) mice by
means of extracellular recordings. The analysis of the activity of
pairs of RTN neurons recorded simultaneously allows the study of
the functional interactions and addresses whether synchronous
activity between RTN neurons is modified in PVKO mice. Since
the onset of PV expression is strongly correlated with the matu-
ration of neuronal circuits (e.g., in the cerebellum, Collin et al.
2005), it is possible that the absence of PV might also entail
modifications in the connectivity of the “PV-neurons” in the RTN
network. Based on the recent finding suggesting that the propor-
tion between distal and proximal LVA Ca2� channels expression
is critical for the generation and propagation of bursts in RTN
cells (Crandall et al. 2010; Coulon et al. 2009), we performed an
immunohistochemical analysis using a reporter mouse line ex-
pressing enhanced green fluorescent protein (EGFP) under the
control of the PV promoter (Meyer et al. 2002) and immunoelec-
tron microscopy of the RTN to determine the localization of
Cav3.2 and Cav3.3 channels. We show that in PVKO medium
bursting RTN units were prevailing and that there was a general
prolongation of the burst duration. An increase in somatic local-
ization of Cav3.2 channels in the RTN of PVKO mice hints that
this differential channel localization may underlie the different
burst dynamic observed in the PVKO mice. However, no signif-
icant effect on the functional connectivity between RTN neurons
could be observed.

MATERIALS AND METHODS

Mice

PV-deficient (PVKO) mice were originally generated on a mixed
C57Bl/6J � 129/OlaHsd genetic background (Schwaller et al. 1999)
and backcrossed to C57Bl/6J for 10 generations and are thus consid-
ered to be congenic to C57Bl/6J (Moreno et al. 2012); C57Bl/6J mice
thus served as the control WT mice. All animals, including WT ones,
were genotyped by PCR. Mice used for the experiments were between
3 and 5 mo old and weighed 25–30 g. We aimed to minimize the
number of mice and all experiments were performed with the permis-
sion of the local animal care committee (Canton of Fribourg, Swit-
zerland) and according to the present Swiss law and the European
Communities Council Directive of 24 November 1986 (86/609/EEC).
Animals were housed in groups of three to five individuals on a
12:12-h light-dark cycle (light onset at 7 AM) with free access to food
and water.

Surgery and Extracellular In Vivo Recordings

The mice (7 WT and 7 PVKO, 25–30 g of weight) were deeply
anesthetized with an intraperitoneal injection of a mixture of ketamine
(stock 100 mg/ml Ketanarkon; Streuli) and xylazine (stock 20 mg/ml

xylazine; Streuli) at concentrations of 100 mg/kg and 10 mg/kg,
respectively, diluted in saline (0.9% NaCl; B. Braun) such that the
injected volume was 4 �l/g. The withdrawal reflex was regularly
checked, and heart rate was monitored to detect any change in the
depth of anesthesia. Supplementary doses of 2 �l/g ketamine/xylazine
mixture were injected every hour to keep a steady anesthetic state. The
animals were mounted in a stereotaxic apparatus (Stoelting). The body
temperature was maintained using a heating pad set to 37.5°C. Single
glass-coated, platinum and gold-plated tungsten electrodes with im-
pedance between 1–2 M� were used for all recordings. The electrodes
were advanced at the bregma using a motorized Stereodrive stereo-
taxic apparatus (Neurostar). Anterior-posterior and medial-lateral co-
ordinates corresponding to the rostral-medial RTN were 0.65–1.05 mm
from bregma according to the Allen mouse brain atlas (http://mouse.
brain-map.org/). After local opening of the skull, the electrodes were
driven to the surface of the brain using a micromanipulator (Kopf).
The electrodes were then progressively advanced to the depth of the
RTN. Signals from the electrodes were amplified, filtered (400–2,000
Hz), visualized on an oscilloscope, digitally recorded in WAV format
(44,100-Hz sampling rate, 16 bit), and stored for post hoc analysis.
The files were analyzed offline using a spike-sorting program (Ak-
senova et al. 2003; Asai et al. 2005). Up to three cells were detected
from a single electrode. The spike trains were digitally stored for time
series analysis.

Histological and Immunohistochemical Examinations

Following the recording session (3–4 h), electrolytic lesions using
three pulses of 5 �A for 7 s at intervals of 5 s were induced at the
bottom of the electrode track and at the location where the recording
was started when the electrode was retracted. Mice were given a
sublethal dose of 8 �l/g ketamine/xylazine and perfused transcardially
with 50 ml of 0.9% NaCl, followed by 4% paraformaldehyde in 0.1 M
phosphate buffer. Brains were removed after perfusion and cut at
50-�m thickness with a vibratome (Leica). Sections were mounted on
two parallel slide series for cresyl violet staining and staining for PV
and specific lectins, which are part of the perineuronal nets around
PV-expressing neurons (Celio et al. 1998). Cresyl violet staining was
used for the reconstruction of the electrode tracks. The immunohis-
tochemistry was carried out using the rabbit anti-PV, PV4064 antise-
rum (1:5,000; Swant, Bellinzona, Switzerland), and the labeling of
lectins was carried out using a Texas Red directly conjugated Wisteria
Floribunda agglutinin (WFA; 1:100; Y-Laboratories). PV was then
visualized using a secondary antibody Alexa 488 donkey anti-rabbit
antibody (Invitrogen). DAPI (Roche) was applied at the end to label
cell nuclei (double-stranded DNA staining; Fig. 1). After track recon-
struction, the recording sites were mapped to the closest coronal
section of the Allen mouse brain atlas. To restrict the analysis of the
LVA Cav3 channels to PV-positive neurons of the RTN, we took
advantage of the PV-EGFP mouse line (Meyer et al. 2002). To label
the EGFP-positive cells we used either the goat anti-EGFP (Rockland)
in combination with the rabbit anti-Cav3.2 (Novus Biologicals, Cam-
bridge, UK) (Toyota et al. 1999) or rabbit anti-EGFP (Invitrogen,
Carlsbad, CA) in combination with goat anti-Cav3.3 (Santa Cruz
Biotechnology, Santa Cruz, CA) (Liu et al. 2011) on vibratome
sections of WT/PV-EGFP and PVKO/PV-EGFP mice.

The secondary antibodies were, respectively, Alexa 488 donkey anti-
goat (Invitrogen) and Cy3 donkey anti-rabbit (Jackson Immunoresearch)
or Alexa 488 donkey anti-rabbit (Invitrogen) and Cy3 donkey anti-goat
(Jackson Immunoresearch). The images were acquired with a TCS SP5 II
confocal microscope (Leica) by 0.4-�m optical slicing of 6-�m slice
depth. We performed the analysis offline using the integrated density
quantification software of the Leica LAS Lite application. The study was
done blind. We restricted our study to regions of interest (ROIs) either on
the soma of the EGFP-positive cells or on the EGFP-positive processes.
Ten ROIs were sampled per RTN on all optical slices from each section.
At least three consecutive sections were analyzed per animal. Expression
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of Cav3 channels was quantified as pixel per micrometers squared on
each optical plane and then averaged for comparison. EGFP expression
was also quantified to control for variability in the staining.

Preembedding Immunoelectron Microscopy

Mice were anesthetized and perfused transcardially with 50 ml of
0.9% NaCl, followed by 4% paraformalde-hyde in 0.1 M phosphate
buffer. Brains were removed after perfusion and cut at 50-�m thickness
with a vibratome (Leica, Germany). Sections were collected in a 12-well
plate containing 0.05 M Tris·HCl-buffered saline (TBS; pH 7.4). The
sections were incubated with a blocking solution containing 10% (vol/
vol) normal goat serum in TBS for 30 min to block nonspecific immu-
noreactivity. Thereafter, sections were incubated with the primary anti-
body Cav3.2 (Novus Biologicals, Cambridge, UK), in blocking solution
overnight for 4 days. The signal was then amplified using biotinylated

secondary antibody, avidin horseradish peroxidase (ABC kit; Vector,
Burlingame, CA). Sections were then incubated at room temperature with
0.05 M Tris·HCl buffer (pH 7.6) containing 0.05% diaminobenzidine
(Roche) and 0.03% H2O2. Once the brown precipitate was clearly visible
in the RTN, the sections were washed two times with TBS and postfixed
with 2% glutaraldehyde in cacodylate buffer and kept in the solution
overnight. The next day they were incubated in 0.1 M phosphate buffer
(pH 7.4) containing 1% (wt/vol) OsO4 for 1 h. Subsequently, the sections
were counterstained with 1% (wt/vol) uranyl acetate in 70% ethanol for
1 h. After dehydration, the sections were mounted on silicon-coated glass
slides and flat embedded in epoxy resin (Durcupan; Fluka). Once the
resin had polymerized, the flat-embedded sections were examined under
a dissection microscope. Two RTN regions were selected from each brain
and cut out with a sharp razor blade. The samples of the selected tissue
pieces were cut into 50- to 70-nm-thick ultrathin sections on an ultrami-
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Fig. 1. Histology, immunohistochemistry, and ex-
ample of recording track reconstruction. Cresyl
violet staining of coronal sections of wild-type (A)
and parvalbumin knockout (PVKO; C) animals at
approximately stereotaxic coordinates interaural
(IA): �0.95 of the Allen mouse brain atlas. A thin
blue line delineates the reticular thalamic nucleus
(RTN) corresponding to the Wisteria Floribunda
agglutinin (WFA)-positive areas shown at bottom.
B and D: double immunofluorescence staining for
parvalbumin and WFA indicates the presence of
RTN interneurons also in the absence of PV. A
thin yellow line delineates the outline of the
WFA-positive area. E: Nissl staining showing 2
reference lesion sites (*) along 1 experimental
electrode penetration (E21). F: coronal sections
(IA: �0.75; IA: �0.88) from the Allen Brain
Atlas corresponding to the Nissl section of E and
reconstructed track of penetration E21 with the esti-
mated locations of the recording sites within RTN.
Scale bars � 1,000 �m in A and 50 �m in B.
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crotome (Ultratome, Reichert-Jung). The ultrathin sections were mounted
onto single-slot grids (4–5 sections per grid) coated with piloform mem-
brane (Agar Scientific, Stansted, UK) and examined with an electron
microscope (CM100; Philips, Eindhoven, The Netherlands).

Statistical Analysis

Spike trains were analyzed by time series renewal density plots
(Abeles 1982). For each histogram, the 99% confidence limits were
calculated, assuming that spikes occurred following a Poisson distri-
bution. The average burst size (ABS) and the bursting index (BI) were
calculated as indicated before (Villa 1990). The Fano factor may be
used to characterize the variability of the spike train, and it is equal to
1 for the data generated according to Poisson processes (Sacerdote
et al. 2006). The firing properties of RTN neurons of both groups of
mice were compared by Wilcoxon rank sum test. Two-way ANOVA
was used to assess whether the genotype had any effect on the
distribution of the firing types. Leave-one-out cross-validation was
utilized to assess significance and the generalized error. Bayesian
inference was used to calculate the predicted values for pairing
combination. Spearman’s rank correlation was applied to assess any
significant correlation between expected and observed values. Statis-
tical analyses (Teetor 2011; R Core Team 2012) were performed with
the R Project for Statistical Computing (http://www.r-project.org/).

RESULTS

Electrophysiological Recordings

In the absence of any specific stimulation, background
activity under steady-state anesthesia was collected from

231 recording sites, 132 for 7 WT, and 99 for 7 PVKO mice.
The recording tracks, crossing through the RTN, were ver-
ified with histological staining and immunofluorescence for
PV and WFA staining. The reactivity for WFA, the perineu-
ronal net marker around GABAergic interneurons (Celio et
al. 1998), confirmed that GABAergic neurons in the RTN
are still viable (Schwaller et al. 2004) despite the lack of PV
(Fig. 1). After electrode track reconstruction, we could
confirm that 67 recording sites along 13 tracks for WT and
51 recording sites along 10 tracks for PVKO mice were
located in the RTN (Fig. 2).

Distinct waveforms recorded from the same location were
considered to be generated by distinct single units. In �85% of
either group of mice we detected more than one single unit at
one recording site in the RTN after waveform-based spike-
sorting discrimination. In only one case in the WT and one case
in the PVKO we could discriminate three distinct single units
at the same recording site. Overall we analyzed the background
activity of 216 neurons, 113 WT from 67 recording sites and
103 PVKO from 51 recording sites. The duration of a record-
ing lasted between 229 and 300 s (on average 284 s). The firing
rates varied between 0.1 and 14.4 spikes/s. We discarded 37
neurons out of 216 from further analysis either because the
spike train contained an insufficient number of events for a
reliable statistics (n � 16 in WT and n � 17 in PVKO with
firing rates below 1 spike/s) or because of an oscillatory pattern
in the autocorrelation (n � 4 in WT, found only at the end of
one experiment at the bottom of the electrode track in the
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Fig. 2. Superimposed coronal sections, made
from the stereotaxic Allen mouse brain atlas
at the indicated distances (in mM) from the
bregma showing the histological reconstruc-
tion of the electrode penetrations in the RTN
of wild-type (WT) and PVKO mice. Elec-
trode tracks are identified by a letter corre-
sponding to the experimental animal. Elec-
trodes with more than one penetration point
are indicated by a second number in the code
(i.e., S11 and S12). Some electrodes are
present in 2 consecutive planes due to the
position of the electrode (i.e., D21). Squares
along the tracks show the recording sites.
Putative location of RTN is highlighted in
yellow.

ht
tp

://
do

c.
re

ro
.c

h



RTN). The whole data sample of RTN neurons was formed by
179 spike trains, 93 in WT and 86 in PVKO mice.

Properties of RTN Neurons in WT and PVKO Mice

The spike train analysis and the visual inspection of the dot
raster plots revealed firing patterns ranging from irregular and
tonic activity to long lasting bursts in both genotypes. From the
179 overall sample of cells we observed that 31 were charac-
terized by autorenewal density curves, thus indicating a non-
bursting firing pattern with tonically isolated spikes following
a Poisson statistical distribution. According to the analysis of
the cat RTN neurons (Villa 1990), this firing mode was labeled
type IV.

The remaining 148 firing patterns were initially character-
ized by the analysis of their ABS. The histogram of the ABS
shows a multimodal distribution, with modes at 2.5, 3.5, and 7
spikes (Fig. 3A). The presence of three modes suggested that
the sample is formed by at least three subsamples that corre-
spond to three different firing modes. According to Villa
(1990) the three firing modes are labeled type I-III, with type
III being characterized by the largest bursts. The criterion to
define the threshold values to apply for an objective definition
of the bursting type was based on the fit of the overall
distribution of ABS by three gamma distributions. These
gamma distributions were characterized by the shape and rate
parameters equal to 17.2 and 7.8, 14.0 and 4.9, and 6.2 and 0.9
for type I, type II, and type III, respectively (Fig. 3C). The
intersection of the descending slope of the gamma fit of type
I with the ascending slope of the gamma fit of type II
corresponded to ABS � 2.6 spikes. The intersection of the
descending slope of the gamma fit of type II with the
ascending slope of the gamma fit of type III corresponded to
ABS � 4.1 spikes. These values were used to select the

exclusion values of ABS equal to 3 and 4 for type I and type
III, respectively.

A similar analysis was performed on the whole sample of
type I-III cells for the BI, which depends on the firing rate and
the number of spikes in a burst. Hence, BI is negatively
correlated to the tendency of a neuron to fire in bursts. The
histogram of the BI shows a multimodal distribution, with
modes centered at 3 and 11 Hz, with a skewed distribution
between the two modes (Fig. 3B). Based on the assumption that
this sample was also formed by a mixture of three populations
we performed a fit of the overall distribution of BI by three
gamma distributions. The shape and rate parameters of the BI
gamma distributions were equal to 3.9 and 0.3, 7.7 and 2.1, and
6.3 and 3.8 for type I, type II, and type III, respectively (Fig.
3D). The intersections between the gamma distributions cor-
responded to BI � 2.5 and BI � 6.0 Hz.

In summary, types I, II and III were defined by an increasing
bursting activity and type IV by firing no burst spontaneously
(Table 1). The criteria previously used for cat RTN (Villa
1990) were adapted as follows.

Type I. This type of neuron fired single spikes with some
tendency to fire in very short burst (Fig. 4A). The neurons that
had less than three spikes in a burst (ABS) and a BI � 6 Hz
were classified as type I. The Fano factor was equal to 1.9 on
average (�0.1 SE) for either group of mice.

Type II. This type of neuron fired medium bursts consisting
of approximately spikes per burst (Fig. 4B). They were clas-
sified on the basis of the nontype I-III criteria (Villa 1990) and
were characterized by a Fano factor equal to 2.3 on average
(�0.1, SE).

Type III. This type of neuron fired larger bursts (Fig. 4C).
They were characterized by an ABS 	 4 and a BI 
 3 (Table
1) and a Fano factor equal to 3.2 on average (�0.3 SE).
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Type IV. This type of nonbursting neuron fired tonically
isolated spikes with a refractory period of 5 ms (Fig. 4D).
This firing dynamics is close to a random renewal process
and was characterized by an average Fano factor equal to
1.2 (�0.1 SE).

The firing rates were not significantly different between the
four firing types, but we observed a tendency of higher rates of
discharges in the PVKO vs. WT (Wilcoxon rank sum test,
W � 3,474, ns). The average burst duration was very similar

between neuronal types within the same genotype. However, in
the absence of PV there was a consistent and significant
increase in the burst duration in all neuronal types (Table 1)
compared with WT (Wilcoxon rank sum test, W � 3783, 2
P 
 0.001).

The significance of the overall distribution of the RTN firing
types was assessed by a two-way ANOVA. The first factor (4
levels) is the firing type (i.e., types I, II, III, and IV), with
repeated measures (n � 7) obtained by leave-one-out cross-

Table 1. Spontaneous activity parameters of the RTN units

Type/Genotype N
Firing Rate,

spikes/s
Average Burst
Duration, ms

Average Burst Size,
spikes

Bursting Index,
Hz

Intraburst
Frequency, Hz

I
WT 22 (24%) 3.6 (4.2 � 0.5) 50 (54 � 6) 1.5 (1.7 � 0.1) 11.0 (13.9 � 1.7) 33 (37 � 5)
PVKO 16 (19%) 4.4 (4.4 � 0.4) 63 (73 � 9) 1.7 (1.7 � 0.1) 11.8 (15.6 � 2.6) 27 (26 � 2)

II
WT 34 (37%) 2.4 (3.2 � 0.3) 45 (44 � 3) 3.0 (3.0 � 0.2) 3.1 (3.1 � 0.2) 72 (83 � 7)
PVKO 48 (56%) 3.1 (3.8 � 0.3) 70 (77 � 6) 2.9 (2.9 � 0.1) 4.2 (4.0 � 0.2) 41 (50 � 4)

III
WT 19 (20%) 3.8 (4.0 � 0.4) 50 (62 � 7) 5.6 (7.1 � 0.8) 1.4 (1.5 � 0.1) 146 (136 � 14)
PVKO 9 (10%) 4.1 (5.3 � 0.9) 75 (82 � 13) 6.4 (6.1 � 0.6) 2.1 (2.0 � 0.2) 83 (81 � 6)

IV
WT 18 (19%) 2.7 (3.5 � 0.8) 5* (6 � 1) — — —
PVKO 13 (15%) 3.2 (3.4 � 0.6) 5* (5 � 0) — — —

Total
WT 93 (100%) 3.1 (3.7 � 0.2) — — — —
PVKO 86 (100%) 3.6 (4.0 � 0.2) — — — —

Spontaneous activity parameters of the reticular thalamic nucleus (RTN) units are grouped by class of bursting (median, means � SE) in normal [wild-type
(WT)] and parvalbumin-deficient (PVKO) mice. For type IV, the average burst duration corresponds to the refractory period. Statistics are described in the text.
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Fig. 4. Representative examples of the 4
firing patterns observed in the RTN. A�D
show the oscilloscope traces of the extracel-
lularly recorded single unit, the autocorrelo-
gram (autorenewal density histogram) with
the firing rate (spikes/s) plotted against the
lag (ms) and a raster plot corresponding to
20 s of activity. Curves are smoothed by a
Gaussian bin of 5 ms. Dotted line indicates
the upper limit of confidence (P 
 0.01)
assuming a Poisson distribution of neuronal
discharges. A: type I cell characterized by a
small hump above the limit of confidence and
an ABS of 
3 spikes (e.g., cell #S11B05nc2,
firing rate � 1.9 spikes/s, Fano factor � 2.0).
B: type II cell characterized by a medium
hump above the limit of confidence (e.g., cell
#A22B05nc1, firing rate � 5.3 spikes/s, Fano
factor � 2.4). C: type III cell is indicated by
a large hump and an average ABS of 	4
spikes (e.g., cell #S11B07oc1, firing rate �
3.9 spikes/s, 812 Fano factor � 5.2). D: type
IV cell shows no hump and has an ABS of 1
(e.g., cell #G21B12nc1, firing rate � 2.4
spikes/s, Fano factor � 1.2). Horizontal full
scale bars of the raster plots correspond to
400 ms.
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validation (Efron 1983), and the second factor (2 levels) is the
genotype (i.e., WT and PVKO). The repeated measures were
not significantly different [F(1,12) � 2.74, ns], thus suggesting
that the sample from a single animal did not influence the
distribution among the firing types. The interaction between
the genotype and the firing types was significant [F(3.36) �
56.72, P 
 0.001]. In the WT group the type II cells (37%) was
the most common type, whereas type I, III and IV cells (24, 20,
and 19%, respectively) were almost equally represented. In the
PVKO mice type II cells (56%) were overrepresented com-
pared with WT, followed by type I (19%) and type IV (15%),
whereas the least represented group was type III (10%; Table
1). This indicates that the absence of PV leads to an increase of
discharges in medium to short bursts at the expenses of longer
bursts, whereas the amount of tonically firing cells tended to
remain unaffected.

The increase of the selective effect on the average burst size
for type II and type III cells pooled together was confirmed by
analyzing the ratio of change calculated as the bin-by-bin
difference between the WT and PVKO histogram of ABS,
presented in Fig. 5. A negative value towards shorter bursts and
a positive value of the ratio of change towards longer bursts
confirm that the absence of PV leads to an increase of dis-
charges in medium-to-short bursts at the expenses of longer
bursts. Moreover, Fig. 5 shows a bimodal distribution of the
rate of change, thus conforming that type II and type III
correspond to two distinct firing modes that are affected in the
same way by the absence of PV.

Cav3.2 Differential Expression in PVKO and WT RTN

We investigated the expression of the LVA Ca2� channels
Cav3.2 (Fig. 6, A and B) and Cav3.3 (Fig. 6, C and D), which
are specifically expressed in the rodent RTN (Talley et al.
1999) and display different activation and inactivation kinetics
(Gomora et al. 2002; Park et al. 2004) associated with the
generation of the bursts of spikes. The somatic expression of

Cav3.2 in WTs (n � 12 sections from 3 mice, 10 ROIs/section)
and PVKOs (n � 12 sections from 4 mice, 10 ROIs/section)
was on average equal to 67 � 3 (means � SE) and 92 � 4
pixels/�m2, respectively. For the dendrites we observed an
expression equal to 57 � 5 and 54 � 3 pixels/�m2 for WT and
PVKO mice, respectively. The difference in the somatic local-
ization of Cav3.2 (Fig. 6, A and B) was statistically significant
(Wilcoxon rank sum test, W � 12, 2P 
 0.001), whereas no
difference was found for the dendritic localization (Wilcoxon
rank sum text, W � 68, 2P � 0.885).

To confirm that the Cav3.2-positive puncta observed in the
immunohistochemistry represent channels that are localized at
active synapses, we carried out immunoelectron microscopy on
RTN tissue using the Cav3.2 antibody. We carried out a
qualitative analysis and imaged a minimum of three areas for
each of the three grids obtained from 2 WT and 2 PVKO RTN
tissues. The 3 images are therefore representative of 18 pic-
tures per genotype. We observed that the Cav3.2-positive
immunoprecipitate was often concentrated at asymmetric axo-
somatic synapses with very little cytoplasmic appearance (Fig. 7,
A and B), whereas symmetric synapses were devoid of any
signal (Fig. 7A). The precipitate was also evident at distal
axodendritic synapses, as expected (Fig. 7C).

The pattern of expression of Cav3.3 channel appeared unal-
tered, and no significant difference was found between WT
(n � 12 sections from 3 mice, 10 samples/section) and PVKO
(n � 12 sections from 3 mice, 10 samples/section) both at
somatic (70 � 7 and 66 � 8 pixels/�m2, respectively) and
dendritic levels (68 � 7 and 59 � 5 pixels/�m2, respectively)
(Fig. 6, C and D).

Interaction Between Pairs of Cells

To assess the functional network connectivity in the RTN we
performed cross-correlation analysis between the spike train of
pairs of cells recorded simultaneously according to the shape of
the cross-renewal densities (CRD) (Abeles 1982). We dis-
carded all cross-correlograms (n � 21 in WTs, n � 21 in
PVKOs) computed with one or both spike trains belonging to
the group of slow-firing rate, because of their insufficient spike
count able to provide a meaningful statistics. Hence, the total
number of cell pairs recorded at the same recording site in WT
and PVKO mice was n � 70 and n � 78, respectively. We
observed that 43 (61%) and 53 (68%) CRD histograms did not
show any significant sign of interaction in WT and PVKO,
respectively (Table 2). The independence of the firing of two
units corresponded to a flat curve, and this class of histograms
was termed “no interaction” (NOI). The most frequent signif-
icant type of interactions was labeled “common input” (CI),
characterized by a symmetrical hump near zero lag, indicating
that the simultaneously recorded cells tended to fire synchro-
nously (Fig. 8). This interaction was observed in 31% (n � 22)
and 31% (n � 24) of the units sampled in WT and PVKO mice
(Table 2). The “other interactions” (OI) group was seldom
observed (n � 5 and n � 1 in WT and PVKO, respectively)
and included CRD shapes characterized by very broad or
unilateral sharp humps.

The interaction between the cell types defined by their
background firing pattern (i.e., type I, II, III, and IV) and the
group of interaction (i.e., NOI and CI) was assessed when
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Fig. 6. Differential expression of Cav3.2 in PVKO RTN. A and B: fluorescence immunohistochemistry using Cav3.2- and EGFP-specific antibodies shows that
Cav3.2 is enriched in the soma of PV-EGFP-positive neurons in PVKO RTN. Close-up captions highlights the somal enrichment of Cav3.2 in PV-EGFP -positive
neurons of PVKO compared with WT mice. C and D: Cav3.3 and EGFP double immunofluorescence shows that there is no detectable difference in Cav3.3
expression between WT and PVKO. Close-up captions show a comparable Cav3.3 distribution in PV-EGFP-positive neurons of the WT and PVKO RTN. The
analysis of Cav3.2 and Cav3.3 was restricted to randomly selected regions of interest either on the cell soma of PV-EGFP-positive cells and PV-EGFP-positive
processes of WT and PVKO specimens. Scale bar in A and C is 50 �m.
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removing the effect of the genotype (�2 � 27.68, df � 6, 2P 

0.001; Table 2). This means that the firing types were not
equally distributed among the interaction groups. Indeed, we
observed that for both genotypes, type I and type IV cells were
associated with NOI, whereas type II and type III were asso-
ciated with CI. This effect is due to the multiple spikes within
a burst that increase the chance of a synchronous activity
between two bursty cells. We observed a significant correlation
(assessed by Spearman’s rank correlation) between the ob-
served and expected cell-type distributions among the interac-
tion groups [WT mice, S � 40.128, P 
 0.001, rs(10) � 0.860;
PVKO mice, S � 16.880, P 
 0:001, rs(10) � 0.941]. This
means that given the sampled cell types and the overall
interaction groups, the observed and expected distributions
were similar. On the whole, the pattern of interactions between
pairs of cells in the RTN of PVKO mice was not significantly
different from that in WT mice indicative of unchanged func-
tional connectivity.

DISCUSSION

The RTN is the gateway of sensory transmission in the
thalamocortical and corticothalamic axes (Jones 1975, 2002). It
consists of a thin sheet of cells surrounding the anterolateral
part of the thalamus, which makes it a difficult target for an
electrophysiological study performed in vivo with microelec-
trode penetrations. The present study presents in vivo record-
ings of RTN neurons in ketamine anesthetized mice, for the
first time to our knowledge. The only other study reporting
in vivo RTN extracellular single unit recording from mice was
performed under pentobarbital and urethane anesthesia (Liao et
al. 2011). In rats, in vivo recordings of RTN neurons were
performed under pentobarbital, urethane, ketamine, or halo-
thane anesthesia aiming primarily to study the comparative
response to nociceptive stimuli in RTN and in the ventropos-
terior lateral nucleus of the thalamus (Yen and Shaw 2003).
Other studies on mouse RTN performed in vivo have reported
results on multiunit activity, local field potentials, and EEG
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Fig. 7. Immunoelectron micrographs confirming the presence of Cav3.2 at asymmetric axosomatic as well as axodenritic synapses in RTN neurons. A: Cav3.2
immunoreactive perikaryon (pink). “b2” Represents a putatively inhibitory bouton, without prominent postsynaptic densities, making symmetric contacts
(arrows); “b1” appear to make asymmetric synaptic contacts (arrowheads, max): myelinated axon. Beside its diffuse nuclear (“N”) and cytoplasmic distribution,
the precipitate also localizes at the thick postsynaptic densities of these asymmetric contacts (arrowhead). B: slightly positive neuronal cell body from a different
sample flanked by a terminal axon giving rise to an en passant bouton (“b”). Note the large dense core vesicles within the presynaptic swelling and the asymmetric
synaptic contact (arrowheads). Cav3.2 immunoprecipitate (*) is located subplasmalemmally and is particularly present at the postsynaptic density. C: detail of
a Cav3.2 immunoreactive dendrite (“D”) contacted by a large bouton (“b”) making multiple asymmetric synaptic contacts (arrowheads). Dense core vesicles
within the bouton (*) and immunopositive postsynaptic densities (arrowheads) are visible. Cell body or dendrites of RTN neurons are colored in violet,
asymmetric boutons in blue, the symmetric bouton in yellow, and myelinated axons in green. Scale bar in A and B � 2 �m. Scale bar in C � 1 �m.

Table 2. Observed and theoretical distributions of the RTN cells

Type I Type II Type III Type IV

Genotype NOI CI OI NOI CI OI NOI CI OI NOI CI OI

WT (n � 70)
Observed 12 3 0 11 10 4 4 8 1 16 1 0
Expected 9 5 1 15 8 2 8 4 1 11 5 1

PVKO (n � 78)
Observed 13 1 0 30 16 1 3 6 0 7 1 0
Expected 10 4 0 32 14 1 6 3 0 5 3 0

Observed and theoretical distributions of the RTN cells into classes of interactions for normal (WT) and PVKO mice. NOI, no interaction; CI, common input;
OI, other interactions. Statistics are described in the text.
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(Astori et al. 2011; Halassa et al. 2011). The RTN is charac-
terized by a rather homogenous population of GABAergic
neurons, expressing high levels of the “slow Ca2� buffer” PV
(Celio 1990; Schwaller 2009). Evidence exists (Huguenard and
Prince 1992) that IT currents mediated by the low-voltage Ca2�

channels Cav3.2 and Cav3.3 (Talley et al. 1999) are associated
with the bursts of discharges that characterize most RTN cell
activity. Based on previous observations showing that PV
expression affected the firing properties in the cerebellum
(Servais et al. 2005; Franconville et al. 2011), the hippocampus
(Vreugdenhil et al. 2003), and the neocortex (Schwaller et al.
2004), we addressed the question, whether the absence of PV
also influences the firing properties of RTN neurons.

Four Firing Types Characterize the Mouse RTN

Based on the histological reconstruction of the electrode
penetrations and recording sites we could analyze overall 179
spike trains of cells whose location was attributed to RTN.
Like any extracellular electrophysiological study we should
consider a potential source of error in the identification of the
precise coordinates of the recording site. Taking into consid-
eration tissue retraction during the histological procedure, the
cutting plane during brain sectioning, individual brain differ-
ences with respect to the reference atlas, and the transients in
the electric field that can be detected from tungsten electrodes
with an impedance of 1–2 M�, it appears reasonable to
estimate that in our study the coordinates of a recording site
can be reconstructed with an approximation in the order of
�40 �m. RTN is a curved structure and even minor mistakes
in the electrode track reconstruction may lead to a mistaken
attribution of a cell location, in particular in a small brain such
as the mouse brain. In the absence of any external stimulation
(i.e., “spontaneous activity”) we observed cells firing in short
irregular discharges (24%, type I) and in bursts (57%, type II
and type III) and tonic activity following a Poisson distribution
(19%, type IV). Because of the above-mentioned uncertainty
associated to the precise reconstruction of the recording sites,
we cannot discard that some of the units belonging to the RTN
sample were recorded at the border of the nucleus and might
belong to the neighboring areas. In spite of the fact that we
discarded all cells whose location appeared ambiguous during
the histological reconstruction we must assess the possibility
that some of the firing types reported here might refer to cells
not belonging to the RTN. Nevertheless, it is interesting to
notice that the proportions of the firing types reported in this
study are similar to those reported in the RTN of the anesthe-
tized cat (Villa 1990).

The tonically firing neurons represent the smallest popula-
tion in the mouse RTN as observed also in the cat and in rat
(Contreras et al. 1992; Domich et al. 1986; Lee et al. 2007;
Villa 1990). Interestingly, we found only four cells character-
ized by an oscillatory firing pattern in WT and none in PVKO
mice. This observation could be explained by the use of the
anesthetic drug ketamine, a noncompetitive N-methyl-D-aspar-
tate (NMDA) receptor antagonist (Gunduz-Bruce 2009) that is
likely to affect the specific NMDA currents in PV-positive
interneurons (Korotkova et al. 2010). In contrast to the previ-
ous study of in vivo recording in the RTN by Liao et al. (2011)
we observed lower firing rates (on average, 3.7 vs. 8.6 spikes/
s). In addition to the differences in the anesthetic procedures
mentioned above, our studies differed in the type of electrodes
that were used, in the sorting procedure of the waveforms of
the electrophysiological signals, and in the sample size (n � 93
in this study vs. n � 17).
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Fig. 8. Auto- and cross-renewal density histograms of a cell pair of type II units
recorded in WT (A�C) and a cell pair of type II units recorded in PVKO
(D�F) mice. Notice that both pairs (C and F) show a correlogram character-
ized by a hump centered near lag zero, typical of the common input (CI) type.
Curves are smoothed by a Gaussian bin of 5 ms. Dotted line indicates the upper
limit of confidence (P 
 0.01) assuming a Poisson distribution of neuronal
discharges. A: autocorrelogram of cell #I22B15oc1 (firing rate � 5.0 spikes/s,
Fano factor � 2.5). B: autocorrelogram of cell #I22B15oc2 (firing rate � 2.1
spikes/s, Fano factor � 2.0). C: cross-correlogram assuming cell #I22B15oc2
firing after cell #I22B15oc1 for the positive scale of the lag axis and cell
#I22B15oc1 firing after cell #I22B15oc2 for the negative lag axis. D: auto-
correlogram of cell #Z12B03oc1 (firing rate � 3.0 spikes/s, Fano factor �
2.2). E: autocorrelogram of cell #Z12B03oc2 (firing rate � 1.5 spikes/s, Fano
factor � 1.4). C: cross-correlogram assuming cell #Z12B03oc2 firing after cell
#Z12B03oc1 for the positive scale of the lag axis and cell #Z12B03oc1 firing
after cell #Z12B03oc2 for the negative lag axis.
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The frequency of bursting neurons (type II and type III) was
increased in PVKO mice (66 vs. 57%) at the expense of both
irregular (type I) and tonic (type IV) firing. Immunohistochem-
ical analysis of a PV-EGFP reporter mouse line (Meyer et al.
2002) showed that in the RTN a minority (6% �1) of the
neurons were PV negative (data not shown). It has been
recently proposed that the tonically firing cells are character-
ized by a lower responsiveness to low Ca2� currents, IT (Lee et
al. 2007), possibly due to a large difference in the distal vs.
proximal distribution of the LVA channels Cav3.2 and Cav3.3,
(Crandall et al. 2010), or due to the lack of Cav3.3, which is
essential for LTS (Astori et al. 2011). On the whole it appears
that this cell population has physiological properties that are
distinct from the bursting types and are independent of the
presence of PV.

Despite a relatively large sample size we observed a homog-
enous distribution of the different cell types (defined by their
discharge properties) within the mouse RTN, both along the
dorsal-ventral and medial-lateral axes. It is worth mentioning
that our recordings were performed in vivo in the anterior tier
of the RTN (approximately corresponding to the limbic and
somatosensory portion of the nucleus; Jones 1975, 1991),
whereas the studies that defined a spatial organization of
neurons with different firing properties within the RTN were
performed in the somatosensory sector of the rat (Lee et al.
2007) and mouse slices (Lam and Sherman 2011) and in the cat
dorsolateral sector (corresponding to the auditory sector, Villa
1990). Notice that the RTN is abundantly innervated by cho-
linergic fibers that may contribute to modulate the firing
properties of its neurons in vivo (Jones 1991; Villa et al. 1996).
Spatial organization of the rostral and somatotopic sector of
RTN was observed on the basis of its connectivity pattern and
sensory-evoked activity in several species, namely in the rat
(Shosaku et al. 1984; Lozsádi 1994; Pinault et al. 1995), rabbit
(Crabtree 1992), and cat (Crabtree 1996).

Our current knowledge of the RTN indicates that the con-
nections are not the same for each sector (Guillery et al. 1998;
Lam and Sherman 2011) and we do not exclude that the RTN
firing types of the rostral sector of the nucleus may have a
spatial organization, but a detailed and evenly distributed
sample of recording sites should be collected to answer this
question. Our study suggests that different firing types are
present in the RTN; it remains to be understood whether these
are biologically patterned or whether the same cellular type
could fire in different modes according to different arousal or
attentive states.

Medium Bursting RTN Neurons Are Prevalent in the
Absence of PV

The proportion of neurons characterized by a particular
firing type was significantly different in WT and PVKO mice.
The medium-bursting type (type II) was observed more often
(56%) in PVKO than in WT (37%) mice, and correspondingly
type III was less numerous in PVKO (10 vs. 20%). Hence, in
PVKO mice we observed a prevalence of medium size bursts
(�3 spikes) compared with longer bursts (�6 spikes). The
intraburst frequency was lower in PVKO than in WT for both
bursting type of neurons (type II and type III), because for each
type the average burst duration was longer in the PVKO cells,
with a similar number of spikes per burst in WT and PVKO.

This indicates that the lack of PV mostly affects the firing
properties of neurons with characteristic burst discharges. As
reported elsewhere, the number of spikes in a burst is corre-
lated with the magnitude of IT currents, while the spike interval
is set by the time to reach the maximal Ca2� amplitude in a
burst (Perez-Reyes 2003).

In RTN neurons the bursting activity is associated with the
hyperpolarization-activated LVA channels. Indeed in RTN
neurons from Cav3.3 KO mice (Astori et al. 2011), IT currents
are reduced by �80%, and the bursting properties are almost
completely abolished. Moreover, apamin-sensitive currents
mediated by SK2 were dramatically reduced in Cav3.3 KO
mice, indicating that Cav3.3 channels, characterized by slower
activation and inactivation kinetics compared with Cav3.2, are
required for the coupling between T and SK2 channels in RTN
neurons. Both, fast and slow Ca2� buffers (BAPTA and
EGTA, respectively) block the apamin-sensitive SK currents in
RTN neurons without affecting IT currents (Cueni et al. 2008).
In a model of striatal fast spiking interneurons (Bischop et al.
2012), a reduction in Ca2� buffering by PV leads to an
increased firing rate associated with altered activation of SK
channels, thus suggesting that a similar phenomenon may take
place in the PVKO mice. Hence, we expect that PV has a
comparable impact on RTN neurons’ SK currents.

Our in vivo recordings showed that in PVKO mice a higher
proportion of RTN neurons was characterized by a firing mode
with medium (type II) rather than long (type III) bursts. This
might be caused either by the absence of PV or by the
homeostatic compensation mechanisms underlying the altered
cellular distribution of Cav3.2. Interestingly, the firing pheno-
type of PVKO RTN neurons showed large similarities to the
one seen in Cav3.2 KO neurons (Liao et al. 2011): the burst
duration was increased, caused by a larger interval between
spikes, without affecting the spike number within a burst.
Ablation of the Cav3.2 channel, a LVA channel type charac-
terized by fast activation and inactivation kinetics (Kozlov
et al. 1999), provokes IT to be mediated by the “slower”
variant, Cav3.3, hence leading to the observed phenotype. The
increase in burst duration for type II and III neurons from
45–50 to 70–75 ms observed in PVKO could be due an
increase in time necessary to reach maximal [Ca2�]i. It has
been shown that in Cav3.3 KO mice a reduction in IT currents
provokes a reduction in the number of spikes per burst (Perez-
Reyes 2003), which would correspond to a switch from type III
to type II (as observed in PVKO mice). It appears, however,
unlikely that this effect results from the absence of PV Ca2�

buffering, because IT currents were unaffected in RTN neurons
even with a blockade of SK currents by high BAPTA concen-
tration (5 mM) (Cueni et al. 2008). Hence, the reduction in the
number of spikes per burst in PVKO neurons could be due to
a decreased IT associated with PV-induced remodeling rather
than a direct effect of the absence of PV.

Cav3.2 Are Enriched in the Somatic Region of PVKO RTN
Neurons

Based on the commonalities of the PVKO and Cav3.2 KO
phenotype (Liao et al. 2011) with respect to RTN bursting
firing properties we investigated the possibility that in the
absence of PV alteration in Cav3.2 and Cav3.3 channel distri-
bution and/or expression may occur in RTN neurons. To
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restrict our analysis to “PV-ir” RTN neurons also in the
absence of PV, we took advantage of a transgenic mouse line
that expresses EGFP under the control of the PV promoter
(gene symbol: Pvalb) (Meyer et al. 2002). In PVKO mice,
Cav3.2 but not Cav3.3 was enriched in somatic regions,
whereas the dendritic distribution of both channel types ap-
peared unchanged in PVKO mice.

Immunoelectron microscopy on RTN sections revealed that
the somatic puncta, observed by confocal microscopy, are
likely to represent active channels located at synapses and not
proteins trafficked in recycling endosomes or de novo synthe-
sized/modified at the endoplasmic reticulum/Golgi compart-
ments. The Cav3.2-positive immunoprecipitate was concen-
trated at axosomatic and axodendritic synapses with very little
cytosolic localization. Thus a higher density of somatic Cav3.2
channels is expected to modify the spatiotemporal aspects of
somatic and possibly dendritic Ca2� signals of PVKO RTN
neurons. This, in turn, may affect the kinetics of activation of
SK channels as well as Ca2� uptake and extrusion systems.

Another possibility is that a putative reduction in dendritic
vs. somatic expression of Cav3.2 favors the activation of the
slower Cav3.3 channels in dendrites leading to a situation
resembling the one reported in the Cav3.2 KO mice (Liao et al.
2011). Altogether in KO mice for the various Ca2� signaling
components, Cav3.2, Cav3.3, SK2, and PV, the firing properties
of those neurons are profoundly affected. It remains to be
clarified whether the effect on the distribution of the Cav3.2
channels is a direct consequence of PV loss or an indirect effect
as a result of the altered [Ca2�]i dynamics in the absence
of PV.

Effect of the Preparation on Firing Synchronicity

Simultaneous activity of neighboring pairs of neurons can be
recorded by the same microelectrode by means of spike sorting
(Lewicki 1998). We observed that about two-thirds of the
neuronal pairs, in both WT and PVKO mice, showed no sign
of interaction in the cross-correlograms. The remaining third of
interactions showed signs of synchronous firing, characterized
by a curve with a symmetrical hump near lag zero, a proportion
similar to the one previously reported in the RTN of the cat
(Villa 1990). Of note the cell types involved in the synchro-
nized correlograms tended to belong to the bursting cells (type
II and type III) more often than expected on the basis of an
independent sampling. The shape of the autocorrelograms of
the cells making up the pair may affect the shape of their
cross-correlogram (Knox and Poppele 1977; Eggermont 1990).
The firing rate of the recorded neurons (3–4 spikes/s) decreases
the chances of an artefact due to a misidentification of the
overlapped spikes associated to the spike sorting procedure
(Bar-Gad et al. 2001) and increases the likelihood that the
firing synchronicity reveals a functional connection associated
to a common input projecting to the neurons making up the pair
(Aertsen and Gerstein 1985).

In WT mice anesthetized with ketamine, it was reported that
synchronicity was decreased in the cerebellum, whereas in
mice lacking other Ca2�-binding proteins (i.e., calretinin and
calbindin D-28k) an increase in simple-spike rate of Purkinje
cells with respect to WT was observed, accompanied by faster
and amplified rhythmicity (Cheron et al. 2004; Servais and
Cheron 2005). It is important to discuss whether the absence of

modification in the firing synchronicity that we observed be-
tween pairs of RTN cells in PVKO with respect to WT is due
to the anesthetized preparation. In a comparative study of the
effects of various general anesthetics in mice, it was indicated
that the combination of ketamine and xylazine is considered
the most reliable for anesthesia of mice, despite that respiration
was moderately decreased and the cardiovascular system was
strongly depressed (Erhardt et al. 1984). With the use of
combined simultaneous in vivo intracellular and extracellular
recording techniques, it was observed that ketamine/xylazine
anesthesia induced slow oscillations (in local field potentials in
the olfactory bulb and piriform cortex as well as in pyramidal
cell membrane potentials in the piriform cortex) that are
correlated with the natural breathing cycle of the rat and
therefore appear to be directly related to ongoing periodic
patterns of afferent input linked to respiration (Fontanini et al.
2003). There is evidence that ketamine at doses comparable to
ours (ketamine; 50 mg/kg) increases hippocampal activity in
rat CA1 and delta oscillations as a result of input from the
thalamus (Zhang et al. 2012). Anesthesia induced by ketamine/
xylazine in mice showed different regional effects in the
thalamus (Kim et al. 2012), i.e., that the ventral lateral thala-
mus Granger-caused the primary motor cortex and the primary
somatosensory cortex, whereas the primary somatosensory
cortex consistently Granger-caused the ventrobasal thalamus,
regardless of the loss of consciousness.

The absence of increased synchronicity in RTN of PVKO
compared with WT that is reported in the current study is also
in agreement with the fact that PVKO mice do not present
spontaneous epileptic seizures but an increased susceptibility
to epileptic seizures (Schwaller et al. 2004). A series of
classical studies on the cat’s spindling activity RTN cells were
recorded under ketamine/xylazine anesthesia (Contreras and
Steriade 1995, 1996) and showed spontaneous burst firing with
rather weak synchrony within the frequency range of spindles.
In those studies the stimulation of the motor cortex induced
stronger spindling oscillation that was synchronous among the
pair of RTN cells recorded simultaneously. The prolonged
hyperpolarizations, either spontaneous or stimulus elicited, are
effective in setting the scene for widespread synchronization in
thalamocortical networks. In PVKO we observed indeed an
increase in average burst duration of RTN neurons setting the
condition for an increased susceptibility to spindling oscilla-
tions without the need of an increase in spontaneous synchron-
icity. Despite the limitation of a study with an anesthetic model
like ours, we suggest that our ketamine/xylazine anesthetized
preparation did not alter the significance of the comparison of
RTN synchronicity between PVKO and WT mice.

Functional Connectivity of RTN Neurons Is Unchanged in
PVKO Mice

Our results show that functional connectivity appears to be
unaffected by PV ablation, and the question arises whether the
common source of input to firing synchronicity, whenever
observed, lies within RTN or comes from an external input. It
is known that RTN is characterized by a pattern of collaterals
establishing axodendritic, somatodendritic, and dendroden-
dritic synapses within the RTN (Csillik et al. 2005; Spreafico et
al. 1991; Steriade et al. 1984; Yingling and Skinner 1976).
These collaterals are GABAergic, expressing GABA(�3) as
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opposed to the RTN projections onto the thalamocortical (TC)
cells that express GABA(�3) (Liu et al. 2007; Sohal and
Huguenard 2003). Recent findings have shown that these
collateral synapses within RTN are likely to be much weaker
than the RTN-TC synapses (Lam et al. 2006). Despite the
observation of gap junctions between RTN neurons (Landis-
man et al. 2002), their ability to propagate the activity over the
nucleus is likely to be less important than the dominant form of
reticulo-reticular connectivity driven by axodendritic synapses
(Lam et al. 2006). Therefore, the intra-RTN connections are
likely to contribute marginally to synchronization of cell pairs
during spontaneous activity.

The main sources of common inputs to RTN cell pairs are
the collaterals from the thalamic relay cells and the collaterals
of the corticothalamic fibers. It is possible that pyramidal cell
activity is somehow modified in the PVKO mice because of the
major role played by PV-expressing cortical interneurons on
the shaping of the pyramidal cell output in WT animal (Runyan
et al. 2010; Atallah et al. 2012). However, only a stimulation
paradigm associated to simultaneous recordings in the cortex
and in RTN could provide some answers to that question.
Moreover, the synaptic strength of the corticothalamic collat-
erals is much weaker than the synaptic strength of the thalamo-
cortical collaterals (Liu et al. 2001). In light of our results we
suggest that the positive cross-correlograms showing synchro-
nized activity are the result of the thalamocortical collaterals to
the RTN (Villa et al. 1999; Lam and Sherman 2011). Thus, in
the absence of PV, the functional connectivity of RTN during
spontaneous activity would remain unaffected. This result is in
line with the observation that PVKO mice do not show spon-
taneous seizures (Schwaller et al. 2004), despite the fact that
the thalamus is key in controlling cortical states (Poulet et al.
2012).

Our study suggests that the lack of PV affects the firing
properties and burst discharge dynamics of the main population
of RTN neurons. In addition we observe that PV ablation
affects the somatic vs. dendritic distribution of the Cav3.2
channels, which may contribute to the observed phenotype.
Changes in burst structure are likely to affect the information
transfer gated by the inhibitory feedback projections exerted by
RTN neurons on the thalamic relay cells. The outcome of this
alteration could affect the transthalamic corticortical connec-
tivity (Gollo et al. 2010; Paz et al. 2011; Sherman and Guillery
2011; Theyel et al. 2010; Villa et al. 1999) such to generate an
impaired processing of the information associated to psychiat-
ric disorders (Ferrarelli et al. 2010; Gogolla et al. 2009;
Lawrence et al. 2010; Pinault 2011; Reynolds et al. 2001; Wills
et al. 2011).
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