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Zipf’s law on word frequency and Heaps’ law on the growth of distinct words are observed in Indo-European
language family, but it does not hold for languages like Chinese, Japanese and Korean. These languages
consist of characters, and are of very limited dictionary sizes. Extensive experiments show that: (i) The
character frequency distribution follows a power law with exponent close to one, at which the corresponding
Zipf’s exponent diverges. Indeed, the character frequency decays exponentially in the Zipf’s plot. (ii) The
number of distinct characters grows with the text length in three stages: It grows linearly in the beginning,
then turns to a logarithmical form, and eventually saturates. A theoretical model for writing process is
proposed, which embodies the rich-get-richer mechanism and the effects of limited dictionary size.
Experiments, simulations and analytical solutions agree well with each other. This work refines the
understanding about Zipf’s and Heaps’ laws in human language systems.

ncovering the statistics and dynamics of human languages helps in characterizing the universality, spe-

cificity and evolution of cultures'™">. Two scaling relations, Zipf’s law'’ and Heaps’ law', have attracted

much attention from academic community. Denote r the rank of a word according to its frequency Z(r),
Zipf’s law is the relation Z(r) ~ r~* with o being the Zipf’s exponent. Zipf’s law was observed in many languages,
including English, French, Spanish, Italian, and so on'>'>'°. Heaps’ law is formulated as N, ~ t*, where N; is the
number of distinct words when the text length is ¢, and 2 = 1 is the so-called Heaps’ exponent. These two laws
coexist in many language systems. Gelbukh and Sidorov'” observed these two laws in English, Russian and
Spanish texts, with different exponents depending on languages. Similar results were recently reported for the
corpus of web texts'®, including the Industry Sector Database, the Open Directory and the English Wikipedia. The
occurrences of tags in online resources'**’, keywords in scientific publications* and words in web pages resulted
from web searching® also simultaneously display the Zipf’s and Heaps’ laws. Interestingly, even the identifiers in
programs by Java, C++ and C languages exhibit the same scaling laws™.

The Zipf’s law in language systems can result from a rich-get-richer mechanism as suggested by the Yule-
Simon model****, where a new word is added to the text with probability g and an appeared word is randomly
chosen and copied with probability 1 — g. A word appearing more frequently thus has higher probability to be
copied, leading to a power-law word frequency distribution p(k) ~ k™, where k denotes the frequency and § = 1
+ 1/(1 — q). Dorogovtsev and Mendes modeled the language processing as the evolution of a word web with
preferential attachment®. Zanette and Montemurro® as well as Cattuto et al*® considered the memory effects,
namely the recently used words have higher probability to be chosen than the words appeared long time ago.
These works can be considered as variants of the Yule-Simon model. Meanwhile, the Heaps’ law may originate
from the memory and bursty nature of human languages®>'.

Recent studies revealed more complicated statistical features of language systems. Wang et al** analyzed
representative publications in Chinese, and showed that the character frequency distribution decays exponen-
tially in the Zipf’s plot. Lii et al.*® pointed out that in a growing system, if the appearing frequencies of elements
obey the Zipf’s law with a stable exponent, then the number of distinct elements grows in a complicated way
where the Heaps’ law is only an asymptotical approximation. This deviation from the Heaps’ law was proved
mathematically by Eliazar*. Empirical analyses on real language systems showed similar deviations®.

| 3:1082 | DOI: 10.1038/srep01082 1



Via extensive analysis on Chinese, Japanese and Korean books, we
found even more complicated phenomena: (i) The character fre-
quency distribution follows a power law with exponent close to
one, at which the corresponding Zipf’s exponent diverges. Indeed,
the character frequency decays exponentially in the Zipf’s plot. (ii)
The number of distinct characters grows with the text length in three
stages: It grows linearly in the beginning, then turns to a logarith-
mical form, and eventually saturates. All these unreported phenom-
ena result from the combination of the rich-get-richer mechanism
and the limited dictionary sizes, which is verified by a theoretical
model.

Results

Experiments. We first show some statistical regularities on Chinese,
Japanese and Korean literatures, which are representative languages
with very limited dictionary sizes if we look at the character level.
There are only around 4000 characters being frequently used in
Chinese texts (4808, 4759 and 3500 frequently used characters are

identified in Taiwan, Hong Kong, and mainland China, respectively),
and the number of Japanese and Korean characters are even smaller.
Note that, a Korean character is indeed a single syllable consisting of
2-4 letters. We use the term character for convenience and
consistence, while one should be aware of the fact that the Korean
characters are totally different from Chinese characters: the former
are phonographies while the latter are ideographies.

We start with four famous books, the first two are in Chinese, the
third one is in Japanese and the last one is in Korean (see data
description in Methods and Materials). Figure 1 reports the char-
acter frequency distribution p(k), the Zipf’s plot on character fre-
quency Z(r) and the growth of the number of distinct characters N;
versus the text length ¢. As shown in figure 1, the character frequency
distributions are power-law, meanwhile the frequency decays expo-
nentially in the Zipf’s plot, which is in conflict with the common
sense that a power-law probability density function always corre-
sponds to a power-law decay in the Zipf’s plot. Actually, for a
power-law probability density distribution p(k) ~ k™%, usually, a
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Figure 1 | The character frequency distribution of The Story of the Stone: (al) p(k) with log-log scale and (a2) Z(r) with log-linear scale. The number of
distinct characters versus the text length of The Story of the Stonein (a3) log-log scale and (a4) linear-log scale. Similar plots in (b1-b4), (c1—c4)
and (d1-d4) are for the books The Battle Wizard, Into the White Night and The History of the Three Kingdoms, respectively. The power-law exponent 3 is

obtained by using the maximum likelihood estimation®**”

, while the exponent in the Zipf’s plot is obtained by the least square method excluding the

head (the majority of characters in the head play the similar role to the auxiliary words, conjunctions or prepositions in English). We fit the data r > 500

for Chinese books and r > 200 for Japanese and Korean books.
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power-law decay can be observed in its corresponding Zipf’s plot, say
Z(r) ~ r~* There exists a relation between two exponents o and /3 as

o= **, and when f gets close to 1, the exponent o diverges.

Under such case, we could not say the corresponding Zipfs distri-
bution is power-law. In principle, the Zipfs distribution can be expo-
nential or in other forms. Therefore, if we observe a nonpower-law
decaying in the Zipf’s plot, we cannot immediately deduce that the
corresponding probability density function is not a power law - it is
possibly a power law with exponent close to 1.

Figure 1 also indicates that the growth of distinct characters can-
not be described by the Heaps’ law. Indeed, there are two distinguish-
able stages: In the early stage, N, grows approximately linearly with
the text length ¢, and in the later stage, N, grows logarithmically with
t. Figure 2 presents the growth of distinct characters for a large
collection of 57755 Chinese books consisting of about 3.4 X 10°
characters and 12800 distinct characters. In addition to those
observed in figure 1, N, displays a strongly saturated behavior when
the text length ¢ is much larger than the dictionary size. In summary,
the experiments on Chinese, Japanese and Korean literatures show us
some novel phenomena: the character frequency obeys a power law
with exponent close to 1 while it decays exponentially in the Zipf’s
plot, and the number of distinct characters grows in three distin-
guishable stages (figure 2 also shows the crossover between linear
growth and logarithmic growth).

Model. Text generation was usually described as a rich-get-richer
process like the aforementioned Yule-Simon model*. Before
establishing the model, we first test whether the rich-get-richer
mechanism works for writing process. We denote ¢ (k) the average
probability that a character appeared k times will appear again (see
Methods and Materials how to measure ¢(k)). As shown in figure 3,
¢(k) ~ Kk’ for all the four books with y = 1, indicating a linearly rich-
get-richer effect like the preferential attachment in evolving scale-
free networks™.

In the model, we consider a language with finite dictionary size, V,
of distinct characters. At each time step, one character in the dic-
tionary will be selected to form the text. Motivated by the rich-getri-
cher mechanism, at time step ¢ + 1, if the character i has been used k;
times, it will be selected with the probability proportional to k;
(according to the approximately linear relation between ¢(k) and
k), as

ki+8 _ ki+8

f(kl)z Z}/Zl (kj+8) = V8+t,

(1)

where ¢ is the initial attractiveness of each character (¢ > 0 ensures
that every character has chance to be selected).

This growing dynamics can be analytically solved as (see Methods
and Materials)
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which embodies three stages of growth of Ny (i) In the very early
Ve N ! andih
Vs+t> Ty thus
N, = t, corresponding to a short period of linear growth. (ii) When ¢
is of the same order of V&, if ¢ is very small, N, could be much smaller

stage, when t is much smaller than Ve, <

Ve \*
than V. Expanding ( ¢ > by Taylor series as

Ve+t

(V:it>8: i%[ﬂn(yﬁtﬂm (3)

m=0

and neglecting the high-order terms (m = 2) under the condition ¢
< 1, one can obtain a logarithmical solution

N,~V31n<1+ é) (4)

As indicated in figure 2, there is a crossover between the first two
stages. (iii) When ¢ gets larger and larger, N, will approach to V and

V N,
thus both ¢ L

Vot 41Ty
growing of N; according to Eq. 7 (see Methods and Materials). These
three stages predicted by the analytical solution are in good accord-
ance with the above empirical observations (see figure 2). Figure 4
reports the numerical results on Eq. 2. Agreeing with the analysis,
when ¢ is small, N; grows in a linear form as shown in Fig. 4(a) and
4(c), and in Fig. 4(b) and 4(d), the linear part in the middle region
indicates a logarithmical growth as predicted by Eq. 4.

According to the master equation (see Methods and Materials),
the character frequency distribution can be analytically solved as

are very small, leading to a very slow

p(k)=B(k+¢)~ 1G], (5)

where B is the normalization factor. The result shows that the char-
acter frequency follows a power-law distribution with exponent vary-
ing in time. Considering the finite dictionary size, in the large limit of

v

t, N, — V and thus the power-law exponent, f=1+¢ (ﬁ — 1> N
t

approaches one. The corresponding frequency-rank relation in the

Zipf’s plot is (see Methods and Materials)

20) =G+ |3 (1- 51| -5 (©)

N

where ki, = Z(N;) is the smallest frequency. In a word, this simple
model accounting for the finite dictionary size results in a power-law
character frequency distribution p(k) ~ k= with exponent f close to
1 and an exponential decay of Z(r), perfectly agreeing with the empir-
ical observations on Chinese, Japanese and Korean books.
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Figure 2 | The growth of distinct characters in the corpus of 57755 Chinese books.
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Figure 4 | Growth of the number of distinct characters versus time for different V and ¢ according to Eq. 2.
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Figure 5| Comparison between simulations results (blue data points) and analytical solutions (red curves) for typical parameters V = 1000
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Figure 6 | Comparison between analytical predictions (red lines) and the real data (blue circles) on probability density functions (al, bl, c1, d1)

and the growing process of the number of distinct characters (a2, b2, 2, d2).
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distinct characters

Table 1 | The basic statistics of the four books. f is the exponent of the power-law frequency distribution and Nr is the total number of

Language Book T Nr Kmax Kenin

Chinese The Story of the Stone 727601 4239 21054 1 1.09
Chinese The Battle Wizard 1020336 4178 20028 1 1.03
Japanese Into the White Night 420935 2182 18992 1 1.00
Korean History of the Three Kingdoms 157201 1139 5929 1 1.07

Figure 5 reports the simulation results. The power-law frequency
distribution, the exponential decay of frequency in the Zipf’s plot
and the linear to logarithmic transition in the growth of the distinct
number of characters are all observed and in good accordance with
the analytical solutions.

Figure 6 directly compares the analytical predictions and the real
data. They agree with each other quantitatively. In comparison, pre-
dictions from known models are qualitatively different from the
present observations. For example, in the Yule-Simon model*, the
predicted power-law exponent is larger than 2 and the number of
distinct characters grows linearly with the text size. In the Yule-
Simon model with memory?, the growth of distinct words follows
a linear process and the word frequency distribution is not a power-
law. Dorogovtsev and Mendes* proposed a word-web-based model,
where the growth of distinct words follows the Heaps law with expo-
nent 0.5 and the power-law exponent can be either 1.5 or 3, also far
different from the current results.

Discussion

Previous statistical analyses about human languages overwhelmingly
concentrated on Indo-European family, where each language con-
sists of a huge number of words. In contrast, languages consisting of
characters, though cover more than a billion people, received less
attention. These languages include Chinese, Japanese, Korean,
Vietnamese, Jurchen language, Khitan language, Makhi language,
Tangut language, and many others. Significant differences between
these two kinds of languages lie in many aspects. Taking English and
Chinese as examples. Firstly, the number of words in English is more
than 100 times larger than the number of characters in Chinese.
Secondly, no dictionary contains all possible words in English.
Basically, everyone could create some new words. New words may
result from new techniques, new biological species, or new names.
Old words connected by - is also counted as a new one. Instead,
generally we cannot give birth to a new Chinese character.
Therefore, for English text, absolute saturation cannot appear since
it is very possible to find a piece of new words even after a large
collection of English literatures. Thirdly, the number of words in
English grows very quickly. The Encyclopedia Americana (Volume
10, Grolier, 1999) said “The vocabulary has grown from 50000 to
60000 words in Old English to the tremendous number of entries —
650000 to 750000 — in an unabridged dictionary of today. In
December 2010 a joint Harvard/Google study found the language
to contain 1022000 words and to expand at the rate of 8500 words
per year. In contrast, the number of characters in Chinese decreases
from 47035 characters in 1716 (the 42-volume Chinese dictionary
compiled during the reign of Emperor Kang Xi in the Qing Dynasty)
to about 8000 characters in 1953 according to the New Chinese
Dictionary. Therefore, in the future, we are not expected to see the
saturation of distinct English words either.

The above-mentioned distinctions lead to remarkably different
statistical regularities between character-formed languages and
word-formed languages. Newly reported features for character-
formed languages include an exponential decay of character fre-
quency in the Zipf’s plot associated with a power-law frequency
distribution with exponent close to 1, and a multi-stage growth of

the number of distinct characters. These findings not only
complement our understanding of scaling laws in human languages,
but also refine the knowledge about the relationship between the
power law and the Zipf’s law, as well as the applicability of the
Heaps’ law. As a result, we should be careful when applying the
Zipf’s plot for a power-law distribution with exponent around 1,
such as the cluster size distribution in two-dimensional self-
organized critical systems®, the inter-event time distribution in
human activities®’, the family name distribution*', the species life-
time distribution®, and so on. Meanwhile, we cannot deny a possibly
power-law distribution just from a non-power-law decay in the
Zipf’s plot™.

The currently reported regularities, deviating from the well-
known Zipf’s and Heaps’ laws, can be reproduced by considering
finite dictionary size in a rich-get-richer process. Different from the
well-known finite-size effects that vanish in the thermodynamic
limit, the effects caused by finite dictionary size get stronger as the
increasing of the system size. Finite choices must be a general
condition in selecting dynamics, but not a necessary ingredient in
growing systems. For example, also based on the rich-get-richer
mechanism, neither the linear growing model’® nor the accelerated
growing model® (treating total degree as the text length and nodes as
distinct characters, the accelerated networks grow in the Heaps’
manner”) has considered such ingredient. The present model could
distinguish the selecting dynamics from general dynamics for grow-
ing systems.

Methods

Data description. Four books are analyzed in this article: (i) The Story of the Stone,
written by Xueqin Cao in the mid-eighteenth century during the reign of Emperor
Chien Lung in the Qing Dynasty; (ii) The Battle Wizard, a kungfu novel written by
Yong Jin; (iii) Into the White Night, a modern novel written by Higashino Keigo;
(iv) The History of the Three Kingdoms, a very famous history book by Shou Chen in
China and then translated into Korean. These books cover disparate topics and types
and were accomplished in far different dates. The basic statistics of these books are
presented in Table 1. In addition, we investigate a corpus of 57755 Chinese books
consisting of about 3.4 X 10° characters and 12800 distinct characters.

Measuring the strength of rich-get-richer mechanism. Similar to the method
measuring the preferential attachment in evolving networks*, for each book under
investigation, we divide it into two parts: Part I contains a fraction p of characters
appeared early and Part II contains the remain fraction 1 — p of characters. For each
character i in Part II, if i did not appear in Part I, nothing happens, while if i appeared k
times in Part I, we add one to ¢’ (k) whose initial value is zero. Note that, i may appear
more than once in Part IT and thus contribute more than one to ¢'(k). Accordingly,
¢' (k) is the number of characters in Part II that appeared just k times in Part L.
Dividing ¢' (k) by the number of distinct characters that appeared k times in Part I, we
obtain ¢(k). We have checked that the results are not sensitive to p unless p is too
small or too large, therefore we only show the results for p = 0.5.

Growing dynamics of distinct characters. Assuming that at time ¢, there are N;
distinct characters in the text. The selection at time ¢ + 1 can be equivalently divided
into two complementary yet repulsive actions: (i) to select a character from the
dictionary with probability proportional to &, or (ii) to select a character from the N;
characters in the created text with probability proportional to its appeared frequency.

Therefore the probability to choose a character from the dictionary is v i P whereas
[3

t g
Vert from the created text. A character chosen from the created text is always old,
£
while a character chosen from the dictionary could be new with probability 1 — —.
Accordingly, the probability that a new character appears at the ¢t + 1 time step,

namely the growing rate of N, is
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dne _ Ve <17&>. @)

dt T Vet %
With the boundary conditions Ny = 0, one can arrive to the solution Eq. 2.
Character frequency distribution. Denote by n(t, k) the number of distinct

characters that appeared k times until time t, then n(t, k) = Nyp(k). According to the
master equations, we have

n(t+1Lk+1)=n(t,k+1)[1—f(k+1)]+n(t.k)f (k). (8)
Substituting Eq. 1 into Eq. 8, we obtain

N,Hp<k+1>:th<k+1>(

©)

1_k+1+s Nip(k)(k+1)
Vett Ve+t

Via continuous approximation, it turns to be the following differential equation

dp dk

Ve+t
1+ Niy1—Np) | —. 10
P e S - 2 (10)
Substituting N;; — N; = dN,/dt and Eq. 7 into Eq. 10, we get the solution
p(k):B(k.Q_g)*[l“(%*l)]’ (11)

where B is the normalization factor. Under the continuous approximation, the
cumulative distribution of character frequency can be written as

ko k+e)™?

P(k>ko)=1— J p(Rdk—1—p e~

Kuin

v (12)

Kanin >

where ki is the smallest frequency. When f— 1, k'# = 1 + (1 — f)Ink, and thus

X N -1
ko+e ,Bz(lnkm“-‘ré) ’ (13)

P(k>ko)=1—BlI
( ~ 0) nkmin‘l’c Kmin +¢

Kmax

p(k)dk=1 and ky,y is the

k+e
1—BIn i) N, characters

where B is obtained by the normalization condition J
Kmin

highest frequency. According to Eq. 13, there are (
having appeared more than k times. That is to say, a character having appeared k

k
times will be ranked at r=1+ (1 —Bln i) N;. Therefore

kmin 3

Z(r) =k = (knin +£)exp [% (1 - %)] e, (14)
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