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We show that gels formed by arrested spinodal decomposition of protein solutions exhibit elastic
properties in two distinct frequency domains, both elastic moduli exhibiting a remarkably strong
dependence on volume fraction. Considering the large difference between the protein size and the
characteristic length of the network we model the gels as porous media and show that the high and
low frequency elastic moduli can be respectively attributed to stretching and bending modes. The
unexpected decoupling of the two modes in the frequency domain is attributed to the length scale
involved: while stretching mainly relates to the relative displacement of two particles, bending involves
the deformation of a strand with a thickness of the order of a thousand particle diameters.

One of the overarching goals in soft condensed matter
physics is to establish a rigorous connection between
structural and mechanical properties of a material, and to
relate those properties to control parameters such as the
volume fraction, ¢, and the interaction strength, U, in a
colloidal suspension. Particular attention has been given to
the dynamical arrest transition from a fluid to a solidlike
state [1]. It has been shown that weakly attractive colloids
(U ~ kgT) at intermediate values of ¢ (~ 0.1-0.4) can
form stress-bearing networks as a result of the interplay
between spinodal decomposition and structural arrest
[2-13]. This represents an unconventional route to gelat-
ion, where the arrest occurs when the dense domains
formed during spinodal decomposition undergo structural
arrest and phase separation can no longer proceed, the
system being arrested as a self-supporting network. In spite
of the interest towards spinodal networks for many appli-
cations, there is still very little understanding of their
mechanical behavior. An example of such systems is the
solution of the globular protein lysozyme [14], where the
effective attraction between the proteins depends on tem-
perature, which allows one to continuously explore the
transition from homogeneous liquid to phase separated
and arrested states [15]. This makes lysozyme a convenient
system to investigate the interplay between structural evo-
lution and arrest mechanisms. Previous studies showed that
the gel states display correlation lengths much larger than
the particle size [15] but how such feature determines the
mechanics remained unclear.

In this Letter, we show that the rheological response of
arrested lysozyme systems displays two distinct elastic
plateaus that are well separated in time. Both moduli
exhibit a dramatic dependence on volume fraction.
Starting from these observations, we formulate a simple

model where the two distinct moduli arise from stretching
and bending modes of the coarse network structure, con-
sisting of strands that are significantly bigger than the
constituent particles. Our results provide guidance for the
design of amorphous colloidal systems with elastic moduli
that are remarkably sensitive to changes in ¢.

Our samples consist of hen egg white lysozyme (Fluka,
L7651) with a radius r =~ 1.7 nm that are suspended in
20 mM HEPES buffer at pH = 7.8, where lysozyme car-
ries a net charge of +8e. To screen the electrostatic repul-
sion we add salt, [NaCl] = 500 mM [6]. The total volume
fraction ¢ is obtained from the protein concentrations ¢
measured by UV absorption spectroscopy using ¢ = ¢/p,
where p = 1.351 g/cm? is the protein density. As shown
in previous work the phase behavior of our systems is
determined by temperature [6,15]: the liquid-liquid phase
boundary found at lower temperatures is metastable with
respect to the liquid-crystal coexistence curve observed at
higher temperatures. The spinodal decomposition is found
to be arrested for quenches below the arrest tie line at 7 =
15 °C, which leads to a bicontinuous state with a protein-
poor fluid network and a protein-dense glassy network,
whose features depend on ¢ and 7.

We measure the rheological properties of such glassy
networks with a commercial rheometer using a cone and
plate geometry where the temperature is controlled by a
Peltier element. In a typical experiment we load a sample
in the rheometer at a temperature well above the binodal
line at T = 25 °C. The temperature is then lowered to the
final quench temperature at 7 = 10 °C, below the arrest tie
line. The samples are left to rest for 300 s during which the
structures stabilize [15]. This procedure enables us to reach
reproducible steady states with negligible aging. We
explore different arrested states by varying the initial
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volume fraction ¢; any experiment where crystals form is
disregarded. The viscoelastic properties of the arrested
states are characterized in the linear response regime using
two rheology experiments: (i) oscillatory strain experi-
ments yielding the elastic modulus G’ and the loss modulus
G" as a function of the frequency f, and (ii) creep tests
yielding the compliance J, as a function of time ¢, in
response to a step stress.

The results of both experiments compare well with each
other, as shown for ¢ = 0.11 after a quenchto 7 = 10°C
in Fig 1; the full squares and the open circles denote
respectively G’ and G" obtained in oscillatory strain ex-
periment, while the lines correspond to G’ and G” obtained
by converting the data obtained in creep experiments [16].
Strikingly, the mechanical response function of our system
is characterized by two frequency domains where the
elastic component G’ becomes dominant; these are marked
by G and G, at respectively the high and low frequency
end of the spectrum shown in Fig. 1. Both characteristic
elasticities are strong functions of the volume fraction, as
shown in Fig. 2, where we display representative examples
of the spectra obtained for different ¢ in creep experi-
ments. Varying ¢ by only a factor of three leads to a
variation of G, of four orders of magnitudes. To determine
both characteristic elasticities with reasonable accuracy we
use the scaling procedure described in the Supplemental
Material [17] and report the results obtained in Fig. 3.
Surprisingly, G, and G, increase nearly exponentially
with ¢, where G, increases more quickly with ¢ than
Gy, such that the two moduli appear to reach the same
magnitude at large enough volume fractions. Such expo-
nential dependence is atypical for colloidal gels, where the
¢ dependence is generally well described by power laws
[5,8,12,18-20]. By contrast, stronger than power law de-
pendencies of the elastic moduli on ¢ have been observed
in ceramics and other porous media [21].
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FIG. 1. Frequency dependence of the storage G’ and loss
modulus G” obtained for a lysozyme system with ¢ = 0.11
after a quench to 7 = 10 °C. Symbols denote the data obtained
in oscillatory strain experiments, G’ (filled square) and G” (open
circle). Lines correspond to G’ and G” obtained by the conver-
sion of the inverse compliance J ! measured in a creep experi-
ments under identical conditions. J~! (filled downward triangle)
is displayed in Fig. 2.

To rationalize our findings we thus consider the possi-
bility to describe our systems as porous media. The struc-
ture of our systems has been probed in various scattering
experiments [15,22], from which we can infer that the
arrested states are coarse network structures that are
characterized by a correlation length of the order of & ~
2.5 pm. At somewhat smaller length scales, larger scat-
tering vectors ¢, we find the hallmarks of the Porod regime,
consistent with the gel being a bicontinuous network with a
sharp interface between the dilute phase and the dense
glassy phase. For ¢ = 0.15 nm ™!, S(gq) follows a different
regime, compatible with the presence of heterogeneities at
small length scales. Clearly, while the coarse network is
characterized by a length scale that is ~1000 times larger
than the particle size the internal heterogeneities extend
only over a few particle diameters. This large difference in
size indicates that the system may be considered as almost
homogeneous within the strand, being mainly character-
ized by large length scale heterogeneities, which is remi-
niscent of porous media.

We then may conceive that the large mismatch between
length scales is also at the origin of the unusual elastic
response observed. Let us consider that the mechanical
deformation results in an elastic response where both
stretching and bending modes are involved [23]. In princi-
ple, the response should be dominated by the softer modes,
which are the bending modes. However, unbending a
strand requires the cooperative displacement of several
hundreds of particles, which may be delayed as compared
to stretching modes which only involve the relative dis-
placement of two particles. It is thus conceivable that we
probe stretching modes at high f, while probing the bend-
ing modes at low f.

To test this assumption we consider that the stretching
modulus G, is the main contribution to the high frequency
response G. We start from G,, the shear modulus of a
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FIG. 2. Representative examples of the time evolution of the
inverse compliance J(f)! obtained in creep experiments using
stresses that are well within the linear regime. The responses are
measured after a quench to 7 = 10°C for ¢ = 0.171 (filled
square), 0.149 (filled circle), 0.13 (filled upward triangle), 0.11
(filled downward triangle), 0.093 (filled diamond), and 0.075
(filled left side triangle).
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FIG. 3. Volume fraction dependence of high G, (filled square)
and low frequency modulus G, (open circle). Lines are fits to the
data using Eqgs. (1) and (2) with ga = 77 £5.

homogeneous assembly of proteins and estimate the cor-
rection due to the presence of pores. Given the length scale
separation between the protein size (nm) and the strand
size (um) we can use an effective medium theory to
account for the effect of the pores on the elastic properties
[24]. Starting from the stress contribution of a single
inclusion to a homogeneous material, the effective medium
theory allows us to calculate the elastic constants of a
porous medium in analogy to Einstein’s method for calcu-
lating the viscosity of a dilute suspension of spheres [25]
and later extended by Arrhenius to higher ¢ [26]. Because
of the assumption of dilute and noninteracting pores, one
first obtains a linear dependence of the properties of the
porous material on those in absence of porosity: G, =
G, (1 — ge), with € the volume fraction occupied by the
pores and g a geometric pre-factor related in general to the
pore geometry; it can vary from g = 5/3 for spherical
pores up to 15 for ellipsoidal pores upon increasing the
ellipsoid’s anisotropy [21,27]. A small increment in the
porosity leads to an increment of G,: dG, = —gGde.
Upon integration with the condition G, = G, at € = 0,
one obtains G, = G,,e %€ [21]. The porosity € is obtained
from the volume fraction occupied by the dense network
phase h, € = 1 — h. Inour system / increases linearly with
¢, as shown in Fig. 4(a) where h = a¢ and a = 3.5 [6]. We
thus expect that G, scales as

G, = e8®, (1)

For the elastic response at the low-frequency end of the
spectrum we assume that elasticity is dominated by the
strand elasticity and hence, because of the strand anisot-
ropy, by the bending modes [23,28]. If we consider the
strand as an elastic rod of length & and diameter m [29], its
bending energy is K,x?, where x is the bending displace-
ment and K, the bending constant. The bending energy can
be also expressed in term of the bending moment A, i.e., the
moment of forces due to internal stresses on a given cross
section of the rod. For small, pure bending deformations,
A = (E/R)(m/4)(m/2)* [29], where E is the Young modu-
lus and R the curvature of the bent rod, that is R ~ &.
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FIG. 4. Volume fraction dependence of the volume fraction
occupied by the glassy network /s and the strand dimensions
(&, m). (a) h increases linearly with ¢, h = a¢ + b with
a=35%03 and b = —0.15 £ 0.03. (b) ¢ (filled square) is
independent of ¢, while m (open circle) increases with ¢ as m ~
¢“, with a = 0.55 = 0.05.

Moreover, by schematizing the strand as a chain of con-
nected springs with an overall radius of gyration = ¢, the
bending displacement due to a force applied to the end of
the chain is also of the order of x = & [30]. As a conse-
quence, the bending modulus is G, = K,/é ~A/& =
(m/&)*E. Using the shear modulus of the strand G, and
Eq. (1) one obtains

Gy = (m/€)*G, = (m/&)*es?. 2

For our system ¢ is almost independent of ¢, as shown
in Fig. 4(b). However, since & linearly depends on ¢ the
strand thickness m must depend on ¢. Considering that the
volume fraction occupied by one strand is V =~ ém? and
assuming that the number density of strands is 1/£3, from
the volume fraction occupied by the dense phase h ~ V /&3
we obtain the thickness of the network strands m = \/Ef
[5], as reported in Fig. 4(b).

With these experimental parameters we now can test the
validity of our assumptions, G, = G, and G, = G,,. With
g = 22.0 = 3.5 we find that Egs. (1) and (2) describe the
volume fraction dependence of both moduli remarkably
well, as shown in Fig. 3 where the lines correspond to the
theoretical prediction according Eqs. (1) and (2). The
remarkable agreement between prediction and experimen-
tal data supports the idea that G, is actually dominated by
the contribution of the stretching modes, while G, is
dominated by the bending modes of the network strands.
However, we note that the value we obtain for the parame-
ter g =22 is larger than what is typically estimated in
theory [21,27]. This large value for g reflects the remark-
able strong dependence of the moduli on ¢. Such increased
dependence in comparison to that theoretically expected
for porous media is most likely due to the structural
differences between our very course networks and a porous
medium comprising dilute and noninteracting pores, as
assumed in our modeling. Moreover, we also neglected
the heterogeneities inside the stands. Assuming that their
contribution to the elastic modulus would linearly depend
on ¢, this would lead to an enhanced dependence of G on
¢ and to a value g that is not only due to the pore, i.e.,
strands geometry.
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Nonetheless, the good agreement between the mechani-
cal properties of the arrested spinodal network and the
scaling behavior predicted by our simple model supports
the condition that stretching and bending modes are
decoupled because of a delayed response of the bending
mode. This feature is difficult to understand, but as denoted
before could be related to the large differences in the length
scales involved in the mescoscale organization of the net-
work. Indeed, the bending of the thick strands may entail
structural rearrangements of a large number of particles,
which is a slow process. In contrast, stretching only
involves local stretching of particle-particle bonds, which
occurs instantaneously upon application of a stress.

Note, that the difference between particle and strand size
also dictates the unusually strong dependence of the elastic
modulus on volume fraction. Because of this difference the
gels exhibit features of porous media, the elasticity increas-
ing exponentially with ¢ instead of the typical power law
increases observed in classical colloidal gels. Indeed, for
colloidal systems, where spinodal decomposition is for
instance induced by depletion [4,5,9,10,12,18,20], the arrest
of the phase separation process generally leads to gels where
the ratio between particle and strand size barely exceeds one
order of magnitude. Both, bending and stretching modes
should here still contribute to the elasticity of the system;
however, it is unlikely that both modes will be as clearly
separated in time, as this is the case in the lysozyme gels. For
other protein gels that are formed by spinodal decomposition,
it appears likely that the mechanical response function will
exhibit features similar to those observed here. Indeed, stud-
ies exploring the phase behavior of a series of different
proteins [11] indicate that a large difference between protein
and strand size may be a general feature of protein systems
that are deeply quenched into the liquid-liquid coexistence
range. If this is indeed the case the resulting mechanical
properties should be similar to those of the deeply quenched
lysozyme systems. To make a definite assessment, however,
further investigations of the volume fraction dependence of
the structural and mechanical properties of deeply quenched
protein systems are required.

In conclusion, we have investigated the rheology of the
complex network structure that forms as a result of an
arrested spinodal decomposition in solutions of the globu-
lar protein lysozyme. For these systems the characteristic
correlation length of the network is found to be remarkably
large as compared to the particle size. The mechanical
response are characterized by two distinct moduli, G
and G, that are well separated in time, G, and G, being,
respectively, associated to the long and short time response
of the system. Using a porous medium approximation, we
develop a simple model that links the structural features of
the network to its rheological properties and their ¢ de-
pendence. The remarkable agreement between theoretical
prediction and experiment indicates that G, and G, are
dominated by, respectively, the bending and the stretching

modes of the arrested network. The two moduli are distinct
and measurable because of the hierarchical mesoscale
organization separating the network characteristic length
(um) and the protein size (nm): this length scale difference
appears responsible for the separation of the time scales
over which bending and stretching occurs. Our combina-
tion of experiments and modeling creates a framework for
understanding the relation between rheology and structure.
Our results may provide new guidelines to design amor-
phous solidlike network with specifically defined and con-
trolled characteristic structural and mechanical properties
with potential applications in materials and food science
[22,31,32].
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