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The magnetic properties of lanthanides are currently of great interest. Especially, the discovery that
mononuclear complexes of rare earth (RE) ions can exhibit magnetic anisotropy and can act as single
molecular magnets. Heretofore, the magnetic susceptibility of RE ions has often been estimated, using
HUND’s empirical formula. In this work, we propose a non-empirical calculation of magnetic susceptibil-
ities of Ln(III) ions based on Van Vleck’s formula, that accounts for all excited states within the fn man-
ifold. The values obtained with Van Vleck’s formula are much better than the ones with HUND’s formula
and are in good agreement with the experiments.

1. Introduction

Nowadays, it is impossible to imagine the world without lan-
thanides. They are important for many devices and technologies
like single molecular magnets (SSM) or electronics (chip card,
LED). Each day we use at least one object containing lanthanides,
like the cellphone or the credit card. Since the beginning of the
19th there seems to be an endless love story between the rare
earths (Y, Sc, Ln) and the lighting applications [1]. Seen that the
lanthanides are systems with lots of electrons and the first group
of atoms containing f orbitals, they react different than the other
groups.

A lot of experimental values of magnetic susceptibilities have
been obtained for the lanthanides [2–5], but at the present time
only few computed values are available. 35 years ago, a model
has been developed for the computation of susceptibilities using
the angular overlap approach [6] (AOM). The main goal of this Let-
ter is to propose a reliable model for a simple calculation of mag-
netic susceptibilities of Ln(III) free ions.

In this Letter we will calculate the energy levels (EL) of the tri-
valent lanthanide-ions with and without spin–orbit coupling. From
the obtained results the magnetic behavior of each lanthanide-ion
is calculated. For the calculations four MATLAB scripts have been
written. One for the calculations without spin–orbit-coupling
(SOC) and another one for the calculations including SOC. Before
one of these calculations has been run, the corresponding parame-
ters (Slater–Condon-parameters (SCP) and the SOC-constant zeta)
had to be optimized. For the optimization a different script was
written. The SCP are based on LF-DFT calculations and the SOC-
constants are taken out of a collection of different values of differ-
ent papers, compiled by Urland [7].

2. Calculation

2.1. Electronic structure of RE free ions

The ground state electronic configuration of Ln(III) ions is [Xe]fn.
The energy level structure of the 4f states is obtained from the fol-
lowing interactions, given in the decreasing order of their relative
strength: the interelectronic repulsion, the spin–orbit coupling and
the ligand field [8].

The Hamiltonian for a lanthanide free ion is

H0 ¼ �1
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with ZM the atomic number of M, li, si the orbital and spin angular
momenta of electron i, and fi the spin–orbit coupling constant.

The spin–orbit coupling of RE ions is significantly stronger than
in the case of 3d transition metal ions. This is due to the larger nu-
clear charge of lanthanides. In the same time the ligand field is
much lower, since the 4f orbitals are shrunk and 4f electrons are
screened by the outer 5s and 5p shells.

Under the approximation that spin–orbit coupling interaction is
neglected, L and S are good quantum numbers. The Russell–Saun-
der coupling scheme describes well the energy levels structure of
the 2Sþ1L multiplets, where L is the orbital and S the spin orbital
momentum [9].

When spin–orbit coupling contribution is included in the Ham-
iltonian, L and S are no longer good quantum numbers and the total
angular momentum J quantum number needs to be considered.
The electronic structure which is observed is of Lj2Sþ1 multiplets.
The ground state multiplet obeys HUND’s rules and is 2J+1-fold
degenerated.

The effect of the coordination of ligands on the energy levels of
the free ion is the partial or complete removal of the 2J+1 degener-
ation inside the multiplets, due to the ligand field. The electronic
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ligand field Hamiltonian for a RE metal ion M surrounded by N li-
gands L, that is, a [MLN]q complex reads

HLF ¼ H0 �
Xn
i¼1

XN
i¼1

Z0
L

rii

with Z0
L the effective charge of ligand L and rii the distance between

electron i and ligand l. The expression above differs from the Ham-
iltonian for the free ion the ligand field potential

VLF ¼ �
Xn
i¼1

XN
i¼1

Z0
L

rii

which accounts for the electrostatic field generated by the N ligands
on the n f electrons of RE ion. In the ligand field model, the pertur-
bation VLF is calculated as a sum of adjustable parameters, the so-
called ligand field parameters

VLF ¼
X2i
k¼0

Xþk

q¼�k

hkqYkq

with Ykq the spherical harmonics and hkq the ligand field
parameters.

2.2. Magnetic susceptibility

The main property which has been determined in this work is
the magnetic volume susceptibility v of the Ln(III) series, from Pr
to Tm.

The determination of magnetic susceptibility involves the con-
sideration of Zeeman interaction of the Ln(III) free ion system. This
perturbation arises when a magnetic field H is applied and is equal
to

HZeeman ¼ l �H
with l the magnetic moment

l ¼ lBðLþ geSÞ
with lB the Bohr magneton, ge the gyromagnetic ratio of the free
electron and L, S are the orbital and spin angular momenta respec-
tively. The Zeeman perturbation has to be included in the full elec-
tronic Hamiltonian when magnetic susceptibility measures are
performed.

The aim of our calculations was to compare the values of the
effective Bohr magneton number leff calculated by means of Van
Vleck formula and from empirical HUND’s formula which is known
to fit well with observed magnetic moments for all Ln(III) but
Sm(III) and Eu(III) [10–12].

Van Vleck formula describes the dependence of magnetic sus-
ceptibility on temperature, and is one of the cornerstone relations
in magnetochemistry.
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The effective Bohr magneton number (commonly defined as the
effective magnetic moment) leff is usually deduced from the mag-
netic susceptibility thanks to the relation

leff ¼
3kBvT

l0NAl2
B

� �1=2

HUND’s rule originates from a simplified model which assumes
that the magnetic moments of Ln is well described from the cou-
pling of the spin and orbital angular momenta, i.e. the Russell–
Saunders LS coupling scheme yielding a total angular momentum
J defined as

J ¼ jL� Sj; jL� Sþ 1j; . . . ; jLþ Sj
The main assumptions of this model are that only the ground J-

state is populated and that the ligand field splitting is very small
compared to the spin orbit coupling effects so that the magnetism
is essentially independent of the chemical environment.

The expression of the magnetic moment lJ in terms of the total
angular momentum quantum number J is the HUND’s rule

l ¼ gJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ

p
lB

with the Landé g-factor gJ defined as

gJ ¼ 1þ JðJ þ 1Þ þ SðSþ 1Þ � LðLþ 1Þ
2JðJ þ 1Þ

The theoretical values of the magnetic moments of Ln3+ calcu-
lated with HUND’s formula are generally in good agreement with
the experimental magnetic moments, with the exception of Sm3+

and Eu3+ which will be considered in more detail in the discussion
of the results.

2.3. Ab initio calculation of Slater–Condon parameters by LF-DFT
method

First principle calculation of Slater–Condon parameters F0, F2, F4
and F6 for the Pr(III)–Gd(III) series was performed using LF-DFT
method using the ADF 2010 software package. MATLAB scripts
were written in order to generate all possible microstates (Slater
determinants) for each f configuration (from f2 up to f7) and to
determine the energies of the terms when only the interelectronic
repulsion is considered as a perturbation. In the following the lan-
thanide pairs Pr/Tm, Nd/Er, Pm/Ho, Sm/Dy and Eu/Tb are consid-
ered as isoelectric. The F0 parameter has been set at the origin of
the energy scale and the hole–electron equivalence was exploited
when considering the computation of the parameters for the f7–
f14 electronic configurations.

The parameters calculated by DFT were taken as the starting
values for the optimization in which the difference between the
experimental and theoretical energies of the terms arising from
f2–f14 configurations were minimized by variation of the reduced
matrix elements of the atomic interelectronic repulsion for f elec-
trons. The expected sources of error which has to be taken into ac-
count when computing these reduced matrix elements with ADF
package are that the reference for the energy is the neutral atom
and that the f orbitals are not well defined.

2.4. Parameter optimization

To avoid to imprecise values, the SCP and the zeta-parameters
were optimized for each lanthanide. With small iteration steps
the values were changed in order to minimize

lsq ¼ normðEtheory � EexperimentalÞ
For the error calculation the calculated energies were compared

with the experimental ones from NIST. During the optimization the
values were compared and the parameters were adjusted just until
the error became smaller than 10�8. The optimized values were
checked each time to make sure, to really get optimized values.
The starting values for the zeta optimization were found in Refs.
[12–19].

3. Results and discussion

There is a need of correct energies for a good calculation of the
magnetic susceptibility. So there is a big interest that the calcu-
lated energy levels (EL) are as close as possible to the experimental
values. Therefore optimizations were carried out for each lantha-
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nide-ion. In a first step the SCP were optimized to get optimal EL
without SOC, and in a second step the optimized SCP were used
for the optimization of the zeta-parameter to get the EL with
SOC. Seen that there are only two experimental values for the EL
of the dysprosium-ion (No. 66) the results are not significant and
therefore not considered in Table 1, Figures 1 and 3.

In Table 1 the final optimized SC- and zeta-parameters are rep-
resented. Remarkable is the surge from Pm3+ to Sm3+. The value of
zeta rises to about 1000. The general trend of the raising values can
be explained with the rising number of valence electrons.

Figure 1 represents the result of the first part of our calcula-
tions. The EL of each lanthanide-ion is illustrated by taking the en-
ergy states vs. atomic number. To show the distribution of the
different states, in Figure 2 the f2, f3 and f4 configurations were as-
signed and compared.

The visible symmetry of the results resented in Figure 2 agrees
with the previous isoelectric considerations. Moreover the assign-
ments of each configuration are in agreement with each other. The
procedure and the result would be the same for the other configu-
rations. But the number of states increases and with this the states
get closer. So it is impossible to present them in an easy way.

In the second part the spin–orbit coupling was taken in account.
The energy levels from the orbit-was first step have split into sev-
eral degenerated levels. The resulting ELs are presented in Figure 3.
These energies were used for the calculation of the magnetic
susceptibility.

Due to the big amount of ELs it is not possible anymore to assign
the states directly. To illustrate hole-electron equivalence, the ELs
of the f2 configurations are compared in Table 2. The isoelectricity

is the highest for f2 configurations. The description of the hole-
electron equivalence for fn states with n > 2 is difficult to recognize
the symmetry, because the assignment gets de more and more
subtle. The ELs without SOC are already close to each other. With
the degeneracy they are not only close to each other but also
mixed. So the states cannot be assigned with good level of
significance.

Table 1
SCP by LF-DFT calculation and zeta by references [14–21] and both optimized by least squares energy minimization of each lanthanide-ion, except the zeta of Gd3+. The
theoretical SCP found in [22] are divided by 5, 9 and 13, respectively in order to allow comparison with our results.

Ln3+ F0 F2 F4 F6 f Ref.

Pr3+ 0 14002 (13776) 6426 (5594) 2552 (2531) 729.50 (729.5) [14,22]
Nd3+ 0 13989 (14604) 7019 (5865) 504 (2751) 719.12 (884.58) [15,22]
Pm3+ 0 21118 5301 1030 644.21
Sm3+ 0 11612 9794 2048 1625.10 (1420) [16]
Eu3+ 0 12829 22280 620 2122.91 (1320) [17]
Gd3+ 0 17280 11107 816 1598.50 (1450) [18]
Tb3+ 0 15187 (17799) 18244 (6991) 1376 (3635) 2201.29 (1705) [17,22]
Ho3+ 0 17423 (18913) 5078 (7377) 392 (4002) 3342.00 (2163) [19,22]
Er3+ 0 25639 (19497) 2066 (7545) 1163 (4155) 2809.49 (2393.34) [20,22]
Tm3+ 0 42506 7587 158 2571.31 (2617) [21]

Figure 1. Energy levels without SO-coupling by their atomic number.

Figure 2. Energy levels without SO-coupling, f2, f3, f4.
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3.1. Magnetic susceptibility

In the last part the magnetic susceptibility, represented in Fig-
ure 4, was calculated. But first a region of acceptable values was
determined according to experimental values [2–5]. Further the

magnetic susceptibility was calculated by HUND’s rule, which
takes only in account the ground state. The HUND’s calculation
for the magnetic susceptibilities is in agreement to the experi-
ments, except for Sm3+ and Eu3+ where its experimental value
are too large. In a publication written by Laporte (1928) [13], this
anomaly has been supposed to be related to the small energy dif-
ference between the ground and first excited multiplet, which is
close to kT. This situation is more pronounced in Eu3+ and to a les-
ser extent in Sm3+. Moreover the values of Dy3+ are very close to
the experimental ones, although the results of the EL calculation
were not significant.

To get smaller errors, the procedure was repeated with the Van
Vleck formula. This formula also considers the excited states and
not only the ground state. Even if the Van Vleck formula there
are still some errors for Eu3+ and Tb3+. This deviation could proba-
bly be explained, supposing that the experimental values stem
from measurements of complexes and not of free ions.

4. Conclusion

In this Letter we show that the calculated magnetic susceptibil-
ity of free ions differs not a lot to the measurements of the com-
plexed lanthanides. This is in agreement to our simplification not
to consider the ligand field.

A simple semi-empirical formula, HUND, can approximate the
magnetic susceptibility for a majority of the lanthanides, but to
get better results, the Van Vleck formula should be used instead.

Moreover we calculated the different ELs of each Lanthanide
with and without SOC and assigned most of the levels.

The optimized Slater–Condon parameters, calculated by LF-DFT
and further optimizations, agree well with the measured ones.
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Figure 3. Energy levels with SO-coupling by their atomic number.

Table 2
Energy splitting of f2 Lanthanides(III).

f2

Pr3+ Tm3+

3H 4 0.0 3H 6 0.0
5 2024.0 5 8002.7
6 4165.7 4 12,904.9

3F 2 5048.5 3F 4 61,25.5
3 6417.2 3 16,282.1
4 7037.4 2 27,954.6

1G 4 10,143.2 1D 2 15,370.1
1D 2 16,724.9 1G 4 20,154.1
1I 6 21,244.0 1I 6 34,629.5
3P 0 21,932.2 3P 0 43,784.1

1 22,525.6 2 45,608.0
2 23,616.3 1 46,639.7

1S 0 50,084.6 1S 0 67,083.9

Figure 4. Magnetic susceptibility of Ln3+ (with the atomic numbers) at room
temperature.
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