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ABSTRACT

Root gravitropism is a complex, plant-specific process allowing roots to grow down-
ward into the soil. Polar auxin transport and redistribution are essential for root

gravitropism. Here we summarise our current understanding of underlying molecular
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mechanisms and involved transporters that establish, maintain and redirect
intercellular auxin gradients as the driving force for root gravitropism. We evaluate
the genetic, biochemical and cell biological approaches presently used for the analysis
of auxin redistribution and the quantification of auxin fluxes. Finally, we also discuss
new tools that provide a higher spatial or temporal resolution and our technical needs

for future gravitropism studies.

POLAR AUXIN TRANSPORT IS THE DRIVING FORCE FOR
ROOT GRAVITROPISM

Plant growth and development is influenced by many environ-
mental factors, which lead to directional plant growth pro-
cesses, such as gravitropism, phototropism and thigmotropism
(Blancaflor & Masson 2003). Gravitropism is controlled by
gravity stimuli, which guide the emerging roots to grow down-
ward into the soil and the shoots to grow upward (Friml &
Palme 2002).

The Cholodny—Went hypothesis suggested that root bending
is caused by altered redistribution of auxin during root gravit-
ropism (Went 1974). Work in the last three decades has pro-
vided solid evidence that cell-to-cell or polar auxin transport
(PAT) is sufficient to generate differential intercellular auxin
gradients that guide root growth (Rashotte et al. 2000). In ver-
tically orientated roots, root-ward auxin transport is thought
to provide equal auxin gradients on all sides of the root
(Fig. 1A). However, in horizontally orientated roots, auxin is
redirected and transported more efficiently at the lower side,
resulting in an unequal, basipetally enhanced auxin distribu-
tion, and thus a steeper auxin gradient at the lower side
(Fig. 1B). This is thought to inhibit cell elongation at the lower
side of the root, resulting in downward growth of roots,
although underlying mechanism are far from being under-
stood. For example, at the lower side, according to the acid
growth theory (Rayle et al. 1970; Hager et al. 1971; Rayle &
Zenk 1973), auxin-exposed cells are expected to excrete pro-
tons into the cell wall (apoplast), which are thought to activate
cell wall loosening processes, forming the basis for cell elonga-
tion. Obviously, this is in contrast to the actual requirements,

as cell wall loosening would be needed preferentially at the
upper side. Accordingly, several aspects of the acid growth
theory have received severe criticism (Rayle & Cleland 1992).

However, there are several lines of hard evidence supporting
the concept that PAT is the major driving force for root gravit-
ropism. First, radiolabelled IAA was applied to measure the
asymmetric redistribution of auxin. In horizontally orientated
roots, labelled TAA moved downward across the root cap
(Young et al. 1990). Second, immunolocalisation of TAA was
used to visualise local auxin distribution in roots (see Fig. 2D;
Shi et al. 1993; Benkova et al. 2003; Schlicht et al. 2006). Third,
the asymmetric redistribution of auxin was confirmed through
the imaging of auxin reporter genes (Fig. 2). The auxin-respon-
sive element DR5, fused to B-glucuronidase (GUS; Ulmasov
et al. 1997) or to fluorescent proteins (e.g., GFP; Ottenschliger
et al. 2003), was shown to be an indirect reporter of auxin
accumulation in plant cells (reviewed in Muday & DeLong
2001; Palme et al. 2006; Michniewicz et al. 2007). In horizon-
tally orientated roots, DR5:GUS (or DR5:GFP) signals accumu-
late at the lower sides of the root, indicating higher auxin
fluxes at these sides (Rashotte et al. 2001; Michniewicz et al.
2007; Muday & Rahman 2008; Fig. 1B). These results were
recently confirmed using a novel, independent Aux/IAA-based
auxin signalling sensor, called DII-VENUS, (Brunoud et al.
2012; Band et al. 2012; Fig. 2C; for more details, see below).
Use of DII-VENUS revealed that auxin is redistributed within
minutes to the lower side of the root after the gravity stimulus.
Unexpectedly, auxin asymmetry was rapidly lost when bending
root tips reached an angle of 40° to the horizontal; however,
the physiological relevance of this so-called ‘tipping point’
mechanism is as yet unclear (Band et al. 2012).



/ldoc.rero.ch

http

—= ABCB19

RN iy
—>PIN4 o ([ U —>ABCBA4, 1_,1)&
DM M

[ vescutaturs

[ Lateral root cap:

[ Quiescaen center and stem cails
[ Cotumesa ef root cap

Fig. 1. Auxin gradients are shoot-ward redirected by PIN and ABCB-type
auxin transporters upon gravi-stimulation. A, B: Even distribution of the
auxin-responsive reporter DR5:GFP (red) in vertically grown Arabidopsis
seeds (A) DR5:GFP expression is elevated at the lower side of gravi-
stimulated roots inhibiting cell elongation, which results in root bending.
Arrowheads indicate elevated DR5:GFP expression in the lateral root cap;
bar =50 um. C, D: Reflux and long-range auxin transport networks provided
by members of the PIN (C) and ABCB (D) family.

Finally, work from the Muday lab showed clearly that inhibi-
tion of basipetal/shoot-ward IAA transport after local applica-
tion of low concentrations of the auxin efflux inhibitor NPA
(1-N-naphthylphthalamic acid; see below for details) blocked
the gravity response. In contrast, inhibition of acropetal/root-
ward IAA transport after application of NPA at the root—shoot
junction only partially reduced the gravity response, and high
NPA concentrations were needed to do so (Rashotte et al.
2000). This pharmacological work was confirmed genetically;
the pin2/eirl mutant exhibited reduced basipetal IAA transport
and wild-type levels of acropetal IAA transport, but agravitropic
roots. In summary, these results suggest that basipetally/
shoot-ward transported IAA controls root gravitropism in
Arabidopsis.

AUXIN TRANSPORTERS GENERATE, MAINTAIN AND
CONTROL INTERCELLULAR AUXIN GRADIENTS
ESSENTIAL FOR ROOT GRAVITROPISM

The chemiosmotic model (Rubery & Sheldrake 1973;
Raven 1975; Goldsmith & Goldsmith 1977) proposed that
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Fig. 2. Techniques for quantifying auxin concentrations and fluxes.A, B:
Transport of radiolabelled IAA in Arabidopsis hypocotyls (A: inset describes
principle of the assay) or mesophyll protoplasts (B: inset shows protoplast) is
gradually reduced in abcb mutants (data from Geisler et al. 2003, 2005; for
legend, see inset of C). C: DII-VENUS signal 2 h after a gravity stimulus in
root tissues of wild-type Arabidopsis (bar =50 um, image taken from Band
etal. 2012). D: Immunolocalisation of IAA reveals an IAA gradient with a
maximum at the tip of the root primordium (left panel; inset shows
increased signal after IAA treatment). IAA accumulation in the columella ini-
tial region of the mature lateral root (right panel; inset shows negative con-
trol in the absence of IAA fixation; image from Benkova et al. 2003). E, F:
Root IAA influx profiles measured with an IAA-specific microelectrode are
altered in abcb mutants compared to Was wild type (data from Bailly et al.
2008 and Wang et al. 2013). Graphic (E) and heat map (F) presentation of
influx profiles (see Wang et al. 2013 for details; lines mark distance from
root tip in um, and tissues are indicated in Fig. 1D). G: High-resolution auxin
distribution map as analysed with a combination of FACS of GFP-marked cell
types and GC-MS (data from Petersson et al. 2009). Note low resolution for
epidermal layers in comparison to electrode data in (F).
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intercellular IJAA movement is facilitated by combined activi-
ties of auxin influx and efflux transporters. The sometimes-
neglected reason is simple and based on the fact that IAA is a
weak acid (pK, 4.75). Therefore most of the JAAH (roughly
85%) is deprotonated to JAA™ and thus is trapped in the cyto-
plasm at a pH of ca. 7.0, requiring auxin efflux transporters
(Zazimalovd et al. 2009). Moreover, also at apoplastic pH of ca.
5.5, only a small portion of IAAH (roughly 15%) is able to pas-
sively diffuse inside the cell, arguing for active uptake systems.
However, the fact that a reasonable amount of IAAH can still
enter cells through diffusion necessitates exporters as the pri-
mary control units of PAT.

Genetic and biochemical approaches have identified mem-
bers of the AUX1/LAX (AUXIN-INSENSITIVE1/LIKE AUXI1),
PIN (PIN-FORMED) and ABCB (B subfamily of ABC trans-
porters) families that play essential roles during polar auxin
transport, and thus root gravitropism. Polarity of auxin trans-
port is thought to require asymmetric localisations of auxin
transporters, which mainly holds true for members of the PIN
and also for AUX1, but ABCBs mostly have non-polar loca-
tions (Geisler & Murphy 2006).

Transporters of other classes, such as PILS (PIN-LIKE
PROTEINS; Barbez et al. 2012; Rosquete et al. 2012), ABCGs
(Ruzicka et al. 2010) and NRT1.1 (Krouk et al. 2010), also
seem to catalyse the transport of auxins; however, their role in
root gravitropism is less clear.

The auxin influx carrier, AUXI, first identified in an screen
for resistance to the synthetic auxin 2.4-D (Maher & Martindale
1980) was suggested to regulate root gravitropism, since its
mutant, auxI, shows a strong agravitropic root phenotype
(Bennett et al. 1996). Arabidopsis has three more AUXI1-like
auxin importers: LAX1-3 importers, belonging to a plant-
specific subclass of the amino acid/auxin permease (AAAP)
super family, which perform distinct developmental functions
and have evolved distinct regulatory mechanisms. Both AUX1
and LAX3 have been implicated in lateral root (LR) develop-
ment, as well as apical hook formation, whereas both AUXI1
and LAXI1 are required for phyllotactic leaf patterning (Swarup
& Péret 2012). However, in comparison to AUX1, the individ-
ual impact of LAX1-3 on root gravitropism is less clear
(Swarup et al. 2008; Péret et al. 2012).

In Arabidopsis, PIN proteins are encoded by a small gene
family having eight members (Grunewald & Friml 2010).
So-called long-looped PIN proteins (PINT1, 2, 3, 4, 7; Fig. 1) are
localised on the plasma membrane and are key components for
intercellular and intracellular auxin movement (Fig. 1C), while
short-looped PINs (PINS5, 6, 8) are thought to reside on the
ER, and thus play a role in the regulation of auxin homeostasis
(Mravec et al. 2009; Dal Bosco et al. 2012; Ding et al. 2012).

PIN1 was the first auxin efflux carrier protein identified,
originally described to function in shoot-to-root auxin trans-
port, based on its basal/root-ward location in the xylem paren-
chyma (Okada et al. 1991; Gélweiler et al. 1998). Later, PIN1
was also localised to the root stele, where it also predominantly
reveals basal/root-ward localisation (Friml & Palme 2002;
Fig. 1C). PIN2/AGR1/EIR1/WAV6 localises shoot-ward in the
lateral root cap and root epidermis cells, and root-ward in the
root cortex cells (Chen et al. 1998; Luschnig et al. 1998; Muller
et al. 1998; Utsuno et al. 1998). Therefore, shoot-ward auxin
distribution in the lower side of the root is largely repressed in
the pin2 mutant during gravity stimulus, thus resulting in agra-

vitropism. Additionally, PIN2 was found at the root-ward face
of cortical cells of the meristem, and is thus thought be
involved in an auxin reflux loop (Blilou et al. 2005; Wisniewska
et al. 2006; Rahman et al. 2010; Fig. 1C).

PIN3 is thought to link gravity perception and lateral auxin
redistribution in root gravitropism (reviewed in Michniewicz
et al. 2007). PIN3 is expressed in gravity-sensing tissues, where
it mainly localises uniformly in the columella cell boundaries
(Friml ef al. 2002). More importantly, during a gravity stimu-
lus, PIN3 relocates to the new lower side of the columella cells,
thus correlating with a downward redirection of auxin flows,
which suggests that PIN3 functions in redirecting auxin fluxes
to trigger asymmetric growth. PIN4 and PIN7 have partially
overlapping functions with other PINs in the root tip (Fig. 1C),
although their involvement in root gravitropism is less clear
(Grunewald & Friml 2010).

In light of its important role in root-ward auxin transport,
the absence of an obvious root phenotype for pinl mutants
and its rather intact root bending is remarkable. In principle,
the same holds true for pin3 mutants that also reveal very mild
gravitropic root defects (Friml et al. 2002). With the exception
of the PIN2 mutant, only multiple PIN loss-of function
mutants show severe gravitropic deficiencies, arguing, in light
of the low degree of obvious co-location or functional redun-
dancy between PIN isoforms (Fig. 1C), for other auxin trans-
porters that are able to take over, at least partially, their
functions.

Full-length ABC transporters of the B subclass, e.g., ABCB1
(PGP1), ABCB19 (PGP19/MDR1) and ABCB4 (PGP4), are
involved in root gravitropism, as abcbl abcbl9, and abcb4
mutants show significantly reduced gravitropic responses (Noh
et al. 2001; Santelia ef al. 2005; Terasaka et al. 2005; Bouchard
et al. 2006; Bailly et al. 2008; Fig. 1D). Bending defects in
ABCBI and ABCBI9 single mutants are subtle, which is in line
with their demonstrated functional redundancy (Geisler et al.
2005; Bailly et al. 2008); however, they reveal altered early
bending kinetics (Bailly et al. 2008). Root bending defects
correlate with gradually reduced auxin efflux, transport and
gradient capacities (Geisler et al. 2005; Bouchard et al. 2006;
Bailly er al. 2008; Fig. 2). The direct involvement of ABCB-
mediated auxin transport in PAT, and thus in root gravitro-
pism, suggests that polar locations of these transporters are not
an absolute requirement because ABCB1, 4 and 19 show only a
low degree of cellular polarity (Geisler et al. 2005; Terasaka
et al. 2005; Mravec et al. 2009). Vectorial auxin transport by
ABCBs might therefore involve functional interaction with
other ABCB interacting components, such as PINs (Blakeslee
et al. 2007) or TWISTED DWARF1 (TWD1; Geisler et al. 2003;
Bailly et al. 2008; Wu et al. 2010; Wang et al. 2013), revealing
them as having a higher degree of polarity. A current study
suggests that lateral auxin transport into the epidermal apoplast
might be specifically triggered by plasma membrane interac-
tions between non-polar ABCB1 and laterally expressed TWD1
(Wang et al. 2013).

In summary, it appears that ABCB expression and function-
ality correlates with small meristematic cells with high auxin
content, where they function in avoiding apoplastic reflux
(Wang et al. 2013). Nevertheless, they still function in long-
range transport of auxin, as the described abch mutants show
defects in their content (Geisler et al. 2005; Geisler & Murphy
2006; Matsuda et al. 2011; Fig. 1D).
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Interestingly, ABCB4 and its closest homologue, ABCB21
(Kamimoto et al. 2012), have recently been demonstrated to
function as facultative IAA importers/exporters triggered by
cytoplasmic auxin concentrations (Kamimoto etal 2012;
Kubes ef al. 2012). Import directionalities under low cytoplas-
mic IAA concentrations suggest a functional overlap with
AUX1/LAX importers; however, in contrast to ABCB-PIN
interactions, no such functional analogy has been found
between tested ABCBs and AUX1 (Blakeslee et al. 2007).

Auxin transport inhibitors, with NPA being the most wildly
used, have been successfully employed for demonstrating that
polar auxin transport forms the basis of root gravitropism
(Rashotte ef al. 2000; see above). NPA, a non-competitive
auxin efflux inhibitor, prevents the asymmetric distribution of
DRS5 signals and root gravitropism (Rashotte et al. 2001; Bailly
et al. 2008). ABCB1, ABCB4 and ABCB19 proteins were identi-
fied as high-affinity NPA-binding site-associated proteins
(Murphy et al. 2002; Geisler et al. 2003; Terasaka et al. 2005),
and ABCB-mediated auxin efflux is NPA-sensitive (Geisler
et al. 2005; Kim et al. 2010; Kamimoto et al. 2012). This sug-
gests that NPA binds ABCBs directly, or/and other proteins, to
inhibit ABCB-driven auxin transport, thus affecting root
gravitropism. A good candidate to convert an NPA effect on
ABCBs is TWDI, which itself was shown to bind NPA (Bailly
et al. 2008). Further, NPA was shown to disrupt TWDI1-
ABCBI interaction (Bailly et al. 2008). The findings that PIN
proteins most probably do not bind NPA or the related inhibi-
tor BUM (Kim et al. 2010), nor are they directly inhibited by
NPA in an ABCB-free system, support further functional
ABCB-PIN interactions.

TECHNIQUES FOR QUANTIFYING AUXIN
CONCENTRATIONS AND FLUXES

Radiolabelled auxins

The measurement of auxin concentrations and fluxes gives us
direct clues to auxin transport and auxin distribution in plant
organs, which helps us better understand the role of auxin
transport in gravitropism.

Initially, radiolabelled auxins, such as *H-IAA, were dem-
onstrated to be very sensitive and reliable tools for auxin flux
measurement at cellular and tissue levels. For example, more
than 30 years ago, *H-IAA was applied to study acropetal
auxin transport in the central cylinder of the root and basip-
etal auxin transport in epidermal and cortical cells (Mitchell
& Davies 1975; Tsurumi & Ohwaki 1978). The Murphy lab
further increased the resolution of these techniques using
microscope-guided micromanipulators that allow application
of micro-droplets of IAA smaller than 0.1 pl (Fig. 2A). Lewis
& Muday (2009) also provided widely used protocols for the
measurement of auxin transport in roots, hypocotyls and
inflorescences, where radiolabelled auxin is applied to seed-
lings in an agar cylinder or as droplets, which requires no
specialised equipment.

A breakthrough in the verification and characterisation of
auxin transporters was the establishment of protocols that
allowed the quantification of auxin fluxes from cellular sys-
tems, such as plant mesophyll protoplasts, yeast cells, HeLa
cells or BY-2 cells (Geisler et al. 2005; Petrasek et al. 2006; Yang
& Murphy 2009). Despite the evolutionary origin of each cell

type, each having individual (dis)advantages, cells are usually
first loaded with radiolabelled auxins, and benzoic acid is often
used as a negative (diffusion) control. Subsequently, loading
can be stopped using gradient centrifugation (protoplasts) or
vacuum filtration (yeast), and exported or imported auxin can
be quantified through scintillation counting (‘loading assay’).
Alternatively, non-loaded auxin can be removed, and exported
auxin can be quantified through a second centrifugation/filtra-
tion step that separates cells from the supernatant (‘export
assay’; Fig. 2B). Both assays work best when plasma membrane
transporters are used; however, intra-membrane (ER) auxin
transporters have also been successfully analysed following
these protocols (Mravec et al. 2009; Ding et al. 2012).

A limitation of these assays is that with the exception of
strict importer characterisations (such as AUXI/LAX trans-
porters), whole-cell analyses do not allow for transport kinetics
because the amount of cytoplasmic auxin cannot be
adjusted due to secondary effects such as metabolisation and
conjugation. Arguments in favour are that yeast, HeLa and
protoplasted plant cells allow heterologous expression of trans-
porters and regulatory components, which has permitted the
characterisation of TWD1-ABCBI (Bouchard et al. 2006; Bailly
et al. 2008; Henrichs et al. 2012), ABCB-PIN (Blakeslee et al.
2007) and TWDI-ABCBIPID interactions (Henrichs et al.
2012).

In summary, the use of radiolabelled auxin allows for very
sensitive, fast and highly reproducible quantification of auxin
transport rates. However, it is obviously an invasive method
that does not yet allow following the imaging of PAT at a rea-
sonably high resolution. Moreover, the short-term application
of auxin radiotracers might alter endogenous IAA homeostasis
in the cells, even though the concentrations of auxin radiotra-
cers can be kept extremely low (nanomolar to picomolar).

Auxin response reporters and sensors

As already discussed above, variants of auxin response report-
ers, like DR5 (Ulmasov et al. 1997), IAA2 (Abel et al. 1994) or
BA3 (Armstrong et al. 2004), fused to reporter genes, such as
GUS, GFP or RFP, are widely used as indirect markers for
auxin concentrations and distribution patterns in Arabidopsis
and other plants (Fig 1A; Ulmasov et al. 1997; Rashotte et al.
2001; Ottenschldger et al. 2003; Benkova er al. 2003; Barbez
et al. 2012). The most commonly used DR5:GFP construct
(Ottenschlager et al. 2003) allows non-invasive, high spatial
and temporal observations of DR5 expression in plant tissues
and DR5 redistribution during gravitropism (Fig. 1A and B).
The limitation of all these reporters is that they represent
indirect measures of auxin accumulation, and that DR5 expression
is affected by the rates of its own transcription and translation
(Band et al. 2012). As a result, the asymmetry of DR5 expres-
sion could only be detected for 1.5-2.0 h after gravity stimula-
tion (Ottenschlager ef al. 2003; Brunoud et al. 2012), making it
far too slow to follow auxin distribution in real-time during
root gravitropism, which usually takes place in minutes. More-
over, these auxin-responsive reporters are not absolutely
specific for IAA. For example, the DR5 reporter is also activated
by brassinolides, and even requires brassinolides to reach maxi-
mum activity (Nemhauser et al. 2004). Further, it seems as if
DR5 has its limitations in other tissues with lower auxin con-
centrations, such as the hypocotyls or stems. Finally, the three
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most often used auxin-responsive promoters mentioned above
show distinct expression patterns (Schlicht er al. 2006). For
instance, the DR5 reporter shows maximum activity in the root
cap columella and quiescent centre cells, whereas the BA3 has
its maximum in rapidly elongating root cells.

Recently, a novel auxin signalling sensor, DII-VENUS, was
engineered to map auxin responses and distribution. Monitor-
ing DII-VENUS degradation was thought to be better as an
auxin sensor because its signal is linked more directly to hor-
mone abundance compared to translational reporters. DII-
VENUS is AUX-/TAA-based, and thus has earlier IAA responses
in the auxin signalling pathway compared to DR5 (Band et al.
2012; Brunoud et al. 2012). As a result, the asymmetry of
DII-VENUS degradation can be detected within 30 min after
gravity stimulation (Fig. 2C). Although DII-VENUS provides
high-resolution spatio-temporal information on IAA distribu-
tion, it still cannot detect absolute IAA accumulation within
cells and tissues. Another issue with the so far presented
promoter elements or sensors is that, due to their signalling
concept, they are unable to directly monitor intra- and extra-
cellular auxin concentrations.

Auxin immunodetection

The original protocols successfully used IAA antisera for IAA
immunodetection in primary and lateral roots that were
directed against IAA after IAA fixation (Caruso et al. 1995;
Benkovd et al. 2003; Fig. 2D). However, despite the fact that
the TAA accumulation pattern essentially resembled the DR5
activity pattern, this method somehow never reached a high
level of acceptance within the community. This is most likely
because IAA antibodies used in these studies were not shown
to be mono-specific and might therefore cross-react with
IAA precursors, such as tryptophan. Moreover, cross-linking
agents used for TAA immobilisation are thought to have
drastic effects on actin organisation, and thus alter PAT prior
to fixation (Schlicht et al. 2006). Therefore novel, highly spe-
cific auxin antibodies, recognising essentially only IAA, have
been developed by research groups (Schlicht et al. 2006) and
commercial companies (Agrisera AB, Vinnis, Sweden). How-
ever, these are so far mainly used for ELISA tests and rarely
for immunolocalisation, probably because the resulting accu-
mulation patterns are distinct from DRS5 signals (Schlicht
et al. 2006).

Auxin-specific microelectrodes

A platinum microelectrode modified from carbon nanotubes
was developed at the Mancuso lab for non-invasive and contin-
uous recordings of auxin fluxes in intact root apices (Fig. 2E-F;
Mancuso ef al. 2005). In this method, a vibrating, self-referencing
microelectrode that is highly specific for IAA is applied close to
the root surface at different distances from the apex (vibrating
distance 10 pm at 0.1 Hz), and the differential electronic signals
are recorded and calculated. The free IAA indirectly determined
using this method was close to that quantified with HPLC
(Mancuso et al. 2005). This method, originally developed for
maize, has been successfully employed to record IAA influxes
from Arabidopsis roots, and IAA influx peaks are typically
found around 200 pm from the root tip of wild-type plants
(Santelia et al. 2005; Bailly et al. 2008; Kim et al. 2010; Henrichs

et al. 2012; Wang et al. 2013; Fig. 2E), consistent with the cur-
rent auxin ‘reflux model’ (see Fig. 1C; Blilou et al. 2005). The
combination of IAA influx data and confocal root pictures has
allowed better presentation of epidermal IAA influx rates
(Wang et al. 2013; Fig. 2F). In between several auxin transport
mutants (Santelia ef al. 2005; Bouchard et al. 2006; Bailly et al.
2008; Wan et al 2012) and PAT inhibitors, including NPA
(Bailly et al. 2008; McLamore et al. 2010), BUM (Kim et al.
2010) and quercetin/chelerytrine (Henrichs et al. 2012) have
been successfully characterized using this method.

Obvious advantages of this highly sensitive method are that
it is able to monitor local IAA concentrations continuously and
non-invasively in living plants, which also allows researchers to
follow the effect of externally applied drugs, as described above.
However, this method only allows for a high-resolution mea-
surement of epidermal layers, making it complementary to
FACS-based methods (Petersson et al. 2009; see below), but
making it unsuitable for investigation of other cell files
(Fig. 2F). Another valid drawback is that during IAA influx
recording, roots are exposed to high external IAA concentra-
tions. Finally, while this assay can be carried out under differ-
ent light conditions, it does not allow the measurement of
auxin fluxes during root bending.

Determination of free IAA

The concentration of endogenous free IAA from different plant
tissues or segments can be precisely determined with gas chro-
matography—mass spectrometry (GC-MS), usually carried out
after methanol extraction (Pollmann et al. 2002). For quantifi-
cation with a state-of-the-art GC-MS, as little as 10 mg fresh
weight tissue is now needed, corresponding to ca. 30 seedlings.
However, recent progress in HPLC/GC-MS/MS coupling
(high-pressure liquid chromatography in combination with gas
chromatography-tandem mass spectrometry) is expected to
further reduce the amount of starting material required. Calcu-
lation of isotopic dilution factors is usually based on the addi-
tion of radiolabelled markers, such as >C-IAA or *H-TAA.

The content of free IAA from different Arabidopsis and
tobacco tissues can be measured with ELISA using mono-
specific IAA antisera, and several ELISA-based kits are on the
market. Despite some initial criticism (Cohen et al. 1987), ELISA
data have been shown to match HPLC validations (Chen &
Zhao 2008), and might turn out to be a low-cost alternative.

A combination of fluorescence-activated cell sorting (FACS)
of GFP-marked cell types and GC-MS was recently used to
construct a high-resolution auxin distribution map (Fig. 2G;
Petersson et al. 2009). In short, root protoplasts were isolated
from different Arabidopsis GFP-marked cell lines and quanti-
fied with coupled gas chromatography—selected reaction
mode—mass spectrometry (GC-SRM-MS). IAA concentrations
were normalised by cell number and cell size. Compared to the
above-described reporter or sensor tools, this method gives a
direct quantification of intracellular IAA concentrations. It can
also be used in high-throughput mode, and genome-wide tran-
scriptional changes of auxin-responsive factors were recently
described with a comparable FACS technique (Bargmann &
Birnbaum 2009). The limitation of this method is that only
steady-state levels of IAA are quantified because auxin concen-
trations are equally annotated in cells from the same cell type.
Further, the resolution of the epidermal layer is still poor,
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which might be improved using more specific cell type marker
lines in the future.

PERSPECTIVES

Polar auxin transport and the redistribution of auxin are essen-
tial for root gravitropism, and thus also for human nutrition.
However, despite substantial progress, our understanding of
underlying mechanisms is still incomplete, in part due to
technical limitations. Hence, there is an obvious need for novel,
innovative genetic, biochemical and cellular biology approaches
for the analysis of auxin fluxes having higher temporal and
spatial resolution.

Within the auxin community there is an obvious consensus
that a high-resolution, non-invasive auxin biosensor for the
quantification of cytoplasmic (and preferably also apoplastic)
TAA concentrations is absolutely essential. Obviously, such a
genetically encoded biosensor would most probably also allow
real-time imaging of auxin fluxes during root gravitropism.
Biosensors for the measurement of cations, such as calcium
(Cameleon; Miyawaki et al. 1999) and for protons (pHusion;
Gjetting et al. 2012) have been found to be very useful for
in vivo, non-invasive studies of ion fluxes in cells. While pH
sensors usually employ the pH sensitivity of EGFP, a future
IAA biosensor would also probably be FRET-based, in analogy

to the calcium sensor, cameleon (Allen et al. 1999). A possible
complication might be the fact that concentrations of free IAA
diverge in different tissues, thus eventually requiring a range of
sensors, each with a different IAA affinity.

Further, the development of chemically modified auxin
analogues has potential for cellular IAA distribution analysis.
Recently, alkoxy-auxins, such as 5-alkoxy-IAA and 7-alkoxy-
NAA, were shown not to alter auxin-responsive gene expres-
sion mediated by the TIR1 pathway, but inhibited polar
auxin transport streams and auxin-dependent tropic
responses in maize and Arabidopsis (Tsuda et al. 2011). Very
recently, at the Auxin2012 conference (http://auxin.hawaii-
conference.com), for the first time fluorescent JAA and NAA
analogues were presented by the Hayashi group (Hayashi
2012), which could potentially fill the gap until we have a
genetic biosensor.
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