Published in "Physical Chemistry Chemical Physics 15(1): 159-167, 2013" which should be cited to refer to this work.

First-Principles Simulation of the Absorption Bands of Fluorenone in Zeolite L

Xiuwen Zhou,^a Tomasz A. Wesolowski,^a Gloria Tabacchi,^b Ettore Fois,^b Gion Calzaferri,^c André Devaux ^d

^a Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Gen'eve 4, Switzerland.

^b Department of Science and High Technology, University of Insubria, and INSTM, Via Lucini 3, I-22100 Como, Italy.

^c Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.

^d Institute of Inorganic Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland.

6th September 2012 Author for correspondence: e-mail:tomasz.wesolowski@unige.ch

The contents: 1. Test of the value of " N_{config} " (the total number of instantaneous configurations in the sample) used in Equation 2. Test of the value "a" (summation range) used in Equation 2 3. The effect of the choice of ρ_B in Equation 1 on calculated excitation energies

1. Test of the value of " N_{config} " (the total number of instantaneous configurations in the sample) used in Equation 2, $N_{config} = 200, 300, 400, 500, 600, 650.$

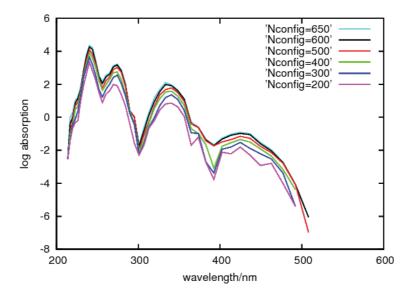
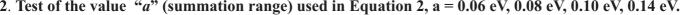



Figure 1. Spectra simulated from different numbers of configurations.

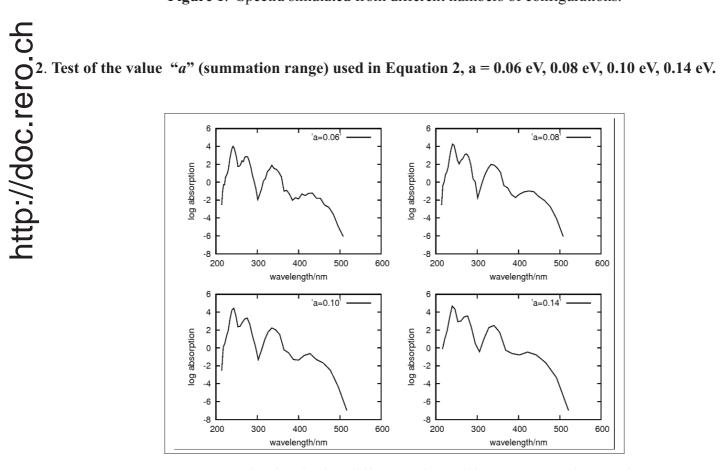


Figure 2. Spectra simulated using different values of the parameter *a* in Equation 2.

3. The effect of the choice of ρ_B in Equation 1 on calculated excitation energies

Model:

Fluorenone: $C_{13}H_8O$ (22 atoms), Environment: $Si_{50}Al_{16}K_{16}O_{163}H_{62}$ (307 atoms), Total net charge=0. The cut bonds are saturated by hydrogen atoms.

The method to generate electron density of

the $Si_{50}Al_{16}K_{16}O_{163}H_{62}$ cluster.

a) $\rho_{\text{B}}~$ from Kohn-Sham calculations

b) ρ_B as superposition of spherically symmetric atomic densities

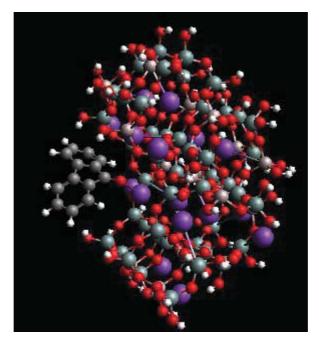


Figure 3. Structure of the cluster $Si_{50}Al_{16}K_{16}O_{163}H_{62}(Fl)$

Excitation energies of fluorenone embedded in the small cluster:

a) $\rho_{B}~$ from Kohn-Sham calculations for the $Si_{50}Al_{16}K_{16}O_{163}H_{62}$ cluster

For each excitation: excitation energies E in a.u. and eV	, oscillator strengths f in a.u.,	dE wrt previous cycle
---	-----------------------------------	-----------------------

	no.	E/a.u.	E/eV	f	dE/a.u.					
	1	0.85125E-01	2.3164	0.16012E-02	0.54E-08					
	2	0.11786	3.2072	0.26010E-02	0.32E-08					
	3	0.12334	3.3562	0.26969E-01	0.17E-07					
	4	0.13718	3.7328	0.57932E-02	0.25E-07					
	5	0.15105	4.1102	0.46147E-01	0.46E-07					
	6	0.16029	4.3616	0.20362	0.22E-07					
	7	0.16272	4.4279	0.37489	0.23E-07					
	8	0.16615	4.5211	0.11445E-01	0.26E-07					
C	9	0.17526	4.7690	0.46239E-02	0.45E-06					
0	10	0.17772	4.8361	0.30761E-01	0.20E-06					
rer										
C										
op/	\mathcal{O}_{B} b) ρ_{B} as superposition of spherically symmetric atomic densities in the Si ₅₀ Al ₁₆ K ₁₆ O ₁₆₃ H ₆₂ cluster									
ttp://	8 0.16615 4.5211 0.11445E-01 0.26E-07 9 0.17526 4.7690 0.46239E-02 0.45E-06 10 0.17772 4.8361 0.30761E-01 0.20E-06 b) ps as superposition of spherically symmetric atomic densities in the Si ₅₀ Al ₁₆ K ₁₆ O ₁₆₃ H ₆₂ cluster For each excitation: Excitation energies E in a.u. and eV, oscillator strengths f in a.u., dE wrt previous cycl no. E/a.u. E/eV f dE/a.u.									
Ļ	no.	E/a.u.	E/eV	f	dE/a.u.					

no.	E/a.u.	E/eV	f	dE/a.u.
1	0.86309E-01	2.3486	0.21357E-02	0.17E-08
2	0.11683	3.1791	0.67695E-02	0.60E-08
3	0.12151	3.3066	0.30147E-01	0.21E-07
4	0.13774	3.7480	0.64472E-02	0.14E-07
5	0.15148	4.1220	0.77947E-01	0.39E-07
6	0.15773	4.2921	0.71092E-01	0.12E-07
7	0.16021	4.3596	0.21680E-01	0.37E-07
8	0.16306	4.4371	0.42017	0.13E-07
9	0.17292	4.7054	0.56213E-02	0.50E-08
10	0.17882	4.8660	0.47209E-01	0.48E-06