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Electric-field-induced polar order and charge localisation in

LaAlO3/SrTiO3 heterostructures

Infrared ellipsometry response of SrTiO3

Figure S1 shows the infrared response of SrTiO3 at representative temperatures of 10 and

300 K as measured with ellipsometry on a commercially available single crystalline sub-

strate (Crystec). Figure S1(a) display the ellipsometric angles Ψ and Δ at an incidence

angle of 80◦ and Figure S1(b) the derived real part of the optical conductivity. The

black arrows mark the eigenfrequencies of the transverse-optical (TO) infrared-active

phonon modes of the cubic phase at 300 K. These are the soft mode at ∼ 95 cm−1

(which decreases to ∼ 15 cm−1 at 10 K), the external mode at 175 cm−1, and the

bending mode at 544 cm−1. The red arrow indicates the R-mode which develops below

the anti-ferrodistortive phase transition at 105 K where the crystal structure becomes

tetragonal. The temperature and electric field dependence of this R-mode is shown in

detail in Figs. 1(d)-(g) and 2(c) and 2(d) of our paper. The grey arrow indicates the

position of the highest longitudinal optical (LO) mode at ∼ 860 cm−1.
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Figure S1: Ellipsometry spectra of a SrTi16O3 crystal at 10 and 300 K, respectively.

a, Ellipsometric angles Ψ and Δ and b, derived optical conductivity σ1.

Note the different energy ranges. The black arrows indicate the phonon

eigenfrequencies of the cubic phase at 300 K. The red arrow marks the R-

mode which becomes weakly IR-active in the tetragonal phase below 105 K.

The position of the highest LO mode (the so-called LO edge) is marked by

the grey arrow in a.
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List of the samples

Table S1 gives an overview of the LAO/STO heterostructures and the measurements

which have been performed. The nominal thickness of the LAO layer is given in terms

of the number of unit cells. The “++” symbol in the column FIR indicates that a

sizeable electric field induced anomaly (splitting) of the R-mode has been observed. A

weak phonon anomaly is indicated by the “+” sign. The “0” sign indicates that no such

anomaly of the R-mode has been observed for voltages Vg ≤ ±250 V. The FIR spectra

showing the relatively weak field-induced anomaly of the R-mode in sample LS3 1 are

displayed in Figure S2. The sample Ti-STO is a STO substrate that has been coated

with a ∼ 4 nm thick Ti layer. It exhibits no sign of a field-induced anomaly of the

R-mode in the measured range of Vg ≤ ±250 V. A shift of the LO edge is observed

in the MIR ellipsometry spectra as discussed later and shown in Figure S4 for samples

with n ≥ 4. A strong shift of the LO edge is marked with “++” and “0” indicates that

no shift of the LO edge has been observed as function of the applied gate voltage of

Vg ± 250 V.

Table S1: Overview of the measurements that have been performed on the LAO/STO

heterostructures. The thickness of the LAO layer is given in terms of the

number of unit cells.

sample name LAO thickness (uc) FIR MIR X-ray Resistance

LS-5.5 1 5.5 ++ ++
√ √

LS-3 1 3 + 0 – –

LS-5.5 2 5.5 ++ – – –

LS-4.5 4.5 ++ ++ – –

LS-3 2 3 + – – –

Ti-STO 0 0 – – –

Field-dependent ellipsometry spectra of samples with a LAO

layer thickness of 3 unit cells

Figure S2 shows the gate-voltage-dependence of the R-mode in the optical conductivity

as measured with far-infrared ellipsometry on the LAO/STO heterostructures LS-3 1.

Only a faint signature of a splitting and softening of the R-mode is observed here. The

onset of this anomaly occurs at a gate voltage of ∼ −150 V which is considerably higher

than in LS-5.5 1 as shown in Figure 1(d) of the manuscript. As compared to the spectra

of LS-5.5 1 in Fig. 1(d) and 1(e) of the manuscript, the intensity reduction of the original

mode at 438 cm−1 is weaker and the field-induced, additional peaks are less pronounced.
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Accordingly, for the LS-3 1 sample it is difficult to determine the peak positions and

thus the magnitude of the splitting of the R-mode.
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Figure S2: Field-dependent optical conductivity spectra of LS-3 1 which have been ob-

tained at T = 10 K. The R-mode shows only a weak and broad additional

feature as a negative gate voltage is applied to the heterostructure.

Polarisation of SrTiO3 along the [110]c or [111]c axes

In Fig. 1(c) of the paper we show a sketch of the ferroelectric polarisation due to

a displacement for the Ti cations along the crystallographic [001]c direction (in cubic

notation). Other possible Ti displacements are discussed in the following.

A shift of the Ti cation along the [110]c direction is schematically shown in Fig-

ure S3(a). Two of the Ti-O bonds are shortened and their eigenfrequency is blue-shifted

here whereas four bonds are elongated and their eigenfrequencies are red-shifted as in-

dicated by the colours of the bonds, respectively. Similar to the case of the [001]c
displacement described in the paper, the R-mode thus also becomes anisotropic and

splits into two branches corresponding to rotations and movements that involve either

one blue and three red bonds or two blue and two red bonds, respectively.

It has recently been argued in Ref. [1] that such a [110]c displacement occurs in the

ferroelectric state of SrTi18O3 for which the anomaly of the R-mode is shown in Figs.

2(a) and 2(b) of the paper.

The third possible scenario is shown in Figure S3(b) where the Ti atom is displaced

along the [111]c direction. This results in an equal number of three shorter and three

longer bonds for which the R-mode remains isotropic. This case does not seem to be

realised in SrTi18O3 nor in the LAO/STO heterostructures where the R-mode exhibits

a clear splitting and therefore becomes anisotropic as is discussed in the manuscript.
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Figure S3: a, Sketch of the (exaggerated) polar displacement of the central Ti atom in

a TiO6 octahedron of STO along the [110]c axis and b, along the [111]c axis.

The resulting polarisation is indicated by the orange vectors.

Modelling of the R-mode at negative gate voltage

For the fitting of the split R-mode at Vg = −250 V in Figure 1(d) the following procedure

has been applied. At first we have performed a fit of the spectrum at +250 V where

only the R-mode due to the paraelectric SrTiO3 is present. This fit was performed using

three Lorentz oscillators, one for the R-mode at 438 cm−1 and one each for the soft mode

at very low frequency and the stretching mode at ∼ 540 cm−1 that are both well outside

the spectral range that is shown in Fig. 1(d). The same modes and parameters were

then subsequently used to account for the response of the paraelectric part of the SrTiO3

substrate in the spectrum at Vg = −250 V. Here we introduced in addition a polar SrTiO3

layer of thickness dpolar at the LAO/STO interface in which the R-mode is softened and

split into two peaks. For this additional layer we used the same parameters for the soft

mode and the stretching mode, whereas the layer thickness, the eigenfrequencies, width

and the spectral weight of the R-modes were fitted. The optical response due to the

additional LAO layer on top of STO was found to be vanishingly small in the relevant

spectral range between 410 and 460 cm−1 and therefore was neglected.

Electric-field-induced anisotropy of the LO edge in LAO/STO

heterostructures

The LO edge of the STO substrate in LS-5.5 1 at 10 K exhibits an electric-field-dependent

unipolar change of the LO edge. As the polarity of the gate voltage is swept from

Vg = +250 V toward Vg = −250 V, the LO edge of the STO substrate starts to shift

toward higher energies and develops a feature which indicates an anisotropy of the LO

edge. In Figure S4(a), the field-induced hardening of the LO edge is shown in terms of

the ellipsometric angle, Ψ, for Vg ≤ ±250 V. It turns out that the properties of the LO
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edge are closely related to the anomalous hardening of the soft-mode that is shown in

Figures 1(h) and 1(i) in the manuscript.
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Figure S4: a Field-induced shift of the LO edge of the STO substrate in LS-5.5 1 at

10 K, shown in terms of the ellipsometric angle Ψ. b Comparison of the

voltage-dependent experimental data (open symbols) and the model fit (solid

lines) for Vg = +250 V and Vg = −250 V, respectively.

We have modeled the MIR spectra using a similar procedure as for the fitting of the

FIR response in the vicinity of the R-mode. We assumed that the STO substrate of

the heterostructure remains in the paraelectric phase at the positive gate voltage of

Vg = +250 V. This spectrum has been fitted first using a model dielectric function

that consists of three Lorentz oscillators which account for the soft mode, the external

mode, and the bending phonon mode of STO, respectively. The phonon modes are

parametrised using values that have been obtained from the analysis of FIR ellipsometry

spectra of another bulk SrTiO3 sample. At the negative gate voltage of Vg = −250 V,

a layer has been introduced on the STO side of the interface which accounts for the

field-induced hardening of the soft mode eigenfrequency parallel to the field direction

which is defined as the c-axis. The thickness of the interfacial layer has been fixed to the

value of dpolar = 1 μm as obtained from the fitting of the FIR spectra. For the modelling

of the MIR spectrum at Vg = −250 V, the in-plane dielectric function of the polarized

interfacial layer is assumed to be identical to the response of the paraelectric substrate

at Vg = +250 V. For the out-of-plane component of the dielectric function, the value of

ε∞,c, the position ωc, and the spectral weight of the soft mode are fitted. This fit yields

an anisotropy of the soft mode eigenfrequencies in the near interface region of the STO

substrate corresponding to ωa,b = 18 cm−1 and ωc = 19.8 cm−1 which is consistent with

the results from the analysis of the THz response shown in the manuscript in Figures 1(h)

and (i). In Figure S4(b), the solid lines show the result of the model fit for Vg = ±250 V,
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respectively, which is compared to the measured data.

Soft mode hardening in ferroelectric SrTi18O3

In the paraelectric state the peak position of the soft mode decreases from ∼ 95 cm−1

at 300 K to ∼ 15 cm−1 at low temperature [2, 3, 4]. In the pyroelectric state, the

soft mode is expected to harden and to become anisotropic [5]. In the following we

show that such a behaviour is observed in the ferroelectric phase of the SrTi18O3 crystal

with TCurie = 23 K. Figure S5 shows the conductivity spectra derived from a Kramers-

Kronig transformation of reflectivity data. These confirm that the soft mode hardens

by ∼ 5 cm−1 between 30 and 5 K. Similar values have been previously obtained from

Raman measurements on SrTi18O3 crystals [6].
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Figure S5: Optical conductivity spectra of the SrTi18O3 crystal showing the soft mode

softening in the paraelectric phase down to 30 K and the subsequent harden-

ing at temperatures below TCurie = 23 K.
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