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Abstract — The recommender system is a very promising way to address the problem of
overabundant information for online users. Although the information filtering for the online
commercial systems has received much attention recently, almost all of the previous works are
dedicated to design new algorithms and consider the user-item bipartite networks as given and
constant information. However, many problems for recommender systems such as the cold-start
problem (i.e., low recommendation accuracy for the small-degree items) are actually due to the
limitation of the underlying user-item bipartite networks. In this letter, we propose a strategy
to enhance the performance of the already existing recommendation algorithms by directly
manipulating the user-item bipartite networks, namely adding some virtual connections to the
networks. Numerical analyses on two benchmark data sets, MovieLens and Netfliz, show that
our method can remarkably improves the recommendation performance. Specifically, it not only
improves the recommendations accuracy (especially for the small-degree items), but also helps the

recommender systems generate more diverse and novel recommendations.

Introduction. — In the Internet era, the rapid growth
of the World Wide Web leads to a serious problem of infor-
mation overload: people are now facing too many choices
to be able to find out the most relevant ones [1]. So far,
the most promising way to efficiently filter the abundant
information is to employ the personalized recommenda-
tions [2,3]. That is to say, using the personal history record
of a user to uncover his preference and to return each
user the most relevant items according to his taste [4]. For
instances, youtube . com uses people’s video viewing record
to provide individual suggestions for their potential inter-
ested videos.

There are already many recommendation algorithms for
the online user-item commercial systems. Among these
algorithms, the simplest ones are the popularity-based
recommendations, which recommend the most popular
items to users. However, such recommendations are not
personalized so that identical items are recommended to
individuals with far different tastes. By comparison, the
collaborative filtering makes use of collective data from
individual preferences to provide personalized recommen-
dations [5,6]. Recently, recommendation algorithms have
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been proposed from a physics perspective. For example,
the process of mass diffusion (MD) was applied on the
user-item bipartite networks to explore items of potential
interest for a user [7]. The mass diffusion algorithm
outperforms the previous ones in the recommendation
accuracy. However, such method is still biased to popular
items even if individual preferences are considered. An
alternative approach, based on the heat conduction (HC)
on the user-item graphs, was thus introduced [8]. This
algorithm provides users with many novel items and leads
to diverse recommendations among users. However, HC
has low accuracy compared with MD. This drawback is
eventually solved by combining MD with HC in a hybrid
approach, which can be well tuned to obtain significant
improvement in both recommendation accuracy and item
diversity [9]. More recently, the long-term influence of
such hybrid approach on network evolution has been
studied [10].

However, all these methods focus on improving the rec-
ommendation from the system point of view. The recom-
mendation on the items with little information is actually
still a critical challenge [4]. For the fresh or unpopular
items (also called niche items), it is very difficult to predict
the potential users who are going to be interested in
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them due to the lack of historical records. Such problem
is always referred as item cold-start problem and many
researches have been dedicated to solve this problem.
Related works concerning this issue are mainly based
on modifying the existing methods by introducing some
parameters [11-13].

Different from previous works, we tried to solve the
item cold-start problem through a very fundamental way
in this letter. Instead of designing a new recommenda-
tion algorithm, we solve the item cold-start problem by
directly manipulating the underlying user-item bipartite
networks [14,15]. Actually, the idea of the network manip-
ulation has been applied to enhance many kinds of network
functions such as synchronization [16,17], traffic dynam-
ics [18], percolation [19,20], navigation [21] and so on. In
our case, we first analyze the historical record of each
item and accordingly add some virtual connections to the
networks (especially for the small-degree items) to provide
the recommendation algorithm with more information. By
using the MD and the hybrid algorithms, we find that the
recommendation accuracy for the small-degree items can
be largely enhanced after manipulating the networks. The
further test on the overall recommendation metrics and
our method are shown to help the MD and the hybrid
algorithms to significantly improve the recommendation
diversity.

Recommendation algorithms. — Online commercial
systems can be well described by the user-item bipartite
networks. If a user collects an item, a link is drawn
between them. Specifically, we consider a system of N
users and M items represented by a bipartite network with
adjacency matrix A, where the element a;, =1 if a user ¢
has collected an item «, and a;, = 0 otherwise (throughout
this paper we use Greek and Latin letters, respectively, for
item- and user-related indices).

There are many recommendation algorithms. In this
letter, we mainly consider the mass diffusion (MD), heat
conduction (HC) and the corresponding hybrid algorithms
of these two algorithms (Hybrid). We first briefly describe
these algorithms.

For a target user i, the MD algorithm [7] starts by
assigning one unit of resource to each item collected by ¢,
and redistributes the resource through the user-item
network. We denote the vector f? as the initial resources
on items, where the a-th component f! is the resource
possessed by item a. Recommendations for the user ¢ are
obtained by setting the elements in f’ to be f. =a;q, in
accordance with the items the user has already collected.

The redistribution is represented by fi = Wf?, where

N
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is the diffusion matrix, with kgzzllil ajp and kj =
Zy:l a; denoting the degree of item [ and user j,
respectively. The resulting recommendation list of
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Fig. 1: The illustration of the (a) MD and (b) HC algorithms on
the bipartite user-object network. Users are shown as circles;
objects are squares. The target user is indicated by the shaded
circle.

uncollected items is then sorted according to ﬁ in
descending order. Physically, the diffusion is equivalent
to a three-step random walk starting with k; units of
resources on the target user ¢ and the process can be
seen in fig. 1(a). The recommendation score of an item
is taken to be its amount of gathered resources after
the diffusion. This algorithm was shown to enjoy a high
recommendation accuracy.

The HC algorithm [8] works similarly to the MD
algorithm, but instead it follows a conductive process
represented by

N
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Physically, the recommendation scores can be interpreted
as the temperature of an item, which is the average
temperature of its nearest neighborhood, i.e., of its
connected users. The higher the temperature of an item,
the higher its recommendation score. The HC process
can be seen in fig. 1(b). By using this algorithm, the
items with small degree can receive a relatively high
recommendation score and finally be promoted to appear
in the top recommendation list.

The Hybrid algorithm of MD and HC was proposed
in [9], with the new recommendation score h, given by
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where the parameter A adjusts the relative weight between
the two algorithms. When A increases from 0 to 1, the
Hybrid algorithm changes gradually from HC to MD. Such
hybrid approach was shown to achieve both accurate and
diverse recommendation.

Data. — In order to test the performance of the
recommendation results, we use two benchmark data sets



/ldoc.rero.ch

http

in this letter. The first one is the MovieLens data [22]
which has 1682 movies (items) and 943 users. The other is
Netflix data [23] consisting of 10000 users and 6000 movies.
The data sets are random samplings of users activity
records in these two online systems. In both data sets,
users can vote movies by giving different rating levels from
1 to 5 (i.e., worst to best). Here, only the ratings larger
than 2 are considered as a link. After this preliminary
filtering, there are finally 82520 links in MovieLens data
and 701947 links in the Netflix data. Each data is then
randomly divided into two parts: the training set (ET)
and the probe set (ET). The training set contains 90%
of the original data and the recommendation algorithm
runs on it. The probe set has the remaining 10% of the
data and will be used to test the performance of the
recommendation results. In our simulation, we actually
try several different divisions of the ET and E¥, and the
results are quite robust.

The network manipulating method. — The
network manipulating (NM) method takes place after
dividing the data into E¥ and ET. The main idea of
NM is to add some virtual links to the training set E7,
so that the niche items will have more information to
provide to the recommendation algorithm. Denoting @
as the fraction of links added, the total number of virtual
links will be Q|ET|. For each item, the probability to
receive virtual links is related to its degree, i.e., po < k5 °,
where ¢ is a tunable parameter. When ¢ >0, the items
with smaller degree tend to receive more links, and vice
versa. Supposing an item « is selected to receive a link,
the virtual link will connect to the user who enjoys the
highest average similarity to the already existing selectors
of the item «. In this letter, the similarity is calculated
by the Salton Indez [24] as
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where I'(¢) denotes the set of neighbors of user i. After
adding virtual connections to the networks, we will employ
the MD revision and the Hybrid algorithms to do the
recommendation and the combinations are denoted as
“MD with NM” and “Hybrid with NM”, respectively.

In the NM method, the added virtual links may happen
to be one of the links in E¥. After running the recom-
mendation process, the mass diffusion and Hybrid algo-
rithms will generate the final recommendation list by
sorting the recommendation score of all the uncollected
items for the target user. In our simulation, if there is
a virtual link connecting the target user and an item,
this item is still considered as an uncollected item for the
target user. Therefore, the NM method does not reduce
the number of candidate items for recommendation (i.e.,
the ratio of probe-set links out of all the non-existing links
stays unchanged).

We remark that the NM method is quite efficient in
sparse networks. For each item, the NM method has to

calculate the average Salton similarity between the users
who already selected it and the users who have not selected
it. Since calculating the Salton similarity between users
costs O(k;), the computational complexity for the NM
procedure is O(Mkq (N — ko )k;). Since ko < N, it can be
further written as O(Mko(N — ko )k;) = O(MkoNk;) =
O((M*ExN=xE)/(Mx*N))=0(E?), where E is the
total number of links in the network.

Metrics for recommendation. — An effective recom-
mendation should be able to accurately find the items
that users like. In order to measure the recommendation
accuracy, we make use of the ranking score (R). Specif-
ically, R measures whether the ordering of the items in
the recommendation list matches the users’ real prefer-
ence. As discussed above, the recommender system will
provide each user with a ranking list which contains all
his uncollected items. For a target user 7, we calculate the
position for each of his link in the probe set. Supposing
one of his uncollected items « is ranked at the 5th place
and the total number of his uncollected items is 100, the
ranking score R;, will be 0.05. In a good recommendation,
the items in the probe set should be ranked higher, so that
R will be smaller. Therefore, the mean value of the R over
all the user-item relations in the probe set can be used to
evaluate the recommendation accuracy as
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The smaller the value of R, the higher the recommendation
accuracy.

In reality, online systems only present users with only
the top part of the recommendation list. Therefore, we
further consider another more practical recommendation
accuracy measurement called precision, which only takes
into account each user’s top-L items in the recommenda-
tion list. For each user 7, his precision of recommendation
is calculated as

Pi(L): . ) (6)

where d;(L) represents the number of user ’s deleted links
contained in the top-L places in the recommendation list.
For the whole system, the precision P(L) can be obtained
by averaging the individual precisions over all users with
at least one link in the probe set.

Predicting what a user likes from the list of best sellers is
generally easy in recommendations, while uncovering the
users’ very personalized preferences (i.e., uncovering the
unpopular items in the probe set) is much more difficult
and important. Therefore, diversity should be considered
as another significant aspect for recommender systems
besides accuracy. In this letter, we employ two kinds of
diversity measurement: interdiversity and novelty.

The interdiversity mainly consider how users’ recom-
mendation lists are different from each other. Here, we
measure it by the Hamming distance. Denoting C;;(L)
as the number of common items in the top-L place of
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Fig. 2: (Color online) The overall ranking score R under
different § and @ in (a) MovieLens and (b) Netflix, and the local
ranking score Ri<s under different § and @ in (¢) MovieLens
and (d) Netflix.

the recommendation list of users ¢ and j, their Hamming
distance can be calculated as

Hiy(p)—1- Calk), (7)

L

Clearly, H;;(L) is between 0 and 1, which are, respectively,
corresponding to the cases where ¢ and j have the
same or entirely different recommendation lists. Again,
averaging H,;(L) over all pairs of users, we obtain the
mean Hamming distance H(L). A more personalized
recommendation results in a higher H(L).

The novelty measures the average degree of the items
in the recommendation list. For those popular items, users
may already get them from other channels. However, it is
hard for the users to find the relevant but unpopular item.
Therefore, a good recommender system should prefer to
recommend small-degree items. The metric novelty can
be expressed as

N =7 3 ha ®)
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where O represents the recommendation list for user i.
A low mean popularity N (L) for the whole system indi-
cates a high novel and unexpected recommendation of
items.

Results. — We will begin our analysis with comparing
the “MD with NM” and the original MD algorithm. We
first investigate the result of the ranking score R under
different 6 and Q. Since the NM method partially aims
at solving the item cold-start problem, we also define a
local ranking score which is the average ranking score of
the items with degree not larger than 5 (denoted as Ry<s).
The results on MovieLens and Netflix data are reported in
fig. 2. Clearly, with more links added to the network, Ri<s
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Fig. 3: (Color online) The overall ranking score R and the local
ranking score Rjy<5 of the MD with NM method under different
§ when Q =0.8 in MovieLens ((a), (¢)) and @ =0.2 in Netflix
((b), (d)). The vertical dashed line is the optimal § we used.

becomes smaller. Consequently, the overall R is improved.
Given the value of @), a smaller § yields a lower Rjs,
which means the recommendation for the small degree
items becomes more accurate. However, the overall R does
not monotonously change with §. For each @, there is a
corresponding optimal & which yields the best R.

For solving the item cold-start problem, figs. 2(c)
and (d) suggest that a large @ generally works better.
However, in order to keep a reasonable computational time
of the recommendation algorithm, we select @ =0.8 in
MovieLens data and @ =0.2 in Netflix data. The results
of the ranking score are studied more detailedly in fig. 3.
In this figure, besides the curve of the MD with NM,
we plot the results of the original MD (without adding
any virtual links) as a comparison. For overall R, § near
0 clearly works better. However, positive § is beneficial
for improving the ranking score for small-degree items. In
our simulation, we find that §*=0.1 is the best trade-
off between R and Rypgs. As we can see from fig. 3,
under this §*, the overall R can outperform the original
MD algorithm in both data sets. Moreover, the MD with
MN method enjoys a lower Rjy<s than the original MD
algorithm in both data sets. For the value of each metric,
see table 1.

To show how the ranking score varies on items with
different value of degrees, we additionally investigate
an item-degree-dependent ranking score Ry [25]. Ry is
defined as the average ranking score over items with the
same value of degrees. In fig. 4, the relation between Ry
and the item degree k is displayed, respectively, for the
MovieLens and Netflix at the optimal parameters 6* = 0.1.
Besides the MD with NM method, we also plot the results
of original MD for comparison. Obviously, the ranking
score of small-degree items can be significantly improved
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Table 1: The performance of the original MD and the MD with NM methods in MovieLens and Netfliz data. The recommendation
list length is set as L = 20. In the MD with NM method, the parameters are Q = 0.8, § = 0.1 in MovieLens and Q@ =0.2, § =0.1
in Netflix. The entries corresponding to the best performance over all methods are emphasized in black.

Network Method R Ri<s  P(20)  H(20)  N(20)
Original MD ~ 0.0933  0.7324  0.1427 0.7161  303.8

MovieLens MD with NM  0.0861 0.5430 0.1451 0.7437 293.3
Original MD  0.0452  0.5695 0.0808  0.5470  2841.6

Netflix MD with NM  0.0446 0.4986 0.0821 0.5618 2829.8

Table 2: The performance of the original Hybrid and the Hybrid with NM methods in MowvieLens and Netfliz data. The
recommendation list length is set as L =20. In the Hybrid with NM method, the parameters are Q@ =0.1, § = 0.1 in MovieLens
and Q =0.1, § = 0.1 in Netflix. The entries corresponding to the best performance over all methods are emphasized in black.

Network Method R Ri<s P(20)  H(20) N(20)
Original Hybrid ~ 0.0759  0.5059  0.1532  0.8055 276.7
MovieLens Hybrid with NM  0.0755 0.4898 0.1549 0.8173 269.9
Original Hybrid 0.0446 0.5532  0.0810  0.5491  2839.1
Netflix Hybrid with NM  0.0447 0.5232 0.0816 0.5563 2834.7
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by adding the virtual connections. Moreover, the ranking
score of large-degree items can be effectively preserved.

As discuss above, another way to estimate the accuracy
of the recommendation results is the precision. We select
the recommendation list L =20, and report the precision
of MD with NM, the original MD algorithm in table 1.
In addition to accuracy, the recommendation diversity is
of great significance. For interdiversity, we can estimate
how the recommendation results are different from user
to user. A larger Hamming distance indicates a more
personalized recommendation. Besides, the novelty is also
an important aspect. With a small novelty, the average
degree of the recommended items are low, so that more
fresh items will appear in the recommendation list. Setting
the recommendation list length as L =20, the related
results of different methods are reported in table 1. We
can see that all these metrics are improved by the MD
with NM method.

We then investigate the effect of NM method on the
Hybrid algorithm. We first set @ = 0.1 and § = 0.1 in both
data sets, the results are shown in fig. 5. As we can see,
the minimum value of the Hybrid method stays almost
unchanged after adding the virtual links. However, the

Fig. 5: (Color online) The overall ranking score R and the
local ranking score Ri<s of the Hybrid with NM method under
different A when @ =0.1, § =0.1 in MovieLens ((a), (c)) and
Q=0.1, §=0.1 in Netflix ((b), (d)). The black and green
vertical dashed lines are the optimal A* for the original Hybrid
method and the Hybrid with NM method, respectively.

Rj<5 under the optimal A* in the Hybrid with NM method
is lower than that in the original Hybrid method. The
result indicates that the NM method can further solve the
item cold-start problem in the Hybrid method without
harming at all the overall recommendation accuracy. In
our simulation, we try also large @ and §, and the
results show that the optimal R for the Hybrid algorithm
becomes larger. Therefore, the Hybrid algorithm benefits
from the NM method with relatively small @ and .
Moreover, we find that the NM method can improve the
recommendation diversity of the Hybrid algorithm. The
detail value of each metric can be seen in table 2.

In the original Hybrid algorithm, the parameter A can
adjust the amount of score that the Hybrid algorithm
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gives to the small-degree items. When A is close to 0, the
HC algorithm has more weight in the Hybrid algorithm
so that the small degree items will obtain more resource
from the 3-step diffusion process. However, if a user cannot
reach a certain item from the diffusion, the final resource
of the item will be always 0 when A is changed. In the
NM method, the connectivity of the small-degree items
can be effectively increased, so that some potential users
who are interested in a small-degree item might be able to
reach such item in the 3-step diffusion. Therefore, the NM
method can further improve the recommendation accuracy
of small-degree items in the Hybrid algorithm.

Conclusion. — Information abundance is a serious
problem nowadays for online users. In order to filter irrele-
vant information, many recommendation algorithms have
been proposed. In this field, one of the biggest challenges
is the item cold-start problem, i.e., the new items have
too little historical record to be correctly recommended.
So far, all the methods dedicated to solve this problem
focused on modifying the existing methods by introducing
some parameters. In this letter, we try to solve the problem
by directly adding some virtual connection to the bipartite
networks so that the niche items have enough information
for the recommendation algorithms. Interestingly, besides
improving the recommendation accuracy (especially for
small-degree items), our method can enhance the recom-
mendation diversity compared to the well-known Hybrid
method of mass diffusion and heat conduction algorithms.
In recommender systems, note that there are also the user
cold-start problem and the more difficult cold-start prob-
lem for both users and items. These problems have to be
addressed in other ways.

In practice, it is actually not necessary to add too many
virtual links to the networks to solve the item cold-start
problem. Generally, adding 10% links will be sufficient
to further enhance the accuracy for those not so popu-
lar items in the Hybrid algorithm. Therefore, our method
can be easily applied to real online commercial systems
without increasing too much the computational complex-
ity of the recommendation process. Finally, whether the
current NM method is the optimal one for each recom-
mendation algorithm is still unknown. For instance, some
special algorithms such as the heat conduction algorithm,
which mainly recommends niche items, might be required
for a different virtual link adding strategy. Related prob-
lems ask for further investigation in the future.

X ok ok

We would like to thank Prof. YI-CHENG ZHANG for
helpful suggestions. This work is partially supported
by the Foundation of Jiangxi Provincial Department of

Education (GJJ. 10696) and National Natural Science
Foundation of China under Grant No. 71261009.

REFERENCES

[1] BRODER A., KUMAR R., MoGHOUL F., RAGHAVAN P.,
RAJAGOPALAN S., STATA R., TOMKINS A. and WIENER
J., Comput. Netw., 33 (2000) 3009.

[2] Apomavicius G. and TUZHILIN A., IEEE Trans. Know.
Data Eng., 17 (2005) 734.

[3] CacHEDA F., CARNEIRO V., FERNANDEZ D. and
FOorMOSO V., ACM Trans. Web, 5 (2011) 1.
[4] LG L., Mepo M, YEeunc C. H., ZHanc Y.-C.

ZHANG Z.-K. and Zuou T., Phys. Rep., 519 (2012) 1,
10.1016/j.physrep.2012.02.006.

[6] KonsTaN J. A., MILLER B. N., MALTZ D., HERLOCKER
J. L., GorpON L. R. and RIeEDL J., Commun. ACM, 40
(1997) 77.

[6] HERLOCKER J. L., KONSTAN J. A., TERVEEN K. and
RiepL J. T., ACM Trans. Inf. Syst. Secur., 22 (2004) 5.

[7] Zuou T., REN J., MEDO M. and ZHANG Y.-C., Phys.
Rev. E, 76 (2007) 046115.

[8] ZHANG Y.-C., BLATTNER M. and YU Y.-K., Phys. Rev.
Lett., 99 (2007) 154301.

[9] Znou T., Kuscsik Z., Liu J.-G., MEDO M., WAKELING

J. R. and ZHANG Y.-C., Proc. Natl. Acad. Sci. U.S.A.,

107 (2010) 4511.

ZENG A., YEUNG C. H., SHANG M.-S. and ZHANG Y .-C.,

EPL, 97 (2012) 18005.

[11] Lu L. and Liu W., Phys. Rev. E, 83 (2011) 066119.

Quu T., CHEN G., ZHANG Z.-K. and Zuou T., EPL, 95

(2011) 58003.

Liv J.-G., Zuou T. and Guo Q., Phys. Rev. E, 84 (2011)

037101.

Evans T. S. and Prato A. D. K., Phys. Rev. E, 75

(2007) 056101.

ZHANG C.-J. and ZENG A., Physica A, 391 (2012) 1822.

16] NisHIKAWA T. and MOTTER A. E., Proc. Natl. Acad. Sci.

U.5.A., 107 (2010) 10342.

ZENG A., Lu L. and ZHou T., New J. Phys., 14 (2012)

083006.

YANG H., NiE Y., ZENG A., FAN Y., HU Y. and D1 Z.,

EPL, 89 (2010) 58002.

SCHNEIDER C. M., MOREIRA A. A., ANDRADE J. S. Jr.,

HAvVLIN S. and HERRMANN H. J., Proc. Natl. Acad. Sci.

U.S.A., 108 (2011) 3838.

ZENG A. and Liu W., Phys. Rev. E, 85 (2012) 066130.

L1t G., REls S. D. S., MOREIRA A. A., HAVLIN S.,

STANLEY H. E. and ANDRADE J. S. jr., Phys. Rev. Lelt.,

104 (2010) 018701.

2] http://www.grouplens.org/.

3] http://www.netflixprize.com/.

SALTON G. and McGILL M. J., Introduction to Modern

Information Retrieval (McGraw-Hill, Auckland) 1983.

Zuou T., JianG L.-L., Su R.-Q. and ZHANG Y .-C., EPL,

81 (2008) 58004.



