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Abstract

The barycentric rational interpolants introduced by Floater and Hormann in 2007

are “blends” of polynomial interpolants of fixed degree d. In some cases these ratio-

nal functions achieve approximation of much higher quality than the classical poly-

nomial interpolants, which, e.g., are ill-conditioned and lead to Runge’s phenomenon

if the interpolation nodes are equispaced. For such nodes, however, the condition of

Floater–Hormann interpolation deteriorates exponentially with increasing d. In this

paper, an extension of the Floater–Hormann family with improved condition at equi-

spaced nodes is presented and investigated. The efficiency of its applications such as

the approximation of derivatives, integrals and primitives of functions is compared

to the corresponding results recently obtained with the original family of rational

interpolants.
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1 Introduction

In 2007, Floater and Hormann introduced a family of barycentric rational interpolants [12].
For the interpolation of a function f : [a, b] → R whose values are given at n + 1 distinct
nodes a = x0 < x1 < . . . < xn = b, they choose a nonnegative integer d ≤ n and define the
rational function

rn[f ](x) =

∑n−d
i=0 λi(x)pi(x)∑n−d

i=0 λi(x)
, (1)
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where pi(x) is the polynomial of degree ≤ d interpolating the d+1 values f(xi), . . . , f(xi+d),
and

λi(x) =
(−1)i

(x− xi) · · · (x− xi+d)
.

This rational function interpolates and is analytic, has no real poles and, in the extreme
case d = n, reduces to the polynomial interpolant of degree ≤ n of f . If f ∈ Cd+2[a, b], the
approximation rate is O(hd+1) as h → 0 (under a bounded mesh ratio condition if d = 0),
where

h = max
0≤i≤n−1

(xi+1 − xi)

is the mesh size. From Theorems 2 and 3 in [12] we see that rn reproduces polynomials of
degree ≤ d and, if n− d is odd, also reproduces polynomials of degree d+ 1.

For its evaluation, the rational interpolant (1) may be written in barycentric form [4,
7, 8],

rn[f ](x) =

n∑

i=0

wi

x− xi
fi

/ n∑

i=0

wi

x− xi
, (2)

where the formulas for the weights wi are derived in Section 4 of [12] and fi = f(xi) are
the given values of the function at the nodes.

The expression (2) constitutes a good interpolant and is also suited for the approxima-
tion of derivatives of functions [6], e.g., through finite differences [17], as well as for the
approximation of integrals and antiderivatives (primitives) via quadrature rules [16]. In
particular, if the nodes may not be chosen at will and, e.g., need to be equispaced, (1) is
a much better scheme for smooth approximation than its polynomial analogue. Numeri-
cal experiments show that the approximation quality with equispaced nodes is similar to
that of splines. It was shown in [18] that it is not possible to construct a well-conditioned
method with geometric convergence from data at equispaced nodes. The authors of that
paper give a long list of various methods available at the present time for the interpolation
in equispaced nodes; see also the references therein. The condition number of (1), which
is its Lebesgue constant, is investigated in [9, 10]: it grows logarithmically with n and
exponentially with d.

In Section 2, we present an extension of the family of barycentric rational inter-
polants (2) in the equispaced case, before showing in Section 3 that this extension has
a very small Lebesgue constant for any choice of n and d. In Section 4, we investigate
some of its properties in various applications, such as the approximation of derivatives,
integrals and antiderivatives. We conclude with numerical examples in Section 5.

2 Extension of the Floater–Hormann family of bary-

centric rational interpolants

It is well known that polynomial interpolation at equispaced nodes is ill-conditioned. The
Lebesgue constant Λn grows exponentially with increasing degree n [21, 26, 13] and amounts
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to about 3 · 1012 for n = 50 already. In floating-point arithmetic, the interpolation process
will generally fail to converge whenever Λn exceeds the reciprocal of the precision of the
data, which is typically at most 1016. The rational interpolant (1) being a blend of polyno-
mial interpolants of degree ≤ d, increasing d deteriorates the condition of the interpolation
process [10]. For given data, f0, . . . , fn, rn[f ] may display high oscillations between the
nodes towards the ends of the interval for a large d. The study of the Lebesgue function
with equispaced nodes,

Λn(x) =
n∑

i=0

∣∣∣
wi

x− xi

∣∣∣
/∣∣∣∣

n∑

i=0

wi

x− xi

∣∣∣∣, (3)

explains this behaviour independently of the interpolation data. It turns out that for
given d, Λn(x) has at most d high oscillations at the ends and is much smaller in the
remaining part of the interval; see Figure 1. This behaviour in the middle part is very
similar to that of the Lebesgue function for polynomial interpolation at Chebyshev points
of the second kind, xi = cos(iπ/n). In order to improve the condition of (1), one may
want to move the high oscillations out of the interval [a, b]. One possibility is to use
the rational function only in the middle part of the interval, neglecting d sub-intervals
at each end of the interval. An alternative approach consists in adding 2d new data
values f̃−d, . . . , f̃−1 and f̃n+1, . . . , f̃n+d, corresponding to additional nodes x−d, . . . , x−1 and
xn+1, . . . , xn+d, constructed from a smooth extension of f beyond x0 and xn using only
the given data f0, . . . , fn. The global data set is then interpolated by a rational function
rn+2d and evaluated only in the interval [a, b]. The procedure resembles that of adding
“fictitious points” in finite difference approximation [13, Section 5.1] but it is not quite
the same. Yet another approach, which also constructs data outside the interval and aims
at regularizing interpolants of nonperiodic functions, is that of Fourier extensions; see [15]
and the references therein.

Here we will look more closely at the second approach which adds 2d new data values,
since the first approach is trivial and implies a waste of data. The new data may be
generated through a numerical Taylor expansion at each end of the interval, where the
involved derivatives are approximated by one-sided finite difference formulas; see [13] for
the polynomial version and [17] for the rational analogue based on the family of rational

interpolants (1). To be precise, we choose positive integers ñ ≪ n and d̃ ≤ ñ, and compute

r
(k)
ñ [f ](x0) and r

(k)
ñ [f ](xn), the kth derivatives at x0 and xn, respectively, of the rational

interpolant of the values f0, . . . , fñ and fn−ñ, . . . , fn, respectively, both with parameter d̃,
for k = 1, . . . , d̃, provided f is 2d̃+ 1 times continuously differentiable [17]. Then we set

f̃i :=






f0 +
d̃∑

k=1

r
(k)
ñ [f ](x0)

(xi − x0)
k

k!
=: Tx0

[rñ[f ]](xi), −d ≤ i ≤ −1,

fi, 0 ≤ i ≤ n,

fn +
d̃∑

k=1

r
(k)
ñ [f ](xn)

(xi − xn)
k

k!
=: Txn

[rñ[f ]](xi), n+ 1 ≤ i ≤ n + d.

(4)
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Figure 1: Lebesgue function for Floater–Hormann interpolation in equispaced nodes in
[−1, 1] with d = 2, 3, 4, 5 and n = 40.

Our extension of the Floater–Hormann family of barycentric rational interpolants is then

r̃n[f ](x) :=

n+d∑

i=−d

wi

x− xi
f̃i

/ n+d∑

i=−d

wi

x− xi
, (5)

where the barycentric weights wi are computed by means of the formula given in [12] for
n + 2d + 1 nodes. If d = 0 the rational interpolant (2) remains unchanged; we may thus
ignore this choice here.

The construction (4) only makes sense if the nodes are equispaced; we therefore suppose
from now on that we are dealing with such nodes unless otherwise stated. Before giving
the first result on r̃n, we introduce the following notation:

D := min{d, d̃}.

Theorem 1 Suppose n, d, ñ < n and d̃ ≤ ñ are positive integers and assume that f ∈

Cd+2[a− dh, b+ dh] ∩ C2d̃+1([a, a+ ñh] ∪ [b− ñh, b]) is sampled at n+ 1 equispaced nodes

in [a, b]. Then

‖r̃n[f ]− f‖ := max
x∈[a,b]

|r̃n[f ](x)− f(x)| ≤ ChD+1, (6)

where the constant C only depends on d, d̃ and derivatives of f . Moreover, r̃n has no real

poles and reproduces polynomials of degree ≤ min{d̃, d+1} if n+d is odd and ≤ D if n+d
is even.
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Proof. Suppose we are given the exact data f−d, . . . , fn+d. This allows us to form the
rational interpolant rn+2d[f ] with parameter d, whose rate of convergence is O(hd+1). We
let x ∈ [a, b] and expand the absolute value of the error as

|r̃n[f ](x)− f(x)| ≤ |r̃n[f ](x)− rn+2d[f ](x)|+ |rn+2d[f ](x)− f(x)|. (7)

The second term is bounded by Chd+1, where C is a constant depending only on d and
derivatives of f ; see [12]. (In what follows, we shall generically denote such constants by
C.) The first term of the above right-hand side may be bounded from above by

d!hd+1
∑

−d≤i≤−1
n+1≤i≤n+d

|wi|

|x− xi|
|f̃i − fi|, (8)

where we treated the denominator of (5) as in [12]:

∣∣∣∣
n+d∑

i=−d

wi

x− xi

∣∣∣∣ =
∣∣∣∣

n∑

i=−d

λi(x)

∣∣∣∣ ≥
1

d!hd+1
. (9)

Let us look at |f̃i − fi| for i = −d, . . . ,−1; for i = n + 1, . . . , n + d the argument goes

analogously. We denote by Tx0
[f ](x) the Taylor expansion of degree d̃ of f about x0. Then

|f̃i − fi| ≤
∣∣f̃i − Tx0

[f ](xi)
∣∣+

∣∣Tx0
[f ](xi)− f(xi)

∣∣

≤

d̃∑

k=1

∣∣r(k)ñ [f ](x0)− f (k)(x0)
∣∣ |xi − x0|

k

k!
+
∣∣f (d̃+1)(ξi)

∣∣ |xi − x0|
d̃+1

(d̃+ 1)!
,

for some ξi ∈ [xi, x0]. It is shown in [17] that

∣∣r(k)ñ [f ](x0)− f (k)(x0)
∣∣ ≤ Chd̃+1−k, 1 ≤ k ≤ d̃,

and since |xi − x0|
k ≤ dkhk, we have

|f̃i − fi| ≤ Chd̃+1, (10)

for i = −d, . . . ,−1 and i = n+ 1, . . . , n+ d. Finally, we notice from Section 4 in [12] that
the weights wi in (8) are bounded as

|wi| ≤
2d

d!hd
. (11)

Since x ∈ [a, b] and thus |x − xi| ≥ h, for i = −d, . . . ,−1 and i = n + 1, . . . , n + d,
the claimed result (6) follows. The fact that r̃n[f ] in (5) has no real poles is trivial since
the rational function (1) has no real poles for any number of nodes. Equation (7) with a

polynomial p instead of f reveals that the first term vanishes if deg(p) ≤ d̃ (see also (8)
and (4)) and that the second term equals 0 if deg(p) ≤ d+1 for n+ d odd and deg(p) ≤ d
for n+ d even, due to Theorem 2 in [12] for n+ 2d+ 1 nodes. 2

5



The additional smoothness hypothesis in Theorem 1 and in the following results, as
compared to those for (1), might be weakened if f can be extended sufficiently smoothly
from [a, b] to [a − dh, b + dh]. On the other hand, additional smoothness properties of f
encourage the use of the presented interpolants, which are numerically better conditioned,
as we will see in the next section.

3 Lebesgue constant

In the case of a linear projection method, the Lebesgue constant may be defined as the
norm of the approximation operator [19]. For the rational interpolant (2), it is given by

Λn = max
x∈[a,b]

Λn(x),

with Λn(x) from (3), and analogously for (5), which may be denoted by Λ̃n. The Lebesgue
constant Λn is the condition number of the associated interpolation method. Let us suppose
that every fi is given with an error at most ε in absolute value, ε > 0. Then the norm of
the difference between the interpolant rn[f, ε] of the perturbed data and rn[f ] is bounded
as

‖rn[f, ε]− rn[f ]‖ ≤ max
x∈[a,b]

n∑

i=0

∣∣∣
wi

x− xi

∣∣∣ε
/∣∣∣∣

n∑

i=0

wi

x− xi

∣∣∣∣ = εΛn,

where equality holds if all the perturbations equal ε in absolute value and if their signs
are such that all the terms in the sum in the numerator of rn[f, ε] − rn[f ] are positive.
Moreover, Λn gives information about the quantity by which the interpolant may grow
between the nodes when interpolating the values ±1. For the family of Floater–Hormann
interpolants at equispaced nodes, it is shown in [10] that, for d ≥ 1, Λn roughly goes as
follows:

2d−2

d+ 1
ln
(n
d
− 1

)
≤ Λn ≤ 2d−1(2 + lnn).

For d = 0, the same bounds as for d = 1 are valid; see also [9, 14]. We see that Λn

grows logarithmically with n, but exponentially with d. This is one reason why one should
preferably use rather small values of d when interpolating at equispaced nodes, and not
increase d with n, at least not too fast.

If the exact values of f are given as f̃i at xi for i = −d, . . . ,−1 and i = n+1, . . . , n+d,
then the Lebesgue function associated with extended Floater–Hormann interpolation is
the analogue of (3). Since these f̃i may be obtained differently than presented here, and
as we do not use the interpolants outside the interval [a, b], we may ignore uncertainties in
these values obtained from (4) and consider the analogue of (3) in [a, b] for the study of the
condition. With this interpretation, the extended rational interpolants (5) have Lebesgue
constants that grow logarithmically in n and d, as the following theorem shows.
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Theorem 2 For positive integers n and d, the Lebesgue constant Λ̃n for the basis of the

extended barycentric rational interpolants at n+ 1 equispaced nodes in the interval [a, b] is
bounded from above as

Λ̃n ≤
2d−1

d!
∑d−1

i=0
1∏d−2

j=i (d−
1

2
−j)

∏i
ℓ=1

(ℓ+ 1

2
)

(2 + ln(n+ 2d)). (12)

Remark: The leading quotient in (12) is ≤ 1 for all positive d and for d ≥ 5 it almost
becomes constant, so that

Λ̃n ≤ 0.65(2 + ln(n + 2d)), for d ≥ 5.

This means that Λ̃n grows merely logarithmically with n and d, and that its upper bound
is very close to the 1+ 2

π
log(n+1) bound for polynomial interpolation at Chebyshev points

of the first kind, xi = cos(π/2 · (2i+ 1)/(n+ 1)), and those of the second kind [11].

Proof. This proof uses some tools from [10]. If x = xk for k = 0, . . . , n, then Λ̃n(x) = 1, in
view of the interpolation property. Suppose that xk < x < xk+1 for k ∈ {0, . . . , n−1}. We
multiply the numerator and the denominator of the Lebesgue function associated with (5)
by (x− xk)(xk+1 − x) and take (11) into account to obtain

Λ̃n(x) ≤
2d

d!hd

∑n+d
i=−d

∣∣ 1
x−xi

∣∣(x− xk)(xk+1 − x)
∣∣∑n+d

i=−d
wi

x−xi

∣∣(x− xk)(xk+1 − x)
=

2d

d!hd

N(x)

D(x)
. (13)

Let us first look at the numerator:

N(x) = xk+1 − xk + (x− xk)(xk+1 − x)

( k−1∑

i=−d

1

x− xi
+

n+d∑

i=k+2

1

xi − x

)

≤ h +
(h
2

)2
( k−1∑

i=−d

1

xk − xi
+

n+d∑

i=k+2

1

xi − xk+1

)
.

Since the nodes xi are equispaced, the first sum simplifies to
∑k+d

i=1
1
ih
, which is less than

ln(2k+2d+1)/h, and analogously for the second sum. An upper bound for the numerator
now follows:

N(x) ≤ h +
h

4
ln
(
(2k + 2d+ 1)(2n+ 4d− (2k + 2d+ 1))

)

≤ h +
h

4
ln
(2n+ 4d

2

)2

= h +
h

2
ln(n+ 2d).

(14)

For our study of the denominator D(x) we recall some results from [12] and adapt them to
our setting. To begin with, we rewrite D(x) using the original definition of the denominator
of the rational interpolant,

D(x) = (x− xk)(xk+1 − x)

∣∣∣∣
n∑

i=−d

λi(x)

∣∣∣∣.
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With the notations

µi(x) := (−1)n+dλi(x)

n+d∏

j=−d

(x− xj)

and

s(x) :=
n+d∑

i=−d

µi(x)

it was shown in [12] that

s(x) > 0 and s(x) ≥
k∑

i=k−d+1

µi(x) =: s2(x) > 0.

From these results, we may proceed with

D(x) ≥ (x− xk)(xk+1 − x)
s2(x)∏n+d

j=−d |x− xj |
,

whose right-hand side yields after cancellations

k∑

i=k−d+1

λ̃i(x) with λ̃i(x) :=
1

∏k−1
j=i (x− xj)

∏i+d
ℓ=k+2(xℓ − x)

.

We may now deduce that the last sum has exactly one minimum in (xk, xk+1) at x = xk+
h
2
.

It is not difficult to see that the sum, as a function of x, is symmetric about xk + h
2
.

Moreover, its derivative

d

dx

k∑

i=k−d+1

λ̃i(x) =
k∑

i=k−d+1

λ̃i(x)

(
−

k−1∑

j=i

1

x− xj

+
i+d∑

ℓ=k+2

1

xℓ − x

)
(15)

is negative in (xk, xk +
h
2
), since the mth term (m = 1, . . . , ⌊d

2
⌋) in the sum in the right-

hand side is negative and strictly larger in absolute value than the (d−m)th term, which
is positive. The middle term, if it exists, is also negative in the considered interval. A
similar argument shows that (15) is strictly positive in (xk +

h
2
, xk+1) and it is easy to see

that it vanishes at x = xk +
h
2
. We have thus established that

D(x) ≥ h−d+1
k∑

i=k−d+1

1
∏k−1

j=i (k + 1
2
− j)

∏i+d
ℓ=k+2(ℓ− k − 1

2
)
.

After a rearrangement of the indices, this gives a bound on the denominator:

D(x) ≥ h−d+1

d−1∑

i=0

1
∏d−2

j=i (d−
1
2
− j)

∏i
ℓ=1(ℓ+

1
2
)
. (16)

Together with (13), the bounds on the numerator (14) and denominator (16) yield the
upper bound (12) for the Lebesgue constant. 2
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Figure 2: Lebesgue function with n = 50 for extended Floater–Hormann interpolation in
equispaced nodes with d = 3 (left), for polynomial interpolation in Chebyshev points of
the second kind (center) and first kind (right).
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Figure 3: Lebesgue constants associated with Floater–Hormann (FH) and extended
Floater–Hormann (EFH) interpolation with d = 8 and 8 ≤ n ≤ 1000, together with
the upper bound on the EFH Lebesgue constant.
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Figure 4: Lebesgue constants associated with Floater–Hormann (FH) and extended
Floater–Hormann (EFH) interpolation in equispaced nodes with n = 200 and 1 ≤ d ≤ 25.

To conclude this section, we take a look at the behaviour of the Lebesgue functions and
constants associated with the various methods. In Figure 2 we compare graphically the
Lebesgue functions associated with extended Floater–Hormann interpolation at equispaced
nodes with d = 3 and polynomial interpolation at Chebyshev points of the second and
first kinds, all three with n = 50. The maximal height of the respective functions, i.e., the
Lebesgue constants, are very close to each other; the shapes of the first two are similar. This
picture does not fundamentally change with a different choice of n or d. From Figure 3 we
see that, already with d = 8, the difference in magnitude between the Lebesgue constants
corresponding to the original Floater–Hormann interpolation and its extended counterpart
is striking. This is further stressed with Figure 4 which shows that the Lebesgue constant
associated with Floater–Hormann interpolation grows exponentially fast with d whereas
that associated with the extended family increases very slowly from 4.19 with d = 1 to
4.26 with d = 25.

4 Applications

As already stated in the Introduction, the family of rational interpolants (1) may be used
in applications such as the approximation of derivatives of a function, its integral or an-
tiderivatives [6, 16, 17]. In this section, we will investigate the behaviour of (5) regarding
these applications for functions sampled at equispaced nodes. The rates of convergence
stay roughly the same as with the original family of interpolants, but the constants involved
in the error bounds are smaller in many cases, as documented in Section 5.
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4.1 Differentiation

Let us begin with the approximation of derivatives at the nodes a = x0, x1, . . . , xn = b.

Theorem 3 Suppose n, d, ñ < n, d̃ ≤ ñ and k ≤ D are positive integers and assume that

f ∈ Cd+1+k[a− dh, b+ dh] ∩ C2d̃+1([a, a+ ñh] ∪ [b− ñh, b]) is sampled at n+ 1 equispaced

nodes a = x0 < x1 < . . . < xn = b. Then

|r̃(k)n [f ](xj)− f (k)(xj)| ≤ ChD+1−k, −d ≤ j ≤ n+ d,

where the constant C only depends on d, d̃, k and derivatives of f .

Proof. Suppose again we are given the exact data f−d, . . . , fn+d. We split the absolute
value of the kth derivative of the interpolation error at x = xj , −d ≤ j ≤ n + d, into two
parts,

|r̃(k)n [f ](xj)− f (k)(xj)| ≤ |r̃(k)n [f ](xj)− r
(k)
n+2d[f ](xj)|

+|r
(k)
n+2d[f ](xj)− f (k)(xj)|.

(17)

The second term is bounded by Chd+1−k for j = −d, . . . , n+d as an immediate consequence
of Theorem 1 in [17], which states that such a bound holds for the absolute value of the
kth derivative of the interpolation error of (1) at the nodes. It therefore remains to bound
the first term. For j = 0, . . . , n we may consider the expression inside the absolute values
and write it as

dk−1

dxk−1

∣∣∣∣
x=xj

∑−1
i=−d

wi

x−xi
(f̃i − fi) +

∑n+d
i=n+1

wi

x−xi
(f̃i − fi)

gj(x)
k, (18)

where

gj(x) := (x− xj)
n∑

i=−d

λi(x).

Expression (18) is obtained by comparing coefficients in the Taylor expansions at x = xj

of the interpolation error and this error divided by (x− xj); see [17]. Let us call A(x) the
numerator of the quotient in (18). Applying the Leibniz rule and dividing by k then yields

k−1∑

ℓ=0

(
k − 1

ℓ

)
A(k−1−ℓ)(x)

(
gj(x))

−1
)(ℓ)

∣∣∣∣
x=xj

.

The ℓth derivative of the reciprocal of gj(x) is bounded by Chd−ℓ at x = xj , as shown in the
proof of Theorem 1 in [17]. It remains to deal with the absolute values of the derivatives
of A(x) at x = xj . We observe that for 0 ≤ ℓ ≤ k − 1,

|A(k−1−ℓ)(xj)| ≤ (k − 1− ℓ)!
∑

−d≤i≤−1
n+1≤i≤n+d

|wi||xj − xi|
ℓ−k|f̃i − fi|,
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which we bound from above by Chd̃+1−d−k+ℓ, using (10) and (11). This, together with the
bound on the ℓth derivative of the reciprocal of gj(x) in the absolute value of (18), gives

the bound Chd̃+1−k for the first term in (17) in the present case.
For j = −d, . . . ,−1 and j = n+1, . . . , n+d we write the expression inside the absolute

values in the first term in (17) as

dk

dxk

∣∣∣∣
x=xj

∑−1
i=−dwi

x−xj

x−xi
(f̃i − fi) +

∑n+d
i=n+1wi

x−xj

x−xi
(f̃i − fi)

gj(x)
. (19)

With the Leibniz rule and the observation that the ℓth derivative, 1 ≤ ℓ ≤ k, at x = xj of

the numerator Ã(x) of the quotient in (19) is bounded as

|Ã(ℓ)(xj)| ≤ ℓ!
∑

−d≤i≤−1
n+1≤i≤n+d

i 6=j

|wi||xj − xi|
−ℓ|f̃i − fi|

and that |Ã(xj)| ≤ Chd̃+1−d, it follows that the first term in (17) is also bounded by

Chd̃+1−k for j = −d, . . . ,−1 and j = n + 1, . . . , n+ d. 2

This result leads us to define extended rational finite difference methods (ERFD), which
are FD methods [13, 22] derived from the extended family of rational interpolants (5) for
the approximation at the nodes xi, 0 ≤ i ≤ n, of the kth derivative of a sufficiently smooth
function,

dkf

dxk

∣∣∣∣
x=xi

≈
dk

dxk
r̃n[f ](xi) =

n+d∑

j=−d

D
(k)
ij f̃j =: f̃

(k)
i . (20)

The weights D
(k)
ij are the elements from the (d + 1)st to the (n + d + 1)st row of the

(n + 2d + 1) × (n + 2d + 1) differentiation matrix D(k) (the indices are shifted according
to the indices of the extended set of nodes). These matrices are constructed [2, 3, 23, 24]
from Proposition 11 in [20]; see also [17]. The weights for the first order left one-sided
ERFD approximation, i.e., that at x = x0, satisfy

1

2d(b− a + dh)
≤ |D

(1)
0j | ≤

1

h
, j = −d, . . . , n+ d,

for all admissible n and d.
For the approximation of the kth derivative of a function f at intermediate points

x ∈ [a, b], we suggest, similarly as in [17], to interpolate the approximations at the nodes

f̃
(k)
i from (20) by a rational function (5):

R̃(k)
n [f ](x) :=

n+d∑

i=−d

wi

x− xi
f̃
(k)
i

/ n+d∑

i=−d

wi

x− xi
. (21)
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This formula is less expensive to evaluate outside the nodes than the exact derivative of
r̃n[f ] and, as we shall now see, it follows from Theorems 2 and 3 that its rate of convergence
towards the exact derivative of f throughout the interval [a, b] is almost the same as the
O(hD+1−k) rate at the nodes from the latter theorem.

Proposition 1 Suppose n, d, ñ < n, d̃ ≤ ñ and k ≤ D are positive integers and assume

that f ∈ Cd+2+k[a−dh, b+dh]∩C2d̃+1([a, a+ ñh]∪ [b−ñh, b]) is sampled at n+1 equispaced

nodes a = x0 < x1 < . . . < xn = b. Then

‖R̃(k)
n [f ]− f (k)‖ = max

x∈[a,b]
|R̃(k)

n [f ](x)− f (k)(x)| ≤ ChD+1−k(1 + ln(n+ 2d)),

where the constant C only depends on d, d̃, k and derivatives of f .

Proof. The function f is supposed to belong to Cd+2+k[a− dh, b+ dh]. Its kth derivative
may be interpolated at the nodes x−d, . . . , xn+d with approximation rate O(hd+1) by the
rational function rn+2d[f

(k)] with parameter d from (1). For x ∈ [a, b], we expand the
absolute value of the error as

|R̃(k)
n [f ](x)− f (k)(x)| ≤

∑n+d
i=−d

|wi|
|x−xi|

|f̃
(k)
i − f (k)(xi)|

∣∣∑n+d
i=−d

wi

x−xi

∣∣

+ |rn+2d[f
(k)](x)− f (k)(x)|.

(22)

From Theorem 2, we see that the first term is bounded by

Λ̃n max
−d≤i≤n+d

|f̃
(k)
i − f (k)(xi)|,

which is less than ChD+1−k(1 + ln(n+ 2d)); see also Theorem 3. This, combined with the
O(hd+1) bound on the second term in (22), gives the result. 2

4.2 Quadrature and approximation of antiderivatives

Suppose we want to approximate the integral of an integrable function f over the interval
[a, b], where it is sampled at n + 1 equispaced nodes. For data available at equispaced
nodes and at a few additional points, quadrature rules obtained from applying endpoint
corrections to the trapezoidal rule are derived in [1] and in the references therein. In [16]
a method called direct rational quadrature (DRQ), based on the original family (1), is
presented. Let us follow the same approach for the extended family (5), i.e.,

∫ b

a

f(x)dx ≈

∫ b

a

r̃n[f ](x)dx =

∫ b

a

∑n+d
i=−d

wi

x−xi
f̃i

∑n+d
ℓ=−d

wℓ

x−xℓ

dx =
n+d∑

i=−d

ωif̃i,

where

ωi :=

∫ b

a

wi

x−xi∑n+d
ℓ=−d

wℓ

x−xℓ

dx. (23)
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The integrand in the definition of the quadrature weights ωi may be evaluated at every
point in the interval [a, b]. For this reason we approximate the integral giving ωi by an
efficient quadrature rule, e.g., Gauss–Legendre, and call the approximated weights ωD

i .
The corresponding method, the extended direct rational quadrature (EDRQ), then reads

∫ b

a

f(x)dx ≈
n+d∑

i=−d

ωD
i f̃i. (24)

An explicit knowledge of the weights ωD
i is not always necessary in practice: as r̃n[f ] is ana-

lytic, it is sufficient to apply a quadrature rule on the interpolant to directly compute (24).
The following theorem gives the main properties of EDRQ.

Theorem 4 Suppose n, d, ñ < n and d̃ ≤ ñ are positive integers and assume that f ∈

Cd+3[a− dh, b+ dh] ∩ C2d̃+1([a, a+ ñh] ∪ [b− ñh, b]) is sampled at n+ 1 equispaced nodes

in [a, b]. Let the quadrature weights ωi in (23) be approximated by a linear quadrature rule

Q converging at least at the rate O(hd+2). Then

∣∣∣∣
n+d∑

i=−d

ωD
i f̃i −

∫ b

a

f(x)dx

∣∣∣∣ ≤ ChD+2 lnn,

where the constant C only depends on d, d̃ and derivatives of f . Moreover, if the quadrature

rule Q is symmetric and has polynomial degree of precision at least min{d+1, d̃}, then the

resulting EDRQ rule is symmetric and its polynomial degree of precision is min{d + 1, d̃}
if n+ d is odd and D if n+ d is even.

Proof. We begin with splitting the absolute value of the quadrature error into two parts,

∣∣∣∣
n+d∑

i=−d

ωD
i f̃i −

∫ b

a

f(x)dx

∣∣∣∣ ≤
∣∣∣∣

n+d∑

i=−d

ωD
i f̃i −

∫ b

a

r̃n[f ](x)dx

∣∣∣∣+
∣∣∣∣
∫ b

a

(
r̃n[f ](x)− f(x)

)
dx

∣∣∣∣.

The first part is bounded by ChD+2 because of the rate of convergence of Q. We subdivide
the second part into

∫ x1

a

∣∣r̃n[f ](x)− f(x)
∣∣dx+

∣∣∣
∫ xn−1

x1

(
r̃n[f ](x)− f(x)

)
dx

∣∣∣+
∫ b

xn−1

∣∣r̃n[f ](x)− f(x)
∣∣dx.

The sum of the first and last terms is bounded by 2h‖r̃n[f ] − f‖, which is less than or
equal to ChD+2 by Theorem 1. To treat the middle term, we assume that the values of the
function f are given at all the nodes x−d, . . . , xn+d and we interpolate it by the rational
function (1) with parameter d at these nodes. After adding and subtracting rn+2d[f ](x) in
the argument, simplifying and writing the interpolation error as in [12], it becomes

∑

−d≤i≤−1
n+1≤i≤n+d

wi(f̃i−fi)

∫ xn−1

x1

1

(x− xi)
∑n

ℓ=−d λℓ(x)
dx+

∫ xn−1

x1

∑n
i=−d(−1)if [xi, . . . , xi+d, x]∑n

ℓ=−d λℓ(x)
dx.
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It is shown in the proof of Theorem 2 in [16] that the absolute value of the second term
is bounded by Chd+2 as it corresponds to the integral of the interpolation error over the
middle part of the interval of interpolation, i.e., the part without the first and last d + 1
sub-intervals. The factors (x−xi) in the integrand of the first part of the above expression
do not change sign in the interval [x1, xn−1] since i /∈ {1, . . . , n− 1}; the application of the
mean value theorem for integrals yields

∑

−d≤i≤−1
n+1≤i≤n+d

wi(f̃i − fi)
1∑n

ℓ=−d λℓ(ξi)

∫ xn−1

x1

1

x− xi
dx,

for some ξi ∈ [x1, xn−1]. The claimed error bound now follows with (9), (10) and (11).
The symmetry of EDRQ follows directly from Theorem 4 in [16], which shows that the

integrand in the mth quadrature weight is symmetric to that in the (n+ 1−m)th weight
with respect to the midpoint of the interval. The polynomial degree of precision follows
from the fact that the extended rational interpolants reproduce polynomials of the claimed
degree; see Theorem 1. 2

Indirect rational quadrature (IRQ), a method based on linear barycentric rational inter-
polation for the approximation of an antiderivative of such a function, is presented in [16]
as well. With the extended family of rational interpolants (5), the method (EIRQ) becomes
the following: we approximate

∫ x

a
f(y)dy by the rational function

r̃n[u](x), (25)

interpolating the result u of a collocation [5] at the nodes x−d, . . . , xn+d applied to the
initial value problem

d

dx
r̃n[u](x) ≈ f̃(x), u0 = 0, x ∈ [a− dh, b+ dh],

where f̃(x) is a function with values f̃−d, . . . , f̃n+d at the nodes as defined in Section 2. In
other words, we solve the system of n+ 2d equations

n+d∑

j=−d
j 6=0

D̃
(1)
ij uj = f̃i, i = −d, . . . ,−1, 1, . . . , n+ d,

with D̃(1) the first order differentiation matrix defined in Section 4.1, without its (d+ 1)st
row and column, and insert the so-obtained u−d, . . . , un+d into (25). Note that un gives an
approximation of the integral of f over [a, b] and that the approximation (25) is analytic.

5 Numerical results

Let us now look at a few numerical examples illustrating the results and remarks from Sec-
tions 2 to 4. The examples document the error behaviour of extended Floater–Hormann
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Figure 5: Error behaviour of spline, Floater–Hormann (FH) and extended Floater–
Hormann (EFH) interpolation of f1 in [−5, 5] with d = 4 and 20 ≤ n ≤ 1000.

interpolation from equispaced samples and of the applications in this work, i.e., the approx-
imation of derivatives, integrals and antiderivatives. We compare it to original Floater–
Hormann interpolation with the same value of the parameter d and to B-splines of order
d + 1 obtained with the spapi command from the Matlab curve-fitting toolbox. In all
the tests, the values of n are even and the parameters for the extended Floater–Hormann
interpolants remain fixed at d̃ = 7 and ñ = 11. The experimental convergence rates may
be read from the slopes in the logarithmic plots. The errors are computed as the maximum
absolute values of the differences between the interpolant and the exact function at 2000
equispaced points in the interval [a, b].

Figure 5 shows the interpolation of Runge’s function f1(x) := 1/(1+x2) in the interval
[−5, 5] for the three interpolants with theoretical convergence rate O(h5). The slopes in
the error curves are almost identical for large enough n, but the errors in the rational
interpolants are much smaller than those in the spline. With the interpolation of sin(x)
the picture is similar, only the values of the errors are closer together; we omit the corre-
sponding plot.

The next example deals with the conditioning of the interpolation process. It is well
known that, due to the Runge phenomenon, the polynomial interpolant of f1, sampled at
equispaced nodes, diverges as n increases. Suppose the perturbation 10−12 is alternatively
added and subtracted to the given data, i.e., to the sample of f1 at equispaced points. In
Figure 6 the error behaviour of the investigated interpolants of the perturbed f1 in [−5, 5]
with n = 1000 is shown as a function of d. As the value of the theoretical convergence
order of the spline and Floater–Hormann interpolants varies from 2 to 51, a minimum is
attained in the error but the latter increases exponentially thereafter. Once it reaches its
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Figure 6: Error behaviour of spline, Floater–Hormann (FH) and extended Floater–
Hormann (EFH) interpolation of f1 with sign alternating 10−12-perturbation of the data,
n = 1000 and 1 ≤ d ≤ 50.

minimum, the error in the extended Floater–Hormann interpolant, in contrast, remains
smallest possible, namely 10−12, which is the perturbation of the data. One may therefore
conclude that choosing an inadequate value for d is much less likely with the extended
Floater–Hormann interpolants than with the original family. Even more extreme examples
confirm this observation: Floater–Hormann interpolation with d too large and for severely
perturbed data yields large deviations towards the ends of the interval, whereas the ex-
tended interpolants merely oscillate in the direct vicinity of the perturbation and with
small amplitude. Every possible choice of d becomes admissible with the extended family
of rational interpolants: the interpolation of sin(x) in [−5, 5] with n = 50000 and d = 200
gives an error of 3 · 10−12, this is in clear contrast to the error of 0.68 with the original
Floater–Hormann interpolant.

We now turn our attention to the applications of the presented interpolants described
in Section 4. The first and second derivatives of f2(x) := sin(x) are approximated as
suggested at the end of Section 4.1, namely by the rational interpolant with d = 4 of the
derivatives at the nodes of the interpolant of f2, see (21) for the extended family and the
analogous expression in [17] for the original family of rational interpolants. In Figure 7,
where k denotes the order of differentiation, we see that the experimental convergence rates
are similar with the three methods, as to be expected. The approximation based on the
extended family yields smaller errors in both cases, with a remarkable difference in the
approximation of the second derivative, where the errors with the methods based on the
spline interpolant of order 5, respectively, the original family, almost coincide.

One-sided rational finite difference approximation at the ends and RFD approximation
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Figure 7: Error behaviour of spline, Floater–Hormann (FH) and extended Floater–
Hormann (EFH) approximations of the first (left) and second derivative (right) of f2 in
[−5, 5] with d = 4 and 20 ≤ n ≤ 1000.
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Figure 8: Error behaviour of one-sided RFD and ERFD (with d = 4 and 10 ≤ n ≤ 1000)
approximations at x = −5 of the second and fourth derivatives of f1 sampled in [−5, 5].
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Figure 9: Error behaviour of spline antiderivative, IRQ and EIRQ of f3 in [0, 1] with d = 5
and 20 ≤ n ≤ 1000.

near the ends of the interval are very successful for large numbers of nodes, as already
noticed in [17]. One-sided ERFD approximation at x = −5 with d = 4 of the second and
fourth derivatives of f1, sampled in [−5, 5], still improves upon RFD; see Figure 8. In this
example the experimental rates of convergence are even larger with the ERFD method;
classical FD approximation fails, mainly because of Runge’s phenomenon [17]. The fact
that the extended family of rational interpolants displays reduced oscillations towards the
ends of the interval as compared to the original family definitely helps in this application,
in addition to the better conditioning.

Finally we consider the approximation of antiderivatives and integrals of f3(x) :=
sin(100x) + 100 in the interval [0, 1] using rational interpolants with d = 5 (the func-
tion f3 is chosen so as to avoid the approximation of 0 while integrating sin(100x) over
one period). The errors in the indirect rational methods for the approximation of an an-
tiderivative are larger than those obtained with the antiderivative of the spline interpolant
of order 6; see Figure 9. This result was to be expected since the former methods use
the differentiation matrix for the computation of the derivative at the nodes of the ratio-
nal interpolant approximating the antiderivative, which does not improve the convergence
rates; numerical experiments with the IRQ in [16] revealed experimental orders O(hd+1/2).
It must, nevertheless, be kept in mind that the indirect rational methods give analytic
approximations of antiderivatives.

Figure 10 displays the errors in the approximation of the integral of f3 over the interval
[0, 1] by the integral of the spline interpolant of order 6 of f3, by DRQ and EDRQ with
d = 5 as well as the composite Boole rule, which is the composite Newton–Cotes rule of
order 6. To be specific about the direct quadrature rules, we precise that the integrals of
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Figure 10: Error behaviour of spline quadrature, DRQ, EDRQ and Boole’s rule for the
integral of f3 in [0, 1] with d = 5 and 20 ≤ n ≤ 1000.

the rational interpolants are approximated here by the 1000-points Gauss–Legendre rule
computed with the Chebfun [25] command legpts. For small values of n, the four methods
yield similar results. With larger values of n (≥ 150), the error curves show smallest errors
in the EDRQ. In this example EDRQ beats Boole’s rule, whereas DRQ does not. Numerical
experiments reveal that there are even fewer negative quadrature weights in the EDRQ
rules than in the DRQ ones, which already contain only few of them for small values of
d [16].

6 Conclusion

In this work, we have extended the family of Floater–Hormann barycentric rational in-
terpolants for analytic and well-conditioned interpolation at equispaced points. The the-
oretical convergence rates of the interpolation and the methods for the approximation of
derivatives, integrals and antiderivatives derived from the rational functions are similar to
those obtained with the original Floater–Hormann family. However, the condition of the
new interpolation scheme, as measured by its sensitivity to perturbations, is much more
favourable and the parameter d may be chosen significantly larger than with the origi-
nal family. More generally, numerical examples show that the absolute errors in the new
methods tend to be smaller, especially for large numbers of interpolation nodes.

Acknowledgement. The author expresses his thankfulness to Jean–Paul Berrut and Nick
Trefethen for discussing draft versions of the present paper.
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