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Abstract

This thesis is a collection of properties and applications of linear barycen-
tric rational interpolation, mainly with the weights presented by Floater and
Hormann in 2007.

We are motivated by the counterintuitive and provable impossibility of con-
structing from equispaced data an approximation scheme that converges very
rapidly to the approximated function and is simultaneously computationally
stable. Linear barycentric rational interpolation with the weights presented by
Floater and Hormann turns out to be very efficient in practice, especially when
the function is sampled at equispaced nodes. We pursue the investigation of
this interpolation scheme to understand the reason for its efficiency with equi-
spaced nodes, and to what extent it is suited for applications other than the
approximation of functions.

In a first part, we analyse several properties of Floater–Hormann interpo-
lation, such as its convergence for differentiable and analytic functions, the
stability of its evaluation in barycentric form and the condition of this interpo-
lation problem. The comparison with other well established schemes which do
not necessarily allow the nodes to be equispaced reveals that Floater–Hormann
interpolation with equispaced nodes is very competitive, but of course not op-
timal as a general method of approximation. Nevertheless it is extremely easy
to implement, can be evaluated quickly and gives analytic approximations. The
linearity of such barycentric rational interpolation in the data makes it addi-
tionally well suited for applications, which are the subject of the second part
of this thesis. We investigate the approximation of derivatives, integrals and
antiderivatives with methods directly derived from the interpolation scheme; a
special focus lies on methods for equispaced samples. In the last part, we present
an extension to the original Floater–Hormann interpolation which is supposed
to alleviate some remaining drawbacks. Most of the properties and applications
that have been the subject of investigations for the original Floater–Hormann
interpolants are analysed again for this extended scheme.



Résumé

Ce travail est une collection de propriétés et d’applications de l’interpolation
rationnelle linéaire barycentrique, principalement de celle faisant usage des poids
proposés par Floater et Hormann en 2007.

Nous avons été motivés par le fait contre-intuitif et démontrable qu’il est im-
possible de construire à partir de données équidistantes une méthode d’approxi-
mation convergeant très rapidement et qui soit simultanément stable pour l’éva-
luation numérique. L’interpolation rationnelle linéaire barycentrique avec poids
de Floater et Hormann s’avère très efficiente en pratique, surtout si la fonction
est échantillonnée en des points équidistants. Cette méthode d’approximation
est étudiée de manière plus détaillée, pour comprendre la raison de son efficience
avec les nœuds équidistants et dans quelle mesure elle se prête à des applications
autres que l’approximation de fonctions.

Dans une première partie, nous analysons un certain nombre de propriétés
de l’interpolation de Floater et Hormann, comme par exemple la convergence
pour des fonctions dérivables ou analytiques, la stabilité de son évaluation sous
forme barycentrique et la condition de ce problème d’interpolation. La compara-
ison avec d’autres méthodes bien connues, ne permettant pas nécessairement le
choix des nœuds équidistants montre que l’interpolation de Floater et Hormann
avec nœuds équidistants est très compétitive, mais certainement pas optimale en
tant que méthode générale d’approximation. Elle est néanmoins extrêmement
simple à implémenter, peut être évaluée rapidement numériquement et fournit
des approximations analytiques. De par sa linéarité en les données, ce genre
d’interpolants rationnels barycentriques se prête en plus pour les applications,
qui constituent la deuxième partie de ce travail. Nous étudions l’approximation
de dérivées, d’intégrales et de primitives avec des méthodes issues directement
de l’interpolation; nous nous intéressons tout particulièrement aux méthodes
pour points équidistants. Dans une dernière partie, nous présentons une exten-
sion de l’interpolation de Floater et Hormann, construite pour atténuer certains
défauts résiduels. La plupart des propriétés et applications étudiées jusqu’ici
pour l’interpolation de Floater et Hormann originelle sont analysées à nouveau
pour cette extension.



Zusammenfassung

Diese Arbeit ist eine Sammlung von Eigenschaften und Anwendungen der
linearen baryzentrischen rationalen Interpolation, hauptsächlich mit den von
Floater und Hormann in 2007 eingeführten Gewichten.

Unsere Motivation entsprang aus der kontraintuitiven und beweisbaren Un-
möglichkeit aus äquidistanten Daten eine Näherungsmethode zu entwickeln,
welche sehr schnell konvergiert und gleichzeitig stabil numerisch ausgewertet
werden kann. Lineare baryzentrische rationale Interpolation mit den Gewichten
von Floater und Hormann ist sehr effizient in der Praxis, insbesondere für Funk-
tionen welche lediglich an äquidistanten Stützstellen gegeben werden können.
Diese Näherungsmethode wird genauer untersucht, um zu verstehen warum sie
insbesondere mit äquidistanten Stützstellen so effizient ist und in wie fern sie
auch für andere Anwendungen als die Annäherung von Funktionen geeignet ist.

In einem ersten Teil untersuchen wir Eigenschaften der Floater–Hormann
Interpolation, wie z.B. die Konvergenz bei differenzierbaren oder analytischen
Funktionen, die Stabilität der numerischen Auswertung in baryzentrischer Form
und die Kondition dieses Interpolationsproblems. Der Vergleich mit anderen
wohlbekannten Methoden, welche die Wahl der äquidistanten Stützstellen nicht
notgedrungen erlauben, zeigt, dass Floater–Hormann Interpolation mit äqui-
distanten Stützstellen sehr leistungsfähig ist, aber selbstverständlich nicht opti-
mal als allgemeine Näherungsmethode ist. Nichtsdestoweniger ist sie einfach zu
programmieren, kann schnell numerisch ausgewertet werden und liefert analytis-
che Näherungen. Die Linearität in den gegebenen Daten dieser baryzentrischen
rationalen Interpolierenden erlaubt es, diese auch in Anwendungen einzusetzen,
wie wir in einem zweiten Teil dieser Arbeit sehen werden. Wir untersuchen die
Annäherung von Ableitungen, Integralen und Stammfunktionen mit Methoden,
welche direkt aus den Interpolationsmethoden hergeleitet werden; besonderes
Augenmerk liegt auf Methoden für äquidistante Stützstellen. In einem letzten
Teil führen wir eine Erweiterung der originalen Floater–Hormann Interpola-
tion ein, welche vor allem ein paar übrig bleibende Nachteile beseitigen sollte.
Die meisten Eigenschaften und Anwendungen welche bereits für die originale
Floater–Hormann Interpolation untersucht wurden, werden noch einmal für die
Erweiterung analysiert.
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Chapter 1

Introduction

1.1 Motivation

We are interested in approximating smooth functions, i.e., functions with a fair
number of continuous derivatives, whose values are given at a few points only,
either from measurements or by evaluation. For complicated functions, it might
be difficult to gather many values and it is therefore easier to work with an
approximation instead of the function itself, provided the approximation is in
some sense close enough to the function. This also holds true for applications
other than the approximation of the function, such as differentiation, integra-
tion, rootfinding and many more. It is most natural to obtain the values of the
function at equispaced measurement or evaluation points, called nodes, espe-
cially if one does not have much a priori knowledge about the function.

Generally, the interpolating polynomial, that is, the polynomial which passes
through the given data values and whose degree is at most one less than the
number of data points, gives approximations that look more or less satisfac-
tory to the eye as long as the degree is small. This is the way it was used
before the era of computers and it is also the way it was designed: Some values
of functions evaluated at equispaced points are kept in a table and the values
of these functions between the nodes are approximated through interpolation.
Since every computation had to be done by hand, it seems advisable to han-
dle only interpolating polynomials with smallest possible degree attaining the
desired accuracy, which was rarely more than a few digits. Now that calcula-
tion with higher accuracy is easily feasible with the help of computers, there

1



1.1. MOTIVATION

is an obvious temptation of using interpolants of high degree. While this still
leads to very accurate results with certain classes of nodes, the opposite is true
for other classes, whose most prominent example is unfortunately equispaced
nodes. Many solutions to this difficulty have been suggested in the past, and
one of these is the rational interpolation scheme introduced in 2007 by Floater
and Hormann [46], which we study in much detail in this work. This scheme is
a blend of polynomial interpolants, each of which has the same maximal degree,
usually much less than the number of interpolation nodes. Many applications of
polynomial interpolation can simply be transformed into applications of these
rational interpolants. Nearly everything seems to work fine in practice; the only
drawback is that the theory becomes more intricate than that of polynomial
interpolation as everything becomes rational. For this reason, we have tried to
prove, for a selection of applications, most of the results observed in practice.
However, some observations still remain conjectures and would need to be in-
vestigated in much more depth. Fortunately, we believe that those which we
did not prove are not the most essential.

Let us now describe some of the above with a bit more precision; the exact
details will be given in the forthcoming chapters. Polynomial interpolation
with Chebyshev points is much more reliable than with equispaced nodes. The
Chebyshev points most used in the theory are the Chebyshev points of the first
kind ,

xi = − cos
(2i+ 1

n+ 1

π

2

)
, i = 0, . . . , n,

which are the roots of the (n+1)st Chebyshev polynomial, defined as Tn+1(x) =
cos

(
(n+ 1) arccos(x)

)
, and the Chebyshev points of the second kind ,

xi = − cos
( i
n
π
)
, i = 0, . . . , n,

which are the extrema of Tn augmented by the boundary points. For a k − 1
times differentiable function f with a kth derivative of bounded variation, the
polynomial interpolant pn with Chebyshev points in [−1, 1] converges at the
algebraic rate O(n−k) as n increases, that is, the error satisfies

max
x∈[−1,1]

|f(x) − pn(x)| ≤ Kn−k,

where K is a constant. For a function analytic (complex differentiable) and
bounded in some well defined ellipse, the convergence is exponential or geometric
at the rate O(ρ−n), where ρ is a parameter greater than 1 depending on the
ellipse.
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CHAPTER 1. INTRODUCTION

All this is not necessarily true if the nodes are equispaced. Polynomial inter-
polation with equispaced nodes may in some cases converge in theory but will
in general diverge in practice because of the amplification of rounding errors.
Even worse, for some classes of functions, such interpolation does not even con-
verge in theory. With equispaced nodes, not only does polynomial interpolation
not perform reliably: It is simply not possible to construct an approximation
method with equispaced nodes which simultaneously converges exponentially
fast and is stable, i.e., does not suffer from an excessive amplification of small
errors in the data. This statement has been proven by Platte, Trefethen and
Kuijlaars in [85], where the authors also present an extended list of currently
available methods for approximation with equispaced nodes; see also [67].

As stable approximation and exponential convergence is not possible with
equispaced nodes, a natural and fascinating question arises: How close to expo-
nential can the convergence of a stable method for equispaced nodes come? This
method should, in addition, be suitable for applications.

Theoretical exponential convergence is not always needed in practice. Once
the relative approximation error has reached a value close to machine precision,
typically about 10−16, one can not tell the difference between a method whose
theoretical speed of convergence is the same for all n and whose error does not
decrease any more in practice because it has attained machine precision, and
a method that has variable theoretical speed of convergence, fast for small n
and, once the desired accuracy is attained, slower afterwards, so that the error
is merely maintained at the same size. Floater–Hormann interpolation is such a
method, provided the blending parameter is chosen adequately, as we shall see
in Chapter 4.

Many methods for interpolation with equispaced nodes have been presented;
see, e.g., [85] for an overview. We shall concentrate on linear barycentric rational
interpolants, which are analytic in the nodes’ hull and well suited for applications
because of their linearity in the data.

The results presented in this work are a collection of properties of Floater–
Hormann interpolation as well as applications of this approximation scheme.
The applications are explained and proven essentially for Floater–Hormann in-
terpolation, but they could be established analogously with any linear barycen-
tric interpolation scheme, since each such scheme is completely defined by its
barycentric weights, as we shall see in Chapter 2; in most cases only the con-
vergence proofs need to be adjusted for any new scheme. This is a favourable
situation in view of the plausible event that some time in the future novel choices
for barycentric weights will be presented.
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1.2. OVERVIEW

1.2 Overview

We now come to a short overview of the chapters of the present work, for which
the draft version of Trefethen’s textbook Approximation Theory and Approxi-
mation Practice [114] was a valuable general reference.

We begin with an introduction to barycentric interpolation and review some
of its properties in Chapter 2. First, we explain the general numerical problem
we are concerned with throughout this work and review polynomial interpola-
tion as well as the steps from its Lagrangian representation to the two barycen-
tric forms. After comparing these forms, and after some historical notes, we
show how to pass from polynomial interpolation in barycentric form to linear
barycentric rational interpolation, in particular Berrut’s interpolants, and give
some known facts. This will very naturally lead to rational Floater–Hormann
interpolation, which is blended polynomial interpolation. Its construction is pre-
sented as well as some useful properties for subsequent chapters. The location of
the poles of rational interpolation is very important; we therefore show how they
can be approximated and how they are distributed in the complex plane. The
chapter ends with two numerical examples of Floater–Hormann interpolation.

After this introduction to the interpolation scheme we are mainly concerned
with, we analyse two important properties in Chapter 3, namely the numerical
stability of Floater–Hormann interpolation in barycentric form and the condi-
tion of this interpolation problem. We review the essential definitions of sta-
bility as well as results about the stability of polynomial interpolation in both
barycentric forms, before presenting the analogues for linear barycentric ratio-
nal interpolation. Parallels between the stability of polynomial and rational
barycentric interpolation are drawn. For a rigorous study of the stability, the
Lebesgue functions and constants, which at the same time are the condition
numbers, need to be treated. After a short introduction and overview of well
established results for Lebesgue constants associated with polynomial interpo-
lation, we present lower and upper bounds on the Lebesgue constants associ-
ated with Floater–Hormann interpolation with equispaced and quasi-equispaced
nodes. This study is the result of two collaborations with Len Bos, Stefano De
Marchi and Kai Hormann, who had already performed such an investigation for
Berrut’s interpolant. A new approach to the problem enables us to derive the
desired bounds in a succinct way. These results reveal why Floater–Hormann
interpolation with equispaced and quasi-equispaced nodes is so much more sta-
ble and well-conditioned than polynomial interpolation with these nodes, which
is catastrophically unstable even with a moderate number of such nodes, a
problem that lowered unjustifiably the view of many researchers of polynomial
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CHAPTER 1. INTRODUCTION

interpolation in general and of equispaced nodes.
Depending on the distribution of the nodes, and in particular with equi-

spaced nodes, the polynomial interpolant may diverge in exact arithmetic for
analytic functions if they have singularities too close to the interval of interpola-
tion; this behaviour is known as Runge’s phenomenon. As Floater–Hormann in-
terpolation is blended polynomial interpolation, it is natural to investigate under
which circumstances these interpolants also suffer from Runge’s phenomenon.
This is the subject of Chapter 4. The convergence and divergence of polyno-
mial interpolation of analytic functions is best described by potential theory.
The essential elements of this theory are reviewed, leading to the theorem on
convergence and divergence, which gives the speed of convergence or divergence
depending on the location of the singularities of the interpolated function closest
to the interval with respect to well defined level curves. The latter depend on
the distribution of the nodes and allow one to immediately determine whether
Runge’s phenomenon occurs or not. After the exposition of polynomial inter-
polation of analytic functions, we generalise this theory to blended polynomial
interpolation, i.e., to Floater–Hormann interpolation. This generalisation is a
result of a collaboration with Stefan Güttel. We also obtain level curves describ-
ing the convergence and divergence of linear barycentric rational interpolation
of analytic functions depending on the location of the singularity of the func-
tion closest to the interval with respect to these new level lines. We analyse
under what conditions Runge’s phenomenon can occur in Floater–Hormann in-
terpolation and explain why this phenomenon is less likely to show up than in
polynomial interpolation. For symmetric and equispaced nodes we give more
details. From the knowledge of the convergence and divergence behaviour, and
that of the Lebesgue constants associated with Floater–Hormann interpolation,
we are able to give a recommendation for how to choose the blending parameter
d in a nearly optimal way, namely by balancing the fast convergence and the
growing condition number. This strategy is demonstrated in extensive numeri-
cal tests. The chapter closes with a discussion of a good choice of interpolation
nodes for Floater–Hormann interpolation, and we give some heuristic clues as to
why we think that equispaced nodes are close to optimal for these interpolants.

With the knowledge of the properties of Floater–Hormann interpolation ac-
quired in Chapters 2-4, we apply linear barycentric rational interpolation to
the approximation of derivatives in Chapter 5. The kth order derivative of a
function is approximated by the same derivative of its rational interpolant; the
approximation order is found to decrease roughly by one for each differentia-
tion. We first study the approximation error at the nodes for the first and second
derivatives with arbitrary nodes, and higher order derivatives with equispaced
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1.2. OVERVIEW

and quasi-equispaced nodes. Thereafter we analyse the convergence behaviour
of the approximation of the first and second derivatives at intermediate points
in between the nodes with arbitrary nodes. For higher order derivatives with
equispaced and quasi-equispaced nodes, we present a cheaper alternative for
computing approximations of such derivatives with almost the same approxi-
mation order as at the nodes. The theory for the approximation of the first
and second derivatives with arbitrary nodes was established in a collaboration
with Michael Floater; the combination of individual ideas and approaches en-
abled us to construct the convergence theory together. With the knowledge of
this theory, we built the rational analogues of finite difference formulas, which
are originally based on polynomial interpolation and allow one to construct
approximations of derivatives from the function values. We compare our ratio-
nal finite difference formulas with the classical polynomial ones and conclude,
among other things, that the rational formulas are especially effective for the
approximation of derivatives near the ends of the interval. These observations
are illustrated with numerical examples.

Linear barycentric rational interpolants can also be used for the approxi-
mation of integrals and antiderivatives, as we discuss in Chapter 6. From the
linearity of these interpolants, the construction of quadrature rules is obvious.
We begin with an overview of polynomial interpolatory quadrature rules and
state some well known relevant results about quadrature rules obtained from
polynomial interpolants. Then we explain how to construct quadrature rules
and approximations of antiderivatives from arbitrary linear barycentric rational
interpolants. For Floater–Hormann interpolants, we give three methods; the
first is based upon Chebfun. The second is a family of quadrature rules; and
the third is an alternative, based upon the solution of differential equations.
For the rational quadrature rules with equispaced nodes, we show convergence,
namely that the approximation is one order higher than that of the interpolant
itself. We demonstrate and compare the three methods with numerical exam-
ples. Thereafter, and as an additional application of the theory from Chapter 4,
we derive rational quadrature rules and approximations of antiderivatives for
analytic functions, which are also illustrated with examples.

In Chapter 7 we present a construction that extends Floater–Hormann in-
terpolation in the case of equispaced nodes. The exponential growth of the
Lebesgue constants associated with Floater–Hormann interpolants as the blend-
ing parameter d increases prohibits the use of large values of d, which, in exact
arithmetic, would lead to faster convergence. This growth of the Lebesgue con-
stants comes from the Lebesgue functions, which, however, yield only a few large
oscillations close to the ends of the interval. Considering further nodes and con-
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structing adequate function values from the given ones alleviates this drawback
and leads to what we call extended Floater–Hormann interpolation. After pre-
senting the details of this construction, we prove the convergence thereof and
give bounds on the Lebesgue constants, which behave very favourably, increas-
ing only slowly with d and the number of nodes. Extended Floater–Hormann
interpolation turns out to be very well-conditioned, as we also demonstrate with
examples. As this construction is also linear in the data, it is suited for the ap-
plications presented in Chapters 5 and 6 for the original family of interpolants.
We prove similar results for the extended family of interpolants and illustrate
them with examples, showing that the approximation errors are often smaller
than with the original family. We give additional heuristic arguments as why
these interpolants work well with equispaced nodes and explain why a good
choice of d becomes less important.

We close this work with a final chapter presenting conclusions and an out-
look.
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Chapter 2

Barycentric Interpolation

This chapter gives an overview of the interpolation techniques we shall be con-
cerned with throughout this thesis. We begin with polynomial interpolation,
its barycentric forms and some historical notes in Section 2.1. In the following
section we explain the link between polynomial barycentric interpolation and
its rational counterpart, and present some early constructions by Berrut in lin-
ear barycentric rational interpolation. These were further generalised by Floater
and Hormann, who proposed a whole family of linear rational interpolants which
we describe in Section 2.3. In this work we study the applications of this family
of interpolants and related ones. Some elementary properties are already es-
tablished in this chapter, and others follow in subsequent parts, complemented
with several numerical results.

9



2.1. POLYNOMIAL INTERPOLATION

2.1 Polynomial Interpolation

The basic numerical approximation problem we are addressing is the following:
We suppose we are given n+1 distinct ordered points, called nodes , in a closed
interval [a, b] of the real line, a = x0 < x1 < . . . < xn = b, and corresponding
values f0, . . . , fn, which may or may not stem from a real or complex function
evaluated at the nodes. The aim is to find a function g from a finite-dimensional
linear subspace of (C[a, b], ‖ · ‖), the Banach space of all continuous functions
on the interval [a, b] normed with the maximum norm on that interval, i.e.,
‖ · ‖ = maxa≤x≤b | · |, such that g interpolates the data at the nodes, i.e., g
satisfies the interpolation property

g(xi) = fi, i = 0, . . . , n.

There are two major classes of interpolants: The one we are interested in con-
tains interpolants that are linear in the data; this means that g may be repre-
sented as a linear combination

g(x) =

n∑

i=0

bi(x)fi, (2.1)

of some basis functions bi which do not depend on fi. The methods from
the second class may not be written in this form; examples include B-splines,
least-squares fits, Padé approximants, best approximants and classical rational
interpolants. We are mainly concerned with the former class since its properties
turn out to be valuable in applications such as the approximation of derivatives,
integrals and solutions of differential equations. We will give further details in
the forthcoming chapters.

The most classical example of linear interpolation between the given set of
n+1 values is the unique polynomial interpolant pn of degree less than or equal
to n, which interpolates the data and can be written in Lagrange form,

pn(x) =

n∑

i=0

ℓi(x)fi,

where

ℓi(x) =

n∏

j=0
j 6=i

x− xj
xi − xj

(2.2)

10



CHAPTER 2. BARYCENTRIC INTERPOLATION

are the fundamental Lagrange functions , with the Lagrange property

ℓi(xj) =

{
1, j = i,

0, j 6= i.
(2.3)

The evaluation of pn written in this form requires O(n2) operations for ev-
ery point x. The above formula for the polynomial interpolant dates to the end
of the 18th century, and was documented by Lagrange [79] in 1795 but also
earlier by Waring [125] in 1779. Euler [43] had derived in 1783 a formula close
to Newton’s formula and leading to Lagrange’s formula. Many other closely
related representations of polynomial interpolation exist, such as those of New-
ton, Gauss, Stirling, Bessel and Everett; see [104] for details. We refer to [80]
for an extensive review of the history of interpolation starting from the ancient
times and for numerous references.

Throughout this document, we stick to the barycentric interpolation form,
which presents a number of advantages for numerical computation, as we shall
see below; see also [17]. The barycentric form of pn may be obtained from its
Lagrange form. First we define the nodal polynomial

L(x) =

n∏

i=0

(x− xi) (2.4)

and the barycentric weights , or simply weights,

λi = 1

/ n∏

j=0
j 6=i

(xi − xj). (2.5)

A simple computation shows that λi = 1/L′(xi) [60]. The fundamental La-
grange functions from (2.2) may now be written as

ℓi(x) = L(x)
λi

x− xi
,

so that pn is also represented by

pn(x) = L(x)

n∑

i=0

λi
x− xi

fi, (2.6)

which is often called the “modified Lagrange formula” (Higham [63]) or the
“first form of the barycentric interpolation formula” (Rutishauser [93]). Equa-
tion (2.6) was already presented in 1825 by Jacobi in [70], where he computes

11
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the partial fraction decomposition of pn/L and expresses it as the sum in the
right-hand side of (2.6). Jacobi stresses the immediate relation to Lagrange
interpolation.

Once the barycentric weights are available, which requires O(n2) operations
if they are computed from (2.5), the polynomial may be evaluated in only O(n)
operations for every x. This is the same complexity as with Newton’s form
once the divided differences of the values f0, . . . , fn for that formula are com-
puted, which can also be done in O(n2) operations. Winrich [129] compares
the number of operations needed for the evaluation of pn with the Lagrange
form, the barycentric form and Aitken’s and Neville’s algorithms; see [60]. He
concludes that the barycentric formula should be preferred if the number of
nodes is greater than or equal to 5. The barycentric weights only need to be
computed once for every set of nodes, since they are independent of the point x
where pn is evaluated. Once the weights are computed, as they do not depend
on f , the polynomial interpolant of any function can be evaluated in O(n) oper-
ations. Closed analytic expressions for the weights are available for equispaced
nodes and Chebyshev points [17], as well as Gauss–Legendre, Gauss–Jacobi and
many more; see [123, 124]. The polynomial interpolant between such nodes can
thus be completely evaluated in only O(n) operations. For equispaced nodes,
xi = a+ i(b− a)/n, the weights are, see e.g. [99],

λi = (−1)n−inn

(
n

i

)/(
(b − a)nn!

)
.

Higham showed in [63] that (2.6) is unconditionally stable. There is also a
“second (true, ‘eigentliche’) form of the barycentric formula” (Rutishauser [93]),
which is often simply called the barycentric formula, and which can be evaluated
in [a, b] as stably as the first, provided the nodes are distributed in a suitable
way. We give further details on this and on the numerical stability in Chapter 3.
The second barycentric formula follows from the simple observation that pn is
the unique polynomial of degree less than or equal to n interpolating the values.
If all of these are equal to 1, which corresponds to sampling the degree zero
polynomial 1, then, because of uniqueness, its polynomial interpolant simplifies
to that constant polynomial, so that

1 = L(x)

n∑

i=0

λi
x− xi

.

This equation is also presented by Jacobi in [70] as the partial fraction de-
composition of 1/L. We may divide pn written in the first barycentric form (2.6)

12
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by the above complicated representation of 1 to obtain

pn(x) =
n∑

i=0

λi
x− xi

fi

/ n∑

i=0

λi
x− xi

, (2.7)

where the nodal polynomial has been cancelled and thus does not need to be
computed any more. From the above derivation, it becomes clear that (2.7),
which looks like a rational function, is in fact a polynomial and interpolates
between the given values. An additional advantage of the second barycentric
form is that the weights appear in the numerator and denominator, so that
common factors cancel, leading to simpler expressions for the λi. For equispaced
nodes, the simplified weights are simply

λi = (−1)i
(
n

i

)
;

for Chebyshev points of the second kind, they oscillate in sign and have the
magnitude 1, except for the first and last, which are equal to ±1/2; see [96].
For explicit expressions for the weights for some other distributions of nodes,
we refer to [17, 123, 124] and the references therein.

This property that the weights for the second barycentric form can be simpli-
fied is not a purely aesthetic one. It shows that the weights are scale-invariant,
whereas those for the first barycentric form are not and may lead to overflow or
underflow depending on n and also on the length of the interval; see (2.5).

Accommodating additional data in the polynomial interpolant can be done
in O(n) operations per supplementary node, if pn is written in a barycentric
form, since the weights (2.5) can be updated easily.

The barycentric formula was already known at least in the 1940s; it is de-
scribed by Taylor [107] in 1945 for equispaced nodes and by Dupuy [38] in 1948
mainly for equispaced nodes, but he also mentions nonequispaced nodes and
tensor product interpolation on an equispaced grid. These two papers were ap-
parently the first to publish the idea of dividing the polynomial interpolant by a
complicated representation of 1. The barycentric formula for interpolation with
arbitrary and equispaced nodes is mentioned by Bulirsch and Rutishauser [24]
in 1968. The formula was later documented by Salzer [96] in 1972, mainly
for Chebyshev points of the second kind, but also for Chebyshev points of the
first kind; differentiation with such nodes is also explained. Henrici derives the
formula in his textbook [61] in 1982. Thereafter, the barycentric formula is
also used for rational interpolation and studied essentially by Berrut, Schneider
and Werner. However, it was not until 2004 with the Berrut–Trefethen SIAM
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Review paper [17] that the barycentric formula became a widely appreciated
technique for polynomial interpolation. We refer to Section 10 of that same
reference for a more detailed historical review of the barycentric form of the
polynomial interpolant and for reasons why it took so long for its benefits to
become known to the numerical analysis community; see also [113].

2.2 Linear Barycentric Rational Interpolation

The second barycentric formula allows a direct transition from polynomial inter-
polation to barycentric rational interpolation. If the weights λi are changed to
other nonzero weights wi, then L(x)

∑n
i=0 wi/(x−xi) is not necessarily equal to

1 any longer and the correspondingly modified expression (2.7) becomes a true
rational function. The following lemma extends this observation. The present
form comes from [13]; the first statement was already presented and proven by
Werner in [128] and brought to his attention in a private communication from
Schneider. The second statement is proven in [15].

Lemma 2.1. (i) Let {(xi, wi, fi)}i=0,...,n be a set of n + 1 real or complex
triplets with xj 6= xk for j 6= k. Then if all wi 6= 0, the rational function

rn(x) =

n∑

i=0

wi

x− xi
fi

/ n∑

i=0

wi

x− xi
, (2.8)

interpolates fi at xi: limx→xi
rn(x) = fi.

(ii) Conversely, every rational interpolant whose numerator and denominator
are polynomials of degree not exceeding n may be written in the barycentric
form (2.8) for some weights wi.

The first statement of this lemma is a simple calculation and reveals an
additional advantage of barycentric interpolation: The interpolation property
rn(xi) = fi is always guaranteed, even if the weights wi are computed with
errors, as long as they remain nonzero. For the second statement of the lemma,
it is enough to write the polynomials p and q in the numerator and denominator
of the rational interpolant r in Lagrange form and to observe that p = rq and
therefore define the weights by wi = λiq(xi), with λi from (2.5). This relation
between the barycentric weights and the values of the denominator polynomial
can be exploited to derive further characteristics of barycentric rational inter-
polation. Indeed, as pointed out in [16], the relation between the weights and
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CHAPTER 2. BARYCENTRIC INTERPOLATION

the denominator shows that a rational interpolant represented as a quotient of
polynomials is completely determined by its denominator.

The second statement of Lemma 2.1 is very important for detecting proper-
ties of a given interpolant in classical rational interpolation. Indeed, once the
numerator and denominator are found and put into the reduced form, i.e., com-
mon factors are simplified, the barycentric form gives information on possibly
unattainable points and subintervals where poles might occur; see Corollary 7
and Proposition 8 of [97] for details.

If the locations of some of the poles of the function are known, it is possible
to attach them to the barycentric rational interpolant. For techniques of how
to achieve this see, e.g., [3, 10].

It becomes obvious that barycentric rational interpolation allows one to
choose the nodes and the weights. The rational interpolant rn is linear if the
barycentric weights do not depend on the values f0, . . . , fn. The additional
freedom coming from the choice of the weights, as compared to polynomial
interpolation where the weights are fixed, is advantageous if interpolation is
needed in sets of nodes that may not be chosen at will, especially if the nodes
need to be equispaced. As mentioned earlier, polynomial interpolation with eq-
uispaced nodes is not reliable. In 1988, Berrut proved [9] that the barycentric
interpolant (2.8) with weights wi = (−1)i has no real poles for every distribu-
tion of the nodes. Moreover he conjectured linear convergence as h → 0 at the
rate O(h), which means that ‖f − rn‖ ≤ Kh, with

h = max
0≤i≤n−1

(xi+1 − xi) (2.9)

and K a constant independent of n. For equispaced nodes, he introduced and
studied numerically the same choice of weights with the first and last weight
divided by 2, as in polynomial interpolation with Chebyshev points. Faster
convergence is observed than with the former choice of weights, and O(h2)
convergence was conjectured in [5].

2.3 Floater–Hormann Interpolation

2.3.1 The Construction

In 2007, Floater and Hormann [46] presented a whole family of linear barycentric
rational interpolants and provided explicit formulas for the barycentric weights.
Their result was added to the Numerical Recipes book [88] in the very same
year. The construction includes the weights of Berrut presented at the end of
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the preceding section as special cases; the second for equispaced nodes only. To
establish the formulas, one chooses an integer parameter d ∈ {0, 1, . . . , n} and
denotes by pi, i = 0, 1, . . . , n− d, the unique polynomial of degree less than or
equal to d interpolating the subset of d+1 values fi, fi+1, . . . , fi+d. The rational
function

rn(x) =

∑n−d
i=0 λi(x)pi(x)∑n−d

i=0 λi(x)
, (2.10)

with

λi(x) =
(−1)i

(x − xi) · · · (x− xi+d)
, (2.11)

interpolates the data and can be interpreted as a blend of the polynomial inter-
polants p0, . . . , pn−d with the blending functions λ0(x), . . . , λn−d(x). The choice
d = n recovers polynomial interpolation. We shall call the rational interpolants
from (2.10) Floater–Hormann interpolants as a subclass of linear barycentric
interpolants. The parameter d is sometimes called the blending parameter . As
is clear from the notation, we suppose from now on that n and d, d ≤ n, are
always nonnegative integers. As the authors state in [46], the family of inter-
polants (2.10) was independently found by Floater and Hormann while they
were working on interpolation on nested planar curves. The underlying idea, as
presented by Floater in his talk at the DWCAA09 conference, is to observe that
Berrut’s interpolant, which was conjectured to converge linearly, is the solution
of the following problem involving first order divided differences,

n∑

i=0

(−1)ig[xi, x] = 0.

The solution g to such a problem involving the n − d + 1 divided differences
g[xi, . . . , xi+d, x] then is precisely rn from (2.10), and it turns out that this
interpolant converges at the rate O(hd+1) to f , as we will see in Theorem 2.3.

2.3.2 Properties

The barycentric form of rn is obtained by representing the blended polynomials
in Lagrange form and rearranging the sums [46, Sect. 4], leading to the weights

wi = (−1)i−d
∑

k∈Ji

k+d∏

j=k
j 6=i

1

|xi − xj |
, (2.12)

16
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with

Ji = {k ∈ In : i− d ≤ k ≤ i}, where In = {0, . . . , n− d}. (2.13)

We call the basis functions

wi

x− xi

/ n∑

j=0

wj

x− xi
, i = 0, . . . , n, (2.14)

the Lagrange fundamental rational functions. The derivation in [46] of the above
explicit formulas for the barycentric weights reveals an interesting relationship
between the denominator in the original representation (2.10) of rn and the
denominator in the barycentric representation, namely,

n−d∑

i=0

λi(x) =

n∑

i=0

wi

x− xi
. (2.15)

This will be very useful in investigations of the Lebesgue functions in Chapter 3.
As the weights are all nonzero, the interpolation property of rn is verified by

Lemma 2.1. For equispaced nodes, the simplified weights oscillate in sign, and
their absolute values for 0 ≤ d ≤ 3 are

1, 1, . . . , 1, 1, d = 0,

1, 2, 2, . . . , 2, 2, 1, d = 1,

1, 3, 4, 4, . . . , 4, 4, 3, 1, d = 2,

1, 4, 7, 8, 8, . . . , 8, 8, 7, 4, 1, d = 3.

The factor by which the original weights have been multiplied to find the sim-
plified integer weights is d!hd. The above values for the weights can be used
directly for barycentric interpolation, so that in this case, as for polynomial
interpolation with Chebyshev points, the weights do not necessarily need to be
computed. Floater–Hormann interpolation with equispaced nodes and small d
is thus also a method for interpolation in only O(n) operations per point of
evaluation.

With d = 0, the weights are all the same in absolute value for any distribution
of the nodes, see (2.12), so that this case is exactly the one already presented
by Berrut [9] in 1988. Dividing by 2 the simplified weights for d = 1 and
equispaced nodes yields the values suggested by Berrut in [9]. For n ≥ 2d the
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absolute values of the simplified weights are given as [19]

|wi| =





∑i
k=0

(
d
k

)
, i ≤ d,

2d, d ≤ i ≤ n− d,

|wn−i|, i ≥ n− d.

(2.16)

If n < 2d then the above formulas remain correct provided the weights are
computed symmetrically, beginning with w0 and wn.

We now state two more results from [46] characterising the interpolants rn.

Theorem 2.2. The rational interpolant rn in (2.10) has no real poles.

This theorem is proven in [46] by multiplying the numerator and denomi-
nator of rn by (−1)n−dL(x), where L is the nodal polynomial from (2.4), and
showing that the resulting denominator polynomial

s(x) =

n−d∑

i=0

µi(x), with µi(x) = (−1)n−dL(x)λi(x), (2.17)

is positive for every real x. The rational function rn is thus infinitely smooth
and even analytic in a certain neighbourhood of [a, b]; see also Section 2.3.3.

The next result we state from [46] gives the speed of convergence via a bound
on the interpolation error. We begin with the definition of a local mesh ratio,
which is only needed in the case d = 0,

β = max
1≤i≤n−2

min
{xi+1 − xi
xi − xi−1

,
xi+1 − xi
xi+2 − xi+1

}
. (2.18)

Theorem 2.3. Suppose that f ∈ Cd+2[a, b]. Then,

‖f − rn‖ ≤





h(1 + β)(b − a)‖f
′′‖
2 , d = 0, n odd,

h(1 + β)
(
(b− a)‖f

′′‖
2 + ‖f ′‖

)
, d = 0, n even,

hd+1(b− a)‖f
(d+2)‖
d+2 , d ≥ 1, n− d odd,

hd+1
(
(b− a)‖f

(d+2)‖
d+2 + ‖f(d+1)‖

d+1

)
, d ≥ 1, n− d even.

In exact arithmetic and for fixed d, the rational interpolant thus converges
algebraically to f for every d ≥ 1 and under a bounded mesh ratio condition
for d = 0. The only hypothesis made on f is that it should be sufficiently many
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times differentiable. Numerical tests have revealed that the regularity hypoth-
esis f ∈ Cd+2[a, b] for observing the convergence order d+ 1 may sometimes be
weakened; Floater and Hormann demonstrated that the C0 function f(x) = |x|
can be approximated with order 1. Other tests revealed that f ∈ Cd[a, b] is
sometimes enough to observe the rate d + 1; examples include f(x) = |x|d+1

with d even. This, however, does not seem to be true for arbitrary Cd functions.

Theorem 2.3 shows that different error bounds apply depending on the par-
ity of n − d. The constant in these bounds is larger if n − d is even than if
this difference is odd. The behaviour of the error observed in practice often
corresponds to this theoretical result and thus leads to oscillatory curves when
the error is represented with varying n and fixed d; such an error behaviour can
also be caused by functions that are easier to resolve either if n is even or odd,
e.g., functions with a peak and symmetric with respect to the midpoint of the
interval.

More can be said on the convergence of Floater–Hormann interpolants if
f is analytic in a neighbourhood of [a, b] and if the parameter d is allowed to
change with n; see Section 4.2. One immediate advantage of these interpolants
is the fact that the interpolation error depends on the maximum norm of just
the (d + 2)nd derivative of f , as opposed to the dependence on the (n + 1)st
derivative in the polynomial case.

For the proof of Theorem 2.3, the authors of [46] start from the original
representation (2.10) of rn and use the Newton error formula to investigate the
numerator of the interpolation error e at a point x ∈ [a, b] that is not a node,

e(x) = f(x) − rn(x) =

∑n−d
i=0 (−1)if [xi, . . . , xi+d, x]∑n−d

i=0 λi(x)
, (2.19)

where f [xi, . . . , xi+d, x] is the (d+1)st order divided difference of f correspond-
ing to xi, . . . , xi+d and x. The factors involving the (d + 1)st and (d + 2)nd
derivatives of f in the error bounds in Theorem 2.3 come from bounds on the
numerator in the right-hand side of (2.19). For d ≥ 1, the upper bound from [46]
on the denominator of (2.19), which is also the denominator of (2.10), yields
the factor hd+1 giving the convergence speed:

∣∣∣∣
n−d∑

i=0

λi(x)

∣∣∣∣ ≥
1

d!hd+1
. (2.20)

The steps leading to the above bound include an interesting additional result if

19



2.3. FLOATER–HORMANN INTERPOLATION

d ≥ 1 and for xk < x < xk+1, k = 0, . . . , n− 1, namely that

∣∣∣∣
n−d∑

i=0

λi(x)

∣∣∣∣ ≥ |λj(x)|, (2.21)

for every j ∈ Jk \ {k − d}.
From the upper bounds on the interpolation error in Theorem 2.3 involving

the norm of the (d+1)st and (d+2)nd derivatives of the interpolated function,
the following corollary on the reproduction of polynomials is immediate.

Corollary 2.4. The rational interpolant rn in (2.10) reproduces polynomials of
degree ≤ d for any n and of degree ≤ d+ 1 if n− d is odd.

One major question arises when Floater–Hormann interpolation is to be used
in practice: What is a good choice for the parameter d? If the nodes are Cheby-
shev points, the choice d = n is of course close to optimal since the rational in-
terpolant simplifies to the polynomial in that case and polynomial interpolation
with Chebyshev points is near-best among polynomial interpolants with degree
less than or equal to n; see also Chapter 4. The authors ofNumerical Recipes [88]
suggest that one should “start with small values of d before trying larger val-
ues”, but also “we might actually encourage experimentation with high order
(say, > 6)”. The recommendation from ALGLIB (http://www.alglib.net) is
a bit more precise; however, it is only valid for the case of equispaced nodes and
the like. They suggest that in most cases, d should not be taken larger than 20
and the optimal choice is often between 3 and 8. Furthermore if no additional
information about f other than its values at the nodes is available, then d = 3
is a good default choice. In later discussions and especially in Chapter 4 we will
give a recommendation for how to choose d when a bit more is known about
the function.

2.3.3 Approximate Location of the Poles1

To the best of our knowledge, the precise location of the complex poles of rn has
not yet been determined analytically. In the case d = 0, which corresponds to
Berrut’s interpolant, pole-free regions in the complex plane have been derived by
Jones and Welfert in [72] by investigating the roots of the function on the right-
hand side of (2.15), which is the denominator of rn when written in barycentric

1This is partly joint work with Piers Lawrence and Stefan Güttel, and originated from an
observation by Nick Hale.
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form. However, the authors did not mention the relation to barycentric rational
interpolation.

The denominator polynomial
∑n−d

i=0 µi(x) is a real valued function and has
no real roots, see Theorem 2.2, so the number of poles is always even. From its
definition, it is easy to see that the denominator polynomial has degree less than
or equal to n− d. The sum in the denominator has n− d+ 1 terms, and every
term is a polynomial of degree n − d with leading coefficient 1 and oscillating
sign, so that the degree is n− d− 1 if n− d is odd and otherwise it is n− d.

To determine the location of the poles experimentally, we need to find the
roots of the denominator

∑n
i=0

wi

x−xi
. There exists a very elegant way to compute

these roots via generalised eigenvalue problems. The method we use stems
from [29], where the roots of polynomials in Lagrange and Hermite interpolation
bases are studied. Before treating the poles, we show the theoretical approach
for determining the real roots of the interpolant rn. Since the denominator of
rn is nonzero, the real roots of the interpolant are the same as those of the
numerator polynomial Nn(x) := L(x)

∑n
i=0

wi

x−xi
fi; the weights may be in any

form, original or simplified, since common factors can be simplified also here.
Let us define the (n+ 2)× (n+ 2) matrices

A :=




x0 f0
. . .

...
xn fn

w0 . . . wn 0


 , B :=

(
E 0
0 0

)
, (2.22)

where elements not displayed are zero and E is the (n + 1) × (n + 1) identity
matrix. These matrices form the so-called companion matrix pencil. Then
any root r of Nn is also an eigenvalue of the generalised eigenvalue problem
Av = rBv, with the eigenvector v = ( f0

r−x0
, . . . , fn

r−xn
, 1)T . This procedure will

give n+ 2 eigenvalues which are potentially infinite or spurious.
Companion matrix pencils are not new. They are well known for polynomials

given in the canonical basis [65] and there are explicit forms, called colleague
matrices [55], for polynomials in the Chebyshev basis and for other bases of
orthogonal polynomials, where they are called comrade matrices [6, 7, 101, 102].

This method for rootfinding can immediately be used to locate the poles of
barycentric rational interpolants: It is sufficient to replace all the fi in (2.22)
by 1 to form the companion matrix pencil for the denominator. As the degree
of the denominator polynomial is known in advance, the exact number of poles
is known. For this reason, we can deflate the matrix pencil sufficiently often,
i.e., d + 2 or d + 3 times, to eliminate infinite roots; see [29] for details of this
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Figure 2.1: Approximate location of the poles of Floater–Hormann interpolation
for equispaced nodes with n = 100 and d = 0, 1, 2, 3, 4, 5 (from left to right and
top to bottom).
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Table 2.1: Absolute errors and experimental convergence order (e.o.) in Floater–
Hormann interpolation of f(x) = exp(x) in [−1, 1].

n d = 0 e.o. d = 1 e.o. d = 3 e.o. d = 5 e.o.

10 1.2e−01 3.7e−03 5.0e−05 8.7e−07
20 6.2e−02 0.9 9.4e−04 2.0 3.6e−06 3.8 1.9e−08 5.5
40 3.2e−02 0.9 2.4e−04 2.0 2.4e−07 3.9 3.4e−10 5.8
80 1.6e−03 1.0 5.9e−05 2.0 1.5e−08 4.0 5.6e−12 5.9
160 8.3e−03 1.0 1.5e−05 2.0 9.8e−10 4.0 9.1e−14 6.0
320 4.2e−03 1.0 3.7e−06 2.0 6.2e−11 4.0 4.0e−15 4.5
640 2.1e−03 1.0 9.2e−07 2.0 3.9e−12 4.0 4.9e−15 −0.3

procedure.

In Figure 2.1 we show the location of the poles of Floater–Hormann inter-
polants with equispaced nodes. These pictures and further experiments, not
displayed, lead to the following observations for which we have not found any
theoretical explanation yet. There are always d or d+1 purely imaginary poles;
the latter is the case if d is odd. The real parts of the poles range from the
(d+1)st to the (n+1− d)th node, which might follow from Theorem 12 in [72]
applied to d ≥ 1, since the (d+ 1)st until the (n+ 1− d)th barycentric weights
have all the same absolute value, see (2.16), so that the idea of the proof of that
theorem would work in this case and in the limit n → ∞. Experiments with
various values of n reveal that most of the poles come closer to the interval as
n increases; only the purely imaginary ones move away.

2.3.4 Numerical Results

We only show two numerical examples of Floater–Hormann interpolation with
equispaced nodes and the barycentric formula; a few more can be found in the
original paper [46] and in subsequent sections.

The first example is the interpolation of the entire function exp(x) in [−1, 1]
with d = 0, 1, 3, 5 and various values of n. The maximal absolute approximation
error throughout the interval as well as the experimental rates of convergence are
documented in Table 2.1. For the notion of experimental order of convergence,
see [33]. For this example, Theorem 2.3 is nicely illustrated, and for d = 5 the
error reaches machine precision and remains at that magnitude also for larger
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2.3. FLOATER–HORMANN INTERPOLATION

Table 2.2: Absolute errors in Floater–Hormann interpolation of Runge’s func-
tion 1/(1 + 25x2) in [−1, 1].

n d = 0 d = 1 d = 3 d = 5 d = 20 d = 50

50 1.2e−03 4.7e−05 5.9e−07 8.1e−07 1.8e−02 4.8e+06
500 1.2e−04 4.7e−07 3.0e−11 1.1e−14 6.7e−13 4.8e−04
5e+3 1.2e−05 4.6e−09 1.2e−14 1.1e−14 1.0e−14 1.3e−07
5e+4 1.2e−06 4.7e−11 2.9e−14 2.9e−14 3.6e−14 2.8e−14
5e+5 1.2e−07 5.1e−13 1.2e−13 9.9e−14 1.1e−13 1.2e−13

n. The amount by which the error might increase again with increasing n is
explained in Section 3.3. For large d and n, Theorem 2.3 might not always be
satisfied in double precision arithmetic since rounding errors might be amplified
during the interpolation process; the more precise reason is the conditioning of
this interpolation procedure, as we will see in Section 3.3.

Our second example is Runge’s [92] function 1/(1 + 25x2) in [−1, 1], which
is the archetypical example when interpolation with equispaced nodes is tested,
since polynomial interpolation diverges in that case, even in exact arithmetic.
The reason is the location of the poles of this function, which are in some sense
too close to the interval. We shall come back to the theoretical explanation in
more detail in Section 4.1. Table 2.2 displays the absolute interpolation errors
with d = 0, 1, 3, 5, 20, 50 and n between 50 and 500 000. With d = 0 and 1,
the experimental orders 1 and 2 can easily be read from the tabulated errors.
With all other values of d, convergence is also guaranteed, as opposed to the
polynomial case, which is implicitly shown with d = n = 50. The maximal
error is about 5 million: This is essentially Runge’s phenomenon and may also
include the effects of the very bad conditioning of polynomial interpolation be-
tween equispaced nodes. With d = 50 and larger values of n, d is “far enough”
away from n, so that the behaviour of the rational interpolant does not resemble
that of the polynomial any longer and the approximation becomes good again.
The intuitive reason why there is no Runge phenomenon any longer, despite the
fact that the rational interpolant is nothing other than a blend of polynomial
interpolants of degree as high as 50 here, is that each polynomial from the blend
only covers a small part of the interval and does not “see” the poles of Runge’s
example. We give more details of this observation in Section 4.2. The bad
conditioning of polynomial interpolation with equispaced nodes is not observed
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in the rational analogue, either. In this example, Floater–Hormann interpola-
tion evaluated with the barycentric formula is obviously well-conditioned and
stable. The next chapter will give theoretical evidence for the stability of the
evaluation of the rational interpolant as well as its good condition, especially
with equispaced nodes.
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Chapter 3

Condition and Numerical
Stability

An idea that makes sense in exact arithmetic need not necessarily work in nu-
merical floating point arithmetic with finite precision. Issues related to rounding
errors and their amplification, to the condition of problems and the stability of
algorithms need to be treated.

Polynomial interpolation between equispaced nodes for analytic functions
with bounded derivatives such as exp(x) converges exponentially in infinite pre-
cision; see, e.g., the error bound (4.19). However, such interpolation is highly
ill-conditioned, and also, evaluating the polynomial with the second barycentric
formula is unstable as the number of nodes becomes large. The opposite is true
of polynomial interpolation between Chebyshev points.

After a brief introduction in Section 3.1 to the concepts of numerical stability
and conditioning, we study in Section 3.2 the stability of polynomial barycentric
interpolation and linear barycentric rational interpolation, including Floater–
Hormann interpolation. Section 3.3 deals with Lebesgue functions and Lebesgue
constants, i.e., the condition numbers, which will in addition allow us to draw
conclusions about the numerical stability of the second barycentric formula for
polynomial and linear rational interpolation. In particular, it will turn out that
Floater–Hormann interpolation with small d and equispaced nodes is nearly as
stable and well-conditioned as polynomial interpolation in Chebyshev points.

The main references for this chapter are Higham’s book [62] and his pa-
per [63], Salazar Celis’s thesis [95] and the papers [18, 19, 64] on the Lebesgue
constants for Floater–Hormann interpolation.
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3.1 Basic Concepts

We begin with a review of some basic notions from numerical analysis. First
we treat the concept of stability of a method. This gives us information on
how much a result computed with a certain algorithm may differ from the value
computed in exact arithmetic. The only sources of error considered in this
investigation are the imprecision due to storing numbers on a computer and
that coming from previous computations. A numerical algorithm or method
for computing f(x) = y, which produces the result ŷ in finite precision, is
numerically stable [62] if, for any x for which the method is designed,

ŷ +∆y = f(x+∆x), |∆y| ≤ ǫ|y|, |∆x| ≤ η|x|, (3.1)

holds with sufficiently small ǫ and η. The absolute and relative errors of ŷ are
called forward errors , and a method is called forward stable if the forward errors
are small for every admissible input data. For given data, the backward error
is the smallest |∆x| or |∆x|/|x| such that in exact arithmetic ŷ = f(x + ∆x);
i.e., x + ∆x is the input data for which ŷ is the exact result. If the backward
error of every result computed by a method is small, then this method is called
backward stable. The expression in (3.1) is called mixed forward-backward error .

A concept which is independent of the method or algorithm and depends
only on the problem itself is the condition. The condition number of a problem
is a measure for the effect on the output caused by errors in the input, which may
be due to perturbations in the data, such as measurement errors in a physical
experiment. If the condition number of a problem is small, then the problem is
well-conditioned , otherwise it is ill-conditioned . The notions of forward error,
backward error and condition number are related as follows,

forward error . condition number× backward error.

An ill-conditioned problem can thus cause any method, including a backward
stable, to produce large forward errors.

In Section 3.2 we investigate the stability of barycentric polynomial inter-
polation and linear barycentric rational interpolation, and in Section 3.3 we
address the condition of interpolating data with these methods.
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3.2 Stability of Linear Barycentric Interpolation

We are now prepared to review the stability of polynomial interpolation with
the first and second barycentric form as presented in [63] and that of linear
barycentric rational interpolation as given in [95]. The error analysis requires
the definition of the standard model of floating point arithmetic [62]:

fl(x op y) = (x op y)(1 + δ)±1, |δ| ≤ ε, op = +,−, ∗, /,

with ε the unit roundoff. The error bounds below are displayed compactly with
the use of the error counter

〈k〉 =
k∏

i=1

(1 + δi)
ρi , ρi = ±1, |δi| ≤ ε. (3.2)

In the following, the data f0, . . . , fn and the nodes x0, . . . , xn are assumed to
be floating point numbers.

Theorem 3.1. The polynomial interpolant p̂n as computed from the first bary-
centric form (2.6) satisfies

p̂n(x) = L(x)

n∑

i=0

λi
x− xi

fi〈5n+ 5〉i. (3.3)

This result from [63] follows from carefully counting the numbers of opera-
tions involved in computing the barycentric weights and in the evaluation of pn.
The first barycentric form is thus backward stable since equation (3.3) shows
that the computed polynomial interpolant can be interpreted as the exact in-
terpolant of only slightly perturbed data. This formula can also be shown to
be forward stable. To state the result from [63], we need the definition of the
condition number at a point x of a function gn[f ] interpolating f in n+1 nodes,
namely

cond(x, gn, f) = lim
η→0

sup

{∣∣∣∣
gn[f ](x)− gn[f +∆f ](x)

ηgn[f ](x)

∣∣∣∣, |∆f | ≤ η|f |
}
.

Corollary 3.2. Under the same assumptions as in Theorem 3.1, it follows that

|pn(x)− p̂n(x)|
|pn(x)|

≤ (5n+ 5)ε

1− (5n+ 5)ε
cond(x, pn, f).
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The second barycentric formula is only forward stable [63] under certain
hypotheses on the nodes. Before we state this result, we define the Lebesgue
function associated with polynomial interpolation,

Λn(x) =

n∑

i=0

|λi|
|x− xi|

/∣∣∣∣
n∑

i=0

λi
x− xi

∣∣∣∣.

Theorem 3.3. The polynomial interpolant p̂n as computed from the second
barycentric form (2.7) satisfies

|pn(x) − p̂n(x)|
|pn(x)|

≤ (3n+ 4)cond(x, pn, f)ε+ (3n+ 2)Λn(x)ε+O(ε2). (3.4)

Equation (3.4) shows that the second barycentric formula is roughly as
forward stable as the first barycentric formula under the condition that the
Lebesgue function associated with polynomial interpolation is not larger than
cond(x, pn, f). The Lebesgue function is discussed in much more detail in Sec-
tion 3.3, where favourable and not so favourable choices for the nodes are also
discussed.

A similar result to Theorem 3.3 holds for linear barycentric rational interpo-
lation [95], under the assumption that the barycentric weights can be computed
by a backward stable algorithm, i.e., such that the computed weights ŵi satisfy

ŵi = wi

(
1±O(κW ε)

)
,

where κW is the relative condition number of the barycentric weights wi. Such a
condition holds for instance for the weights in Floater–Hormann interpolation.
It follows from (2.12) and (3.2) that

ŵi =
∑

k∈Ji

(−1)k〈1〉k〈|Ji| − 1〉k〈2d〉k
k+d∏

j=k
j 6=i

1

xi − xj

=
∑

k∈Ji

(−1)k
k+d∏

j=k
j 6=i

1

xi − xj
〈|Ji|+ 2d〉k

=wi

(
1±O((|Ji|+ 2d)ε)

)

where |Ji| denotes the number of elements in Ji.
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Theorem 3.4. The linear barycentric rational interpolant r̂n computed from
(2.8) satisfies

|rn(x)− r̂n(x)|
|rn(x)|

≤
(
n+ 4 +O(κW )

)
cond(x, rn, f)ε

+
(
n+ 2 +O(κW )

)
Λn(x)ε+O(ε2),

(3.5)

where Λn(x) is the Lebesgue function (3.7) associated with linear barycentric
rational interpolation.

Floater–Hormann interpolation is thus forward stable for nodes for which
the associated Lebesgue function is small enough. We will now see that this is
the case with equispaced nodes and reasonably small d.

3.3 Lebesgue Functions and Lebesgue

Constants

3.3.1 Definition and Properties

The original definition of the Lebesgue function and constant comes from the
general theory of linear interpolation operators; see [26, 87]. Suppose we have a
set X , which contains the n+1 interpolation nodes and which is the domain of
the functions being considered. We are looking for a linear interpolant g from
an (n+1)-dimensional vector space A, such that g can be represented as in (2.1)
by a linear combination of basis functions bi satisfying the Lagrange property
like the ℓi in (2.3). If f is any function defined on X , an interpolant g can be
found by writing

Lf =
n∑

i=0

bif(xi),

with L a linear and idempotent operator. Such an operator is called a projection.
For the Lebesgue function associated with L,

Λn(x) =

n∑

i=0

|bi(x)|,

it follows [26, 87] that the Lebesgue constant

Λn = sup
x∈X

Λn(x)
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is the norm of the associated interpolation operator L, namely

‖L‖ = sup
‖f‖≤1

‖Lf‖ = Λn.

An immediate application of the Lebesgue constant is the characterisation of
the approximation error via best approximation in A. For a function f defined
on X , a best approximation g∗ to f from A satisfies

‖f − g∗‖ = inf
u∈A

‖f − u‖.

From the triangle inequality and the hypotheses on L, it follows that

‖f − Lf‖ ≤ (1 + Λn)‖f − g∗‖. (3.6)

Let us return to the particular case where X = [a, b] and g is the polynomial
interpolant pn or a linear rational interpolant rn to f . The Lebesgue function
associated with g in barycentric form is given by

Λn(x) =

n∑

i=0

|wi|
|x− xi|

/∣∣∣∣
n∑

i=0

wi

x− xi

∣∣∣∣, (3.7)

and the Lebesgue constant is

Λn = max
a≤x≤b

Λn(x). (3.8)

We denote by Pn the (n+1)-dimensional vector space of polynomials of degree
less than or equal to n and by p∗n the best approximation in Pn of a fixed
function f . The existence and uniqueness of p∗n are shown, e.g., in [87]. The
approximation error in polynomial interpolation is bounded via the Lebesgue
constant associated with pn as in (3.6),

‖f − pn‖ ≤ (1 + Λn)‖f − p∗n‖. (3.9)

Since the Floater–Hormann interpolants rn from (2.8) with weights (2.12) re-
produce polynomials of degree at least d, it easily follows from the triangle
inequality that

‖f − rn‖ ≤ (1 + Λn)‖f − p∗d‖,
where p∗d is the best approximation to f in Pd and Λn is the Lebesgue constant
associated with rn.
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This is an additional motivation to look at the Lebesgue constants, in addi-
tion to Theorems 3.3 and 3.4. Here is yet another one; we write gn for pn or rn.
Let every data value fi be given with an absolute error or perturbation of at
most εp, for example due to rounding, noise, or measurement imprecision. Then
the maximum distance in [a, b] between the interpolant g̃n of the perturbed data
and the interpolant gn of the exact data is bounded as

max
a≤x≤b

|gn(x)− g̃n(x)| ≤ εp max
a≤x≤b

Λn(x) = εpΛn,

as can be easily seen from the linearity of gn. Thus, Λn is the worst possible
error amplification and, since g is linear in the data, coincides with the condition
number of the interpolation process [85].

3.3.2 The Condition of Polynomial Interpolation

Numerous authors have derived results about the Lebesgue function and con-
stant associated with polynomial interpolation in various kinds of nodes; see [22,
23, 100] and the references therein. It is well known [22] that the Lebesgue con-
stant associated with polynomial interpolation between n+1 nodes distributed
in any way always increases at least logarithmically with the number of nodes,

Λn ≥ 2

π
log(n+ 1) +

2

π

(
γ + log

( 4
π

))
,

where γ ≈ 0.577 is Euler’s constant. Such a rate is achieved, for instance, for
Chebyshev points of the first and second kind [23, 39, 90, 100],

Λn ≤ 1 +
2

π
log(n+ 1). (3.10)

In contrast to this favourable behaviour, the Lebesgue constant for polyno-
mial interpolation at equispaced nodes grows exponentially, with the asymptotic
behaviour

Λn ∼ 2n+1

en log(n)

as n → ∞. More detailed results and other approaches to describing the er-
ror amplification may be found in [40, 61, 98, 116] and the references therein.
The bad condition, together with Runge’s phenomenon [42, 92], see Chapter 4,
makes polynomial interpolation in equispaced nodes usually useless for n ≥ 50
and not much better for smaller n. In fact, interpolation in these nodes is a
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challenging problem; it was shown in [85] that it is not possible to develop an ap-
proximation method which is simultaneously well-conditioned and converges at
an exponential rate as the number of nodes increases. It is, however, possible to
have well-conditioned interpolation between equispaced nodes which converges
at an algebraic rate. We shall see in the next section that this is achieved by
linear rational interpolation under some restrictions.

3.3.3 The Condition of Linear Barycentric Rational
Interpolation1

Berrut and Mittelmann [15] determine linear rational interpolants with small
Lebesgue constants for given nodes by numerically optimising the denomina-
tor of the interpolant. Here we shall concentrate on the family of barycentric
rational interpolants introduced by Floater and Hormann.

Bos, De Marchi and Hormann [18] analysed the Lebesgue constant associated
with Berrut’s rational interpolant, i.e., the Floater–Hormann interpolant with
d = 0, and showed the following result.

Theorem 3.5. The Lebesgue constant associated with Berrut’s interpolant in
equispaced nodes satisfies

cn log(n+ 1) ≤ Λn ≤ 2 + log(n), (3.11)

where cn = 2n/(4 + nπ), with limn→∞ cn = 2/π.

Logarithmic growth of the Lebesgue constant associated with this inter-
polant for increasing n has also been derived for more general, so called well-
spaced, nodes; see [20].

The general case d ≥ 1 requires a different approach, since the study of the
Lebesgue function in the form (3.7) results in rather complicated expressions,
whereas the original form of the rational interpolants as blends of polynomials
allows for much shorter proofs.

We will now show that the Lebesgue constant associated with the family of
Floater–Hormann interpolants with d ≥ 1 grows logarithmically in the num-
ber of interpolation nodes if these are equispaced or quasi-equispaced. This is
achieved by establishing logarithmic upper and lower bounds.

To define quasi-equispaced nodes [41], we assume that there exists some global
mesh ratio M ≥ 1, which does not depend on n, such that

1The figures in this section stem from [19, 64] and were prepared by Kai Hormann.
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h

h∗
≤M, (3.12)

with h from (2.9) and
h∗ = min

0≤j≤n−1
(xj+1 − xj),

i.e., the minimal distance between neighbouring nodes. Such node distributions
may arise from experiments, where the aim is to sample a signal at a constant
rate, which in turn is perturbed by imprecision in the measurement locations.
We study the behaviour of the derivatives of the rational interpolants for such
nodes in Chapter 5. Notice that equispaced nodes are quasi-equispaced nodes
with global mesh ratio M = 1. For simplicity, we assume that the interpolation
interval is [0, 1].

The Lebesgue function associated with linear barycentric interpolation is
invariant under rescaling and translation of the interval, under the assumption
that the weights are also invariant under such a transformation. The latter con-
dition is satisfied in Floater–Hormann interpolation since the simplified weights
depend only on relative distances between the nodes, as can be deduced from
equation (2.12). To see the invariance of the Lebesgue function, we map the
nodes and the evaluation point x ∈ [a, b] by the map x 7→ (x − a)/(b − a) onto
[0, 1]. A short computation with (3.7) shows that

Λn

(
(x− a)/(b− a)

)
= Λn(x). (3.13)

We will now derive lower and upper bounds on the Lebesgue constants as-
sociated with Floater–Hormann interpolation. This was done in collaboration
with Bos, De Marchi and Hormann; see [19, 64]. We only present the results for
quasi-equispaced nodes since those for equispaced nodes then follow immediately
by letting M = 1. Let us begin with a lemma.

Lemma 3.6. If the interpolation nodes are quasi-equispaced, then the weights
in (2.12) satisfy

Wi ≤ |wi| ≤MdWi,

where

Wi =
1

hdd!

∑

k∈Ji

(
d

i− k

)

for i = 0, 1, . . . , n. Moreover,

Wi ≤
2d

hdd!
=:W,
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with equality if and only if d ≤ i ≤ n− d.

Proof. By the definition of the minimal and maximal node distances h∗ and h,
the distance between two arbitrary nodes xi and xj satisfies

h∗|i− j| ≤ |xi − xj | ≤ h|i− j|. (3.14)

This leads to the lower bound

|wi| =
∑

k∈Ji

k+d∏

j=k,j 6=i

1

|xi − xj |

≥ 1

hd

∑

k∈Ji

k+d∏

j=k,j 6=i

1

|i− j|

=
1

hd

∑

k∈Ji

1

(i− k)!(k + d− i)!
=

1

hdd!

∑

k∈Ji

(
d

i− k

)

and similarly, using (3.12), to the upper bound

|wi| ≤
1

hd∗d!

∑

k∈Ji

(
d

i− k

)
≤ Md

hdd!

∑

k∈Ji

(
d

i− k

)
.

The statement about the upper bound W of Wi follows directly from the defi-
nition of the index set Ji in (2.13).

As a consequence of Lemma 3.6, the absolute values of the nonsimplified
weights for rational interpolation in quasi-equispaced nodes may have larger
ranges of magnitude than the weights for equispaced nodes with the same value
of d. The quotient of the largest barycentric weight by the smallest in absolute
values plays an important role, at least in polynomial interpolation, since the
associated Lebesgue constant can be bounded [15, 17] as

Λn ≥ 1

2n2

max0≤i≤n |wi|
min0≤i≤n |wi|

,

which follows from Markov’s inequality [106]. This quotient thus gives a first
intuitive estimation on the quality of an interpolant; see also [52].
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Theorem 3.7. If the interpolation nodes are quasi-equispaced or equispaced
(M = 1), then the Lebesgue constant associated with Floater–Hormann interpo-
lation (3.8) satisfies

Λn ≤
(
2 +M log(n)

)
·
{

3
4M, d = 0,

2d−1Md, d ≥ 1.
(3.15)

Proof. From (3.7) it follows that Λn(xk) = 1 for k = 0, 1, . . . , n. Therefore,
let xk < x < xk+1 for some k with 0 ≤ k ≤ n − 1, and rewrite the Lebesgue
function in (3.7) as

Λn(x) =
(x− xk)(xk+1 − x)

∑n
i=0

|wi|
|x−xi|

(x− xk)(xk+1 − x)
∣∣∑n

i=0
wi

x−xi

∣∣ .

We denote the numerator of Λn(x) in the above expression by Nk(x) and the
denominator byDk(x) and then derive an upper bound on the numeratorNk(x),
following the proof of Theorem 2 in [18]. By Lemma 3.6,

Nk(x) = (x−xk)(xk+1−x)
n∑

j=0

|wj |
|x− xj |

≤MdW (x−xk)(xk+1−x)
n∑

j=0

1

|x− xj |
,

and further, using the inequalities (3.12) and (3.14), and the fact that xk < x <
xk+1,

Nk(x)

MdW
≤ (xk+1 − xk) + (x− xk)(xk+1 − x)

(k−1∑

j=0

1

x− xj
+

n∑

j=k+2

1

xj − x

)

≤ h+
(h
2

)2
(k−1∑

j=0

1

xk − xj
+

n∑

j=k+2

1

xj − xk+1

)

≤ h+
(h
2

)2M

h

( k∑

j=1

1

j
+

n−k−1∑

j=1

1

j

)

≤ h+
Mh

2
log(n).

To establish a lower bound on the denominator Dk(x), we distinguish the
cases d = 0 and d ≥ 1. If d = 02, then the weights in (2.12) simplify to
wi = (−1)i, and we have

2This proof for the case d = 0 is entirely due to Kai Hormann.
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Dk(x) = (x− xk)(xk+1 − x)

∣∣∣∣
n∑

i=0

(−1)i

x− xi

∣∣∣∣

≥ (x− xk)(xk+1 − x)
(
− 1

x− xk−1
+

1

x− xk
+

1

xk+1 − x
− 1

xk+2 − x

)

(3.16)

= (xk+1 − xk)− (x− xk)(xk+1 − x)
( 1

x− xk−1
+

1

xk+2 − x

)
≥ 2

3
h∗,

(3.17)

where the inequality in (3.17) can be obtained by first multiplying both sides
with 3(x− xk−1)(xk+2 − x) and then verifying that the quadratic polynomial

Qk(x) =
(
3(xk+1 − xk)− 2h∗

)
(x− xk−1)(xk+2 − x)

− 3(x− xk)(xk+1 − x)(xk+2 − xk−1)

is nonnegative. Substituting a = xk − xk−1, b = xk+1 − xk, c = xk+2 − xk+1,
and y = x− xk, we find

Qk(y+xk) = (3a+2h∗+3c)y2+(2ah∗−2bh∗−2ch∗−6ab)y+a(b+c)(3b−2h∗);

it is then easy to check that the minimal value of this quadratic expression is

a+ b+ c

3a+ 2h∗ + 3c

(
6ac(b− h∗) + a(bc− h2∗) + b(ac− h2∗) + c(ab− h2∗)

)
,

which is nonnegative, because 0 < h∗ ≤ min(a, b, c). Notice that the inequality
in (3.16) also holds if k = 0 or k = n− 1, for example by letting x−1 = x0 − h
and xn+1 = xn + h.

To handle the case d ≥ 1, we use the two results (2.15) and (2.21) from [46]
to get

Dk(x) = (x− xk)(xk+1 − x)

∣∣∣∣
n∑

i=0

wi

x− xi

∣∣∣∣ = (x− xk)(xk+1 − x)

∣∣∣∣
n−d∑

i=0

λi(x)

∣∣∣∣

≥ (x− xk)(xk+1 − x)|λj(x)| =
(x − xk)(xk+1 − x)

∏j+d
i=j |xi − x|

,

for any j ∈ Jk \ {k − d}. It then follows from (3.14) that
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Dk(x) ≥
1

∏k−1
j=i (x− xj)

∏i+d
j=k+2(xj − x)

≥ 1
∏k−1

j=i (xk+1 − xj)
∏i+d

j=k+2(xj − xk)

≥ 1

hd−1(k + 1− i)!(i + d− k)!
≥ 1

hd−1d!
. �

For equispaced nodes, i.e., M = 1, the upper bound in Theorem 3.7 improves
the one given in [18] for d = 0 by a factor of 3/4, and for d ≥ 1 it simplifies to
the one given in [19].

Theorem 3.8. If the interpolation nodes are quasi-equispaced or equispaced
(M = 1), then the Lebesgue constant associated with Floater–Hormann interpo-
lation (3.8) satisfies

Λn ≥ 1

2d+2Md+1

(
2d+ 1

d

)
·
{(

2 + log(2n+ 1)
)
, d = 0,

log
(
n
d − 1

)
, d ≥ 1.

(3.18)

Proof. From numerical experiments, see Figure 3.1, it appears that for
d ≥ 2 the Lebesgue function (3.7) with equispaced nodes obtains its maxi-
mum approximately halfway between x0 and x1 (and halfway between xn−1

and xn because of the symmetry with respect to the mid-point of the inter-
val). In order to establish the claimed lower bound, we derive a lower bound

for the numerator N(x) =
∑n

i=0
|wi|

|x−xi| and an upper bound for the denomina-

tor D(x) =
∣∣∑n

i=0
wi

x−xi

∣∣ of the Lebesgue function in (3.7) at the midpoint
x∗ = (x0 + x1)/2 between the first two interpolation nodes also for quasi-
equispaced nodes.

According to (3.14), the distance between x∗ and xi satisfies

h∗
2
|2i− 1| ≤ |x∗ − xi| ≤

h

2
|2i− 1|. (3.19)

For the numerator, we omit some terms of the sum and use the lower bound
W from Lemma 3.6 as well as inequality (3.19) to get

N(x∗) =
n∑

i=0

|wi|
|x∗ − xi|

≥
n−d∑

i=d

|wi|
|x∗ − xi|

≥W

n−d∑

i=d

1

|x∗ − xi|
≥W

2

h

n−d∑

i=d

1

|2i− 1| .
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Figure 3.1: Lebesgue functions associated with Floater–Hormann interpolants
for d = 1 (top), d = 2 (middle), and d = 3 (bottom) with n + 1 equispaced
nodes for n = 10, 20, 40.

If d = 0, we then have

N(x∗)

W
≥ 2

h

(
1 +

n∑

i=1

1

2i− 1

)
≥ 2

h

(
1 +

∫ n+1

1

dx

2x− 1

)
=

1

h

(
2 + log(2n+ 1)

)
,

and for d ≥ 1 we find

N(x∗)

W
≥ 2

h

n−d∑

i=d

1

2i− 1
≥ 2

h

∫ n−d+1

d

dx

2x− 1

=
1

h
log

(2n− 2d+ 1

2d− 1

)
≥ 1

h
log

(n
d
− 1

)
.

To bound the denominator, we first rewrite it in terms of the functions λj and
notice that λ0(x

∗) and λ1(x∗) both have the same sign, and that the subsequent
λj(x

∗) oscillate in sign and decrease in absolute value. Therefore,

D(x∗) =

∣∣∣∣
n∑

i=0

wi

x− xi

∣∣∣∣ =
∣∣∣∣
n−d∑

i=0

λi(x
∗)

∣∣∣∣

≤|λ0(x∗)|+ |λ1(x∗)| =
1

∏d
i=0|x∗ − xi|

+
1

∏d+1
i=1 |x∗ − xi|

.
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Figure 3.2: Lebesgue functions associated with Floater–Hormann interpolants
for d = 1 with n+ 1 equispaced nodes for n = 9, 19, 39.

We then conclude, using first (3.19) and then (3.12), that

D(x∗) ≤ 2d+1

hd+1
∗

∏d
i=0|2i− 1|

+
2d+1

hd+1
∗

∏d+1
i=1 |2i− 1|

=
2d+1

hd+1
∗

(
2d+ 1

∏d+1
i=1 (2i− 1)

+
1

∏d+1
i=1 (2i− 1)

)
≤ 22d+2Md+1

hd+1d!
(
2d+1

d

) . �

Notice that the lower bound in Theorem 3.8 simplifies to the one given in [19]
for d ≥ 1 and equispaced nodes with M = 1. Moreover, the sum on the left-
hand side of the last line in the above proof may be bounded from above by
(d + 1)/(d!2d−1). This would give a slightly weaker but more eloquent leading
factor 2d−2/((d+1)Md+1) in the lower bound (3.18) of Λn, clearly showing that
the Lebesgue constant grows exponentially with increasing d.

The following improved bound for the case d = 1 and equispaced nodes,
which turns out to be again very similar to the one for d = 0 in (3.11), is
essentially due to Bos and De Marchi.

Proposition 3.9. If d = 1 and the interpolation nodes are equispaced, then the
Lebesgue constant associated with Floater–Hormann interpolation (3.8) satisfies

Λn ≥ an log(n) + bn,

where limn→∞ an = 2/π and limn→∞ bn = 0.

The proof of Proposition 3.9 is similar to that of Theorem 3.8, except that
one may use x∗ = 1/2. According to numerical experiments, this is where the
maximum of the Lebesgue function appears to occur with d = 1; see Figure 3.2.

We performed experiments to verify numerically that the behaviour of the
Lebesgue constants associated with the family of barycentric rational inter-
polants is as predicted by the theoretical results. We began with investigating
the Lebesgue constants with equispaced nodes. Figure 3.3 confirms that the
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Figure 3.3: Comparison of the Lebesgue constants associated with Floater–
Hormann interpolants with n + 1 equispaced nodes for 2d ≤ n ≤ 200 and
d = 1, 2, 3 (top left) with the upper and lower bounds of Theorems 3.7 and 3.8.
For d = 1, the improved lower bound in Proposition 3.9 is shown by the dashed
curve (top right).

growth of Λn is logarithmic in the number of interpolation nodes. We omit
plotting the case d = 0 here since numerical observations reveal that this case
has similar Lebesgue constants to the case d = 1; compare Figure 3.3 (top right)
and Figure 2 in [18]. These results in Figure 3.3 further suggest that for fixed
d, the coefficient

(
2d+1
d

)/
2d+2 of the logarithmic term in our lower bound in

Theorem 3.8 is a better estimate of the true value than the factor 2d−1 in our
upper bound in Theorem 3.7.

The lower and upper bounds indicate that, for fixed n, the growth of the
Lebesgue constants with respect to d is exponential, which is confirmed by the
examples in Figure 3.4. Finally, Figure 3.1 demonstrates that this exponential
growth seems to always happen near the boundary of the interpolation interval,
whereas the behaviour of the Lebesgue function away from the boundary is
almost independent of d. This observation will be crucial in the construction of
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Figure 3.4: Lebesgue constants associated with Floater–Hormann interpolants
with a fixed number of n+ 1 equispaced nodes for 1 ≤ d ≤ 25.

our extension of the Floater–Hormann rational interpolants in Chapter 7.

We finally present some results of extensive numerical experiments with
quasi-equispaced nodes3. First, the situation where a set of equispaced nodes
is perturbed randomly with a fixed maximum relative perturbation δ ∈ (0, 1/2)
is considered. Since Lebesgue constants are invariant under translation and
uniform rescaling of the interpolation nodes, see (3.13), we simply used

xi = i+ δi, i = 0, . . . , n,

with randomly chosen δi ∈ [−δ, δ]. Hence, the global mesh ratio is at most
M = (1 + 2δ)/(1− 2δ). For fixed d and n, we generated N = 1, 000, 000 differ-
ent sets of such interpolation nodes and computed the corresponding Lebesgue
constants. The vertical bars in Figure 3.5 show the ranges of these N Lebesgue
constants and the crosses mark their averages. We observe that the variance of
the Lebesgue constants grows rapidly with both d and δ and only slowly with
n. Moreover, the average values are not too far from the Lebesgue constants
in the equispaced setting with the same number of interpolation nodes, which
are indicated by the circles in Figure 3.5, and the relative distance decreases
with d. The case d = 3 also reveals that the random perturbations can ac-
tually improve the Lebesgue constant, and that this becomes less likely as n
increases. In principle, one could expect the circles to always lie within the
range of Lebesgue constants, as the perfectly uniform distribution is just a spe-
cial case of the randomly perturbed nodes. The fact that this is not always the
case in our experiments is explained by the bullets in Figure 3.5, which mark

3The major part of this investigation was carried out by Kai Hormann.
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Figure 3.5: Minimum, maximum, and average Lebesgue constants (vertical bars
with crosses) for quasi-equispaced nodes with a random perturbation of at most
δ = 1/6 (left) and δ = 3/10 (right), that is, with global mesh ratios at most
M = 2 (left) and M = 4 (right). Circles indicate the Lebesgue constants for
equispaced nodes, bullets mark the minimal global mesh ratios. Plots for d = 0
are not shown because they are very similar to those for d = 1.
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Figure 3.6: Lebesgue functions for two specific sets of n = 15 (left) and n = 31
(right) quasi-equispaced nodes with fixed global mesh ratio M = 2.
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Figure 3.7: Lebesgue constants (bullets and circles) for the two specific sets
of quasi-equispaced nodes with global mesh ratio M = 2 that are shown in
Figure 3.6, compared with the upper bound in Theorem 3.7.

the smallest global mesh ratioM that we found among the N randomly created
sets of nodes; the largestM is not shown because it was close to (1+2δ)/(1−2δ)
in all examples.

Figure 3.6 shows the Lebesgue functions for some sets of quasi-equispaced
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nodes with global mesh ratio M = 2. We tested many such sets of nodes and
found two cases to give particularly large Lebesgue constants: In the first case,
we let the first subinterval [x0, x1] be of length M and all others of length 1, in
the second case we let the central subinterval [x⌊n/2⌋, x⌊n/2⌋+1] be of length M
and again all others of length 1. For a better comparison, we scaled the nodes so
that [x0, xn] = [0, 1]. Except for d = 0 and the first set of nodes, the maximum
of the Lebesgue function is always found in the single interval of length M , and
for d ≥ 2, the first set gives larger Lebesgue constants than the second set. This
can also be seen in Figure 3.7, where the bullets mark the Lebesgue constants
for the first set of nodes and the circles correspond to the second set. We observe
that these are still quite far from the theoretical upper bound that we derived
in Theorem 3.7, and it remains to be figured out, as discussed in [23] in the case
of polynomial interpolation, if there are node configurations with a fixed global
mesh ratio that lead to yet larger Lebesgue constants than those displayed here.

Concluding Remarks

From this chapter it becomes clear that the Lebesgue constants associated with
Floater–Hormann interpolation are reasonably small when the nodes are eq-
uispaced or quasi-equispaced and when d is small to moderate. In this setting
Floater–Hormann interpolation in barycentric form is thus forward stable—with
no significant difference to polynomial interpolation evaluated with the second
barycentric formula between Chebyshev points, see Theorems 3.3 and 3.4—has
a small condition number and yields approximation errors that are not too far
from those obtained with best polynomial interpolation of low degree. The
bound on the forward error (3.5) is even very pessimistic in some cases: In
Table 2.2 we have seen that interpolation with very large n and large d (up to
d = 50) can still produce very small errors even if the Lebesgue constant is very
large with these parameters. The only drawback for the moment is the rather
slow algebraic convergence, which we shall remedy in Chapter 4, at least in the
case when the interpolated function is analytic. In Chapter 7 we present an
extension of the original Floater–Hormann family of rational interpolants that
yields even smaller Lebesgue constants and thus allows for stable interpolation
even with larger values of d.
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Chapter 4

Interpolation of Analytic
Functions

Polynomial interpolants of analytic functions may suffer from Runge’s phe-
nomenon [92], that is, the sequence of polynomials for an increasing number of
nodes does not converge to the interpolated function between the nodes. This
phenomenon of exact arithmetic is famous and often associated with polynomial
interpolation and equispaced nodes in general. However, in polynomial interpo-
lation it is not limited to equispaced nodes; on the other hand, it does not show
up if the nodes are distributed in a special way. Even polynomial interpolation
with equispaced nodes does not always suffer from this phenomenon, e.g., when
the interpolated function is analytic in a sufficiently large region around the
interval or when the interval of interpolation shrinks with the number of nodes.

Floater and Hormann demonstrated in [46] that their interpolant does not
exhibit Runge-type behaviour with equispaced nodes. This might be a bit sur-
prising at first sight since this family of rational interpolants is basically blended
polynomial interpolation. Can Runge’s phenomenon completely disappear with
this kind of interpolants?

Much can be deduced from potential theory about convergence, divergence
and Runge’s phenomenon for polynomial interpolation and other schemes. We
review parts of these well known results in Section 4.1. In the section follow-
ing it, we generalise them to blended polynomial interpolation and establish
a convergence result of Floater–Hormann interpolation for analytic functions.
Moreover the question of a near optimal choice for the blending parameter d
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is addressed, especially for equispaced nodes. The latter investigation builds
upon recent convergence results as well as the analysis of the condition from
Section 3.3.3. We end this chapter with a discussion on a good choice of inter-
polation nodes.

The main references for this chapter are [89, 94] regarding the well estab-
lished potential theory and [57] for the recent analogue for Floater–Hormann
interpolation.

4.1 Potential Theory for Polynomial
Interpolation

Polynomial interpolants may converge or diverge geometrically, depending on
the distribution of the nodes and the domain of analyticity of the interpolated
function. To make this statement more precise, we take advantage of some
notions and a result on polynomial interpolation stated in [48]; see also [94]. The
essential ingredient in the analysis of the convergence behaviour of polynomial
interpolation to analytic functions is the Hermite error formula.

Theorem 4.1. If f is analytic inside a positively oriented contour Γ in the
complex plane enclosing the nodes, then, for every z inside Γ, the interpolation
error is given by the Hermite error formula,

f(z)− pn(z) =
L(z)

2πi

∫

Γ

f(t)

L(t)(t− z)
dt, (4.1)

where L is the nodal polynomial from (2.4).

The proof of this theorem [31, 48] derives from the residue theorem, see,
e.g., [77, 91]: It is sufficient to notice from the remark following (2.5) that the
polynomial interpolant may be written as

pn(z) = L(z)

n∑

i=0

f(xi)

L′(xi)(z − xi)

(see also [25]), and that the integrand on the right-hand side of (4.1) has the
simple pole t = z with residue f(z)/L(z) and the simple poles t = xi, i =
0, . . . , n, with residues f(xi)/(L

′(xi)(xi − z)).
Formula (4.1) motivates us to further investigate the quotient L(z)/L(t) in

order to obtain more information about the interpolation error, especially in
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the interval [a, b]. It can already be observed that, if Γ largely surrounds the
interval, then the absolute value of the denominator in that quotient becomes
large as well, so that the absolute interpolation error is small. We now make
this observation more accurate with the help of potential theory.

Let us begin by defining the discrete potential

un(z) =
−1

n+ 1

n∑

i=0

log |z − xi|,

which is simply − log(|L(z)|1/(n+1)). The asymptotic convergence behaviour of
polynomial interpolation can be derived after passing from discrete potentials
to their continuous analogues, logarithmic potentials. Let the nodes xi be dis-
tributed in [a, b] according to a probability measure µ with support [a, b] and
positive piecewise continuous node density

φ(x) =
dµ

dx
(x) > 0 for x ∈ [a, b]. (4.2)

This statement can be made precise by defining the normalised node counting
measures

µn =
1

n+ 1

n∑

i=0

δxi
, (4.3)

where δx denotes the Dirac unit measure at x. We require that µn → µ, in the
sense of weak-star convergence of measures, which means that

∫
g dµn →

∫
g dµ

for every continuous function g defined on [a, b]. Associated with the limiting
measure µ, which we will also refer to as the node measure, is a logarithmic
potential

Uµ(z) := −
∫ b

a

log |z − x| dµ(x) = −
∫ b

a

φ(x) log |z − x| dx. (4.4)

By the hypothesis on the density of µ, the real-valued function Uµ is harmonic
in the complex plane C and decays like − log |z| as |z| → ∞. The asymptotic
convergence or divergence as n → ∞ of a sequence of polynomial interpolants
pn for an analytic function f is then described by the following theorem; see,
e.g., [48].
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Theorem 4.2. For a given node measure µ and the associated potential Uµ, let
f be analytic inside Cs, the level line of Uµ which passes through a singularity
s of f . The polynomial interpolant pn of f then converges to f inside Cs and
diverges outside, and

lim
n→∞

|f(z)− pn(z)|1/n = exp
(
Uµ(s)− Uµ(z)

)
. (4.5)

In the special case of equispaced nodes, i.e., if φ(x) = 1/(b − a), and with
the change of variables x 7→ 2(x − a)/(b − a) − 1 and the reasoning from [48,
§3.4], the logarithmic potential in (4.4) becomes

Uµ
eq(z) = − log

(b− a

2e

)
− 1

2
Re

(
(1 − z′) log(1 − z′)− (−1− z′) log(−1− z′)

)
,

(4.6)
where z′ = (2z − a− b)/(b− a).

Chebyshev points of the second kind are distributed according to the density
function φ(x) = 1/(π

√
1− x2), and the associated logarithmic potential is

Uµ
Ch(z) = −

∫ 1

−1

log |z − x|
π
√
1− x2

dx = − log
∣∣∣z +

√
z ·

√
z − z−1

∣∣∣+ log(2), (4.7)

which turns out to be constant on the interval [−1, 1]. The associated node
measure µ therefore has the property that there is no potential difference on
[−1, 1]; it is the so-called equilibrium measure. Interpolation nodes which are
distributed according to this measure are, in an asymptotic sense, optimal for
polynomial interpolation.

In Figure 4.1 we have plotted the asymptotic rates of convergence or diver-
gence of polynomial interpolation on [−1, 1] with equispaced nodes (on the left)
and Chebyshev points of the second kind (on the right) as a function of s. To
be more precise, for each s in (−2, 2) × (−2i, 2i), we took the maximum over
[−1, 1] of the expression on the right-hand side of (4.5). The picture on the left
shows that polynomial interpolation with equispaced nodes does not converge
throughout [−1, 1] if f has a singularity s too close to the interval. On the
other hand, the picture on the right shows that polynomial interpolation with
Chebyshev points converges exponentially throughout the interval.

The Runge Phenomenon

Theorem 4.2 gives an explanation of Runge’s phenomenon [42, 92]. Polynomial
interpolation with equispaced nodes on [−1, 1] for the Runge example 1/(1 +
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Figure 4.1: Level lines of exp
(
Uµ(s)−min−1≤x≤1 U

µ(x)
)
in the complex plane

for polynomial interpolation with equispaced nodes (left) and Chebyshev points
(right). The central segment represents the interval [−1, 1].

25x2) does not converge on the whole interval. This is explained by the fact
that the level line of Uµ

eq passing through the singularities s = ±i/5 does not
enclose [−1, 1] but only the middle part [−0.7266, 0.7266], as can be seen on the
left picture in Figure 4.1.

The so-called Runge phenomenon appears in the form of oscillations toward
the ends of the interval, whereas the interpolant converges on the middle part of
the interval. This phenomenon is not limited to equispaced nodes and it occurs
with every distribution of nodes which has a potential Uµ such that exp(Uµ(s)−
mina≤x≤bU

µ(x)) is larger than 1 on level lines which circumscribe a region in
the complex plane that includes [a, b] or parts of it. The polynomial interpolant
of a function which has singularities in that region then presents a behaviour
similar to Runge’s phenomenon. For Chebyshev points, the level line of Uµ

Ch

that passes through s = ±i/5 includes the interval [−1, 1]; see the right part of
Figure 4.1. The phenomenon therefore does not appear when interpolating a
function, such as that given above, between Chebyshev points and other nodes
with quadratic clustering toward the ends of the interval. These polynomial
interpolants converge geometrically as the number of nodes increases.

51



4.2. POTENTIAL THEORY FOR FLOATER–HORMANN
INTERPOLATION

4.2 Potential Theory for Floater–Hormann

Interpolation

Convergence results for analytic functions, based on potential theory as in The-
orem 4.2, have also been derived for other interpolation schemes, such as linear
barycentric rational interpolation in mapped Chebyshev points [5], radial ba-
sis functions [83, 84], and nonlinear rational interpolants [103, 121, 122]. We
present such a theory for the family of barycentric rational interpolants (2.10)
in this section. The error bound for differentiable functions from Theorem 2.3
shows that Runge’s phenomenon does not occur for d fixed. In exact arithmetic,
the rational interpolants converge algebraically to f as n increases, provided the
function is sufficiently smooth, even if it has poles very close to [a, b].

The rational interpolants (2.10) are blends of the local polynomial inter-
polants pi, and we use this fact in the derivation of an asymptotic upper bound
on the interpolation error for analytic functions. We begin with some statements
about the node densities of the subsets {xi, . . . , xi+d}, which are the interpo-
lation nodes of pi. We then develop the main convergence result. Thereafter
we are concerned with the important special cases of symmetric nodes and eq-
uispaced nodes, for which we further expand the expression of the bound on
the interpolation error and give additional insight into the convergence of the
interpolants.

4.2.1 General Node Densities

We assume from now on that the parameter d, defining a particular rational
interpolant from the family (2.10), is a variable nonnegative integer d(n) such
that

d(n)/n→ C, n→ ∞, (4.8)

for a fixed C ∈ (0, 1]. In practice, one could choose d(n) = round(Cn). By the
positivity of φ from (4.2), the cumulative node distribution

Φ(x) := µ([a, x]) =

∫ x

a

φ(y) dy

is a continuous and strictly monotonically increasing function on the interval
[a, b] and therefore has a continuous inverse

Φ−1 : [0, 1] → [a, b].

52



CHAPTER 4. INTERPOLATION OF ANALYTIC FUNCTIONS

With this definition and that of the node counting measure µn from (4.3), we
have the following lemma.

Lemma 4.3. Assume that µn → µ as n → ∞, where the limit measure µ has
piecewise continuous positive density, and let xj(n) be an arbitrary sequence of
nodes. Then xj(n) → x for some x if and only if there exists some q ∈ [0, 1]
such that (j(n) + 1)/(n+ 1) → q. In this case, x = Φ−1(q).

Proof. Under the assumptions on µ, the set {x} is a continuity set of µ for every
point x ∈ [a, b]. The condition that µn → µ thus implies that µn([a, x]) →
µ([a, x]). By the definition of µn and Φ, this is equivalent to

lim
n→∞

#{xi : xi ≤ x}
n+ 1

= Φ(x).

With j(n) := max{0,#{xi : xi ≤ x} − 1} and q := Φ(x) we obtain the asserted
relation

lim
n→∞

j(n) + 1

n+ 1
= q. �

We now suppose that j(n) is a sequence of indices such that j(n) ≤ n−d(n)
and xj(n) → α for some α ∈ [a, b]. Under the condition (4.8) on d(n) it follows
from Lemma 4.3 that the sequence of nodes xj(n)+d(n) also converges to a point
in [a, b], which we call β(α), and satisfies

lim
n→∞

xj(n)+d(n) = Φ−1(C +Φ(α)) = β(α).

The nodes xj(n), . . . , xj(n)+d(n) are therefore asymptotically contained in the
interval [α, β(α)], and they are distributed with the density φ restricted to that
interval. More precisely, the normalised counting measures

νj(n) =
1

d(n) + 1

d(n)∑

i=0

δxj(n)+i
(4.9)

converge (in the weak sense) to a probability measure να with support [α, β(α)]
and density

dνα
dx

(x) =
φ(x)

Φ(β(α)) − Φ(α)
=
φ(x)

C
.

Note that να simply is the normalised restriction of µ to the interval [α, β(α)].
The study of the convergence of measures and their associated potentials is an
important tool in logarithmic potential theory [89, 94]. A main ingredient is
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the so-called principle of descent (see [94, Theorem I.6.8]): If S is compact and
(σn)n is a sequence of finite positive Borel measures with supp(σn) ⊂ S, then

for zn → z and σn → σ, lim inf
n→∞

Uσn(zn) ≥ Uσ(z).

This relation will allow us to take advantage of polynomial approximation theory
for quantifying the convergence of the local interpolating polynomials pj(n). The
following two lemmas are a first step in this direction as they give asymptotic
upper and lower bounds on the rational function

n−d(n)∑

i=0

λi(z),

which appears in rn(z) and plays an important role in the subsequent analysis.

Lemma 4.4. For any C ∈ (0, 1] and z ∈ C \ [a, b], we have

lim sup
n→∞

∣∣∣∣
n−d(n)∑

i=0

λi(z)

∣∣∣∣
1/(n+1)

≤ max
α∈[a,Φ−1(1−C)]

exp
(
CUνα(z)

)
.

Proof. For every n and every z ∈ C \ [a, b] we can find a dominating term λj(z)
with index j = j(n) such that

∣∣∣∣
n−d(n)∑

i=0

λi(z)

∣∣∣∣ ≤ (n− d(n) + 1)|λj(n)(z)|. (4.10)

With a simple computation involving (4.9), we rewrite the second factor of the
above right-hand side:

|λj(n)(z)| =

d(n)∏

i=0

∣∣z − xj(n)+i

∣∣−1

= exp
(
−

d(n)∑

i=0

log |z − xj(n)+i|
)
= exp

(
(d(n) + 1)Uνj(n)(z)

)
.

From the sequence of nodes xj(n) we can select a subsequence, which we also
denote by xj(n), and which has the property that xj(n) → α for α ∈ [a, b] fixed.
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Upon taking the (n+ 1)st root and using the fact that (d(n) + 1)/(n+ 1) → C
as n→ ∞, we obtain that

lim sup
n→∞

∣∣∣∣
n−d(n)∑

i=0

λi(z)

∣∣∣∣
1/(n+1)

≤ lim sup
n→∞

exp
(
CUνj(n)(z)

)
.

Since z /∈ [a, b], it follows from the weak-star convergence νj(n) → να that the
lim sup on the right-hand side is equal to exp(CUνα(z)).

In the proof of the next lemma we reuse similar tools to derive a lower bound
on the same function, this time evaluated at x ∈ [a, b].

Lemma 4.5. For any C ∈ (0, 1] and x ∈ [a, b], we have

lim inf
n→∞

∣∣∣∣
n−d(n)∑

i=0

λi(x)

∣∣∣∣
1/(n+1)

≥ max
α∈[a,Φ−1(1−C)]
s.t. x∈supp(να)

exp
(
CUνα(x)

)
.

Proof. We first suppose that x ∈ (xk, xk+1). For every n and every such x it is
shown in the proof of [46, Thm 2] that

∣∣∣∣
n−d(n)∑

i=0

λi(x)

∣∣∣∣ ≥ |λj(x)|

for all j ∈ Jk \ {k − d(n)}. On the other hand, if x coincides with a node xi,
then this inequality is trivially valid (the left-hand side is +∞). For every n, we
choose j = j(n) such that λj(n)(x) is the largest in absolute value, and we form
the corresponding sequence j(n). From the sequence of nodes xj(n) we select,
as in the proof of Lemma 4.4, a subsequence such that xj(n) → α. Upon taking
the (n+1)st root on both sides of the above inequality, the principle of descent
yields the asserted relation analogously as in the proof of Lemma 4.4.

We are now prepared to investigate the asymptotic convergence of the family
of rational interpolants (2.10). As explained, for instance, in [83, Thm. 3.2
and Corol. 3.4], it will be sufficient to investigate interpolants of “prototype
functions” g(x, s) = 1/(s − x) with a simple pole s ∈ C \ [a, b]. An explicit
expression for the local polynomial interpolants pi of such a function is

pi(x) =
1− λi(s)

λi(x)

s− x
.
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It is easy to verify that this indeed is a polynomial, numerator and denominator
being polynomials that vanish at x = s, and that it satisfies pi(xj) = 1/(s−xj)
for all nodes xj involved in λi. Hence, the rational interpolant (2.10) of g, which
we denote by rn[g], is

rn[g](x) =
1

s− x
·
∑n−d

i=0 λi(x)
(
1− λi(s)

λi(x)

)
∑n−d

i=0 λi(x)
=

1

s− x
·
(
1−

∑n−d
i=0 λi(s)∑n−d
i=0 λi(x)

)
, (4.11)

and therefore

g(x, s)− rn[g](x) =
1

s− x
·
∑n−d

i=0 λi(s)∑n−d
i=0 λi(x)

. (4.12)

To make the subsequent notation more compact, we define the “potential
function”

V C,µ(z) :=





maxα∈[a,Φ−1(1−C)]CU
να(z), z ∈ C \ [a, b],

maxα∈[a,Φ−1(1−C)]
s.t. z∈supp(να)

CUνα(z), z ∈ [a, b]. (4.13)

Combining Lemmas 4.4 and 4.5 and using the monotonicity of the exponential
function (note that the potentials Uνα are real-valued functions), we finally
arrive at

lim sup
n→∞

|g(x, s)− rn[g](x)|1/n ≤ exp
(
V C,µ(s)− V C,µ(x)

)
.

This statement closely resembles that from Theorem 4.2 and contains the latter
as a special case: The rational interpolants reduce (asymptotically) to polyno-
mial interpolants if C = 1, and in this case the function V C,µ in (4.13) reduces
to Uµ. Moreover, the potential V C,µ(z) is a continuous function when the con-
dition “z ∈ supp(να)” in the second case of (4.13) is redundant, which is the
case for any reasonable node measure µ.

The uniform convergence over the whole interval [a, b] is often of major
interest in approximation theory. To establish such a result for the rational
interpolants (2.10), we define the contours

CR :=

{
z ∈ C :

exp
(
V C,µ(z)

)

minx∈[a,b] exp
(
V C,µ(x)

) = R

}
, (4.14)

which can be seen as levels of “worst-case” convergence with rate at least R for
every point x ∈ [a, b].
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If an arbitrary function f is analytic inside a simple, closed, and rectifiable
curve C contained in a closed simply connected region around the nodes, it can
be represented by the Cauchy integral formula

f(x) =
1

2πi

∫

C

f(s)

s− x
ds =

1

2πi

∫

C
f(s)g(x, s) ds.

The representation (4.11) and the linearity of the rational interpolants imply
that

rn(x) =
1

2πi

∫

C

f(s)

s− x
·
(
1−

∑n−d
i=0 λi(s)∑n−d
i=0 λi(x)

)
ds

is the rational interpolant to f . The interpolation error therefore is

f(x)− rn(x) =
1

2πi

∫

C

f(s)

s− x
·
∑n−d

i=0 λi(s)∑n−d
i=0 λi(x)

ds,

which is a Hermite-type error formula [31] for the family of rational inter-
polants (2.10). Finally,

‖f − rn‖ ≤ D
sups∈C

∣∣∑n−d
i=0 λi(s)

∣∣

minx∈[a,b]

∣∣∑n−d
i=0 λi(x)

∣∣ ,

where D = length(C) maxs∈C |f(s)|
2π dist([a,b],C) is a constant independent of n. We summarise

the above expansion in the following theorem.

Theorem 4.6. Let f be a function analytic in an open neighbourhood of [a, b],
and let R > 0 be the smallest number such that f is analytic in the interior of
CR defined in (4.14). Then the rational interpolants rn defined by (2.10), with
limiting node measure µ and d(n)/n→ C, satisfy

lim sup
n→∞

‖f − rn‖1/n ≤ R.

In Figure 4.2 we illustrate the level lines CR for the parameter value C = 0.2
with equispaced nodes on the left and with nodes distributed according to the
density dµ/ dx = φ(x) = (4+arctan(4x))/8 on the right. The interval is [−1, 1].
In Section 4.2.3, we shall give more details on how we computed these level lines
in the case of equispaced nodes; for arbitrary node densities we integrated the
potential function V C,µ numerically. For equispaced nodes, a line corresponding
to R = 1 appears close to the interval, which means that rn may not converge
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Figure 4.2: Level lines of convergence for barycentric rational interpolation for
C = 0.2 with equispaced nodes (left) and nodes distributed according to the
density φ(x) = (4 + arctan(4x))/8 (right) on [−1, 1].

throughout [a, b] to a function f with a singularity s in the interior of that
curve. Runge’s phenomenon is therefore likely to appear for such a function if d
increases with n. An intuitive explanation of why there is no Runge phenomenon
with d fixed goes as follows: The interpolation error may be written as

f(x)− rn(x) =

∑n−d
i=0 λi(x)

(
f(x)− pi(x)

)
∑n−d

i=0 λi(x)

(see [46]) and is a blend of an increasing number of polynomial interpolation
errors as n increases. The polynomials pi have fixed maximal degree d and
interpolate f in subintervals [xi, xi+d] of decreasing length, so that the region
where f needs to be analytic shrinks.

Theorem 4.6 gives only an asymptotic upper bound on the rate of conver-
gence of rn → f as n → ∞, as opposed to the polynomial case, where equality
holds; see Theorem 4.2. This means that, unlike in the case with polynomial
interpolation, we generally cannot infer the level line CR with the closest sin-
gularity of f from a known or observed approximation rate R. This is not a
problem of the above derivation, but an intrinsic property of barycentric ra-
tional interpolation with alternating signs in the blending functions λi, as we
explain below.
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4.2.2 Symmetric Nodes

One reason why convergence may be faster than predicted by the asymptotic
upper bound from Theorem 4.6 is cancellation in the terms of the error repre-
sentation (4.12). As an illustration, we assume that the nodes xi are pairwise
symmetric with respect to the midpoint (a+ b)/2 of the interval, i.e.,

xi + xn−i

2
=
a+ b

2
, i = 0, 1, . . . , n.

For these nodes, the upper bound in Lemma 4.4 may be crude for points
z relatively close to the interval and with Re(z) ∈ [a, b]. This situation is

illustrated in Figure 4.3, which shows the level lines of |∑n−d
i=0 λi(z)|1/(n+1) for

equispaced nodes on [−1, 1] with n = 100 and d = 9 in the top left picture, and
the levels of the asymptotic upper bound exp(V µ(z)). The level lines agree well
if Re(z) is outside [−1, 1]. The reason for the observed discrepancy above and
below the midpoint of the interval is the fact that some terms in the sum

n−d(n)∑

i=0

λi(z) =

n−d(n)∑

i=0

(−1)i

(z − xi) · · · (z − xi+d(n))

cancel mutually for certain values of z, or may at least be reduced. For example,
the absolute value of the sum of the ℓth and (n− d(n)− ℓ)th terms, evaluated
at a point z with Re(z) = (a+ b)/2, yields after a short computation

|λℓ(z) + λn−d(n)−ℓ(z)| = |λℓ(z) + (−1)n+1λℓ(z)|
(4.15)

=

{
2|Re(λℓ(z))| if n is odd,

2|Im(λℓ(z))| if n is even.

This simplification occurs for all 0 ≤ ℓ ≤ ⌊(n− d)/2⌋ and obviously reduces the
interpolation error at these particular points z, causing the cusp in the level
curves.

However, if we slightly perturb the equispaced grid, leading to almost equi-
spaced nodes, then the levels of |∑n−d

i=0 λi(z)|1/(n+1) look much more similar to
the predicted level curves exp(V µ(z)); see the bottom left picture in Figure 4.3.
The presented convergence theory is asymptotic in the sense that we only re-
quire convergence µn → µ of the node measures in a weak sense. Not necessarily
all the µn need to have perfectly symmetric mass points in order to satisfy this
condition. It is therefore not reasonable to expect that our theory will capture
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Figure 4.3: Top: Level lines of |∑n−d
i=0 λi(z)|1/(n+1) (left) with d = 9 for n = 100

equispaced nodes in [−1, 1] (solid central line) and level lines of exp(V µ(z))
(right) on a log10 scale. Bottom: Level lines for almost equispaced nodes (left).
Relative error curve for the interpolation of f(x) = 1/(x − 0.3i) with C = 0.1
and both node sequences, asymptotic relative error bound, and upper bound on
eps·Λn (right).
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the error reduction effects appearing with symmetric nodes. The difference be-
tween the levels of |∑n−d

i=0 λi(z)| for equispaced nodes and almost equispaced
nodes also becomes apparent from the error curves for the interpolation of a
function with a singularity inside the cusp region, say, f(x) = 1/(x−0.3i). This
is illustrated in the bottom right picture in Figure 4.3. The error curves for
the interpolation of f for 1 ≤ n ≤ 150 with C = 0.1 and both node sequences
indicate that the symmetry in equispaced nodes results in a convergence ac-
celeration as compared to the predicted rate. The oscillating behaviour of the
curve corresponding to interpolation with equispaced nodes is caused by dif-
ferent reductions of |∑n−d

i=0 λi(z)| taking place for even and odd values of n;
see (4.15).

4.2.3 Equispaced Nodes

In the case of equispaced nodes xi, distributed according to the density φ(x) =
1/(b − a) on [a, b], we can give a more explicit statement of the rates of con-
vergence. First, the subintervals of the local polynomial interpolants stay of
constant length C(b− a) as α varies in [a, b− C(b− a)]:

[α, β(α)] = [α, α+ C(b − a)].

A formula for the potential of να is given explicitly from (4.6):

Uνα(z) = −
∫ β(α)

α

1

β(α)− α
log |z − x| dx

= − log
(C(b− a)

2e

)

− 1

2
Re

(
(1− z′) log(1− z′)− (−1− z′) log(−1− z′)

)

=: U0 + Uνα
1 (z),

(4.16)

where z′ = (2z−2α)/(Cb−Ca)−1 and U0 and U
να
1 (z) are defined in the obvious

way, i.e., such that U0 = − log(C(b−a)/(2e)). Furthermore, the right-hand side
of the inequality in Lemma 4.5 can be easily bounded from below for x ∈ [a, b]:
Since on the real line all the Uνα are concave and symmetric with respect to the
midpoint of the subinterval [α, α + C(b − a)] and are simply translates of each
other when α is varied, the minimum

min
x∈[a,b]

exp
(
V C,µ(x)

)
= min

x∈[a,b]
max

α∈[a,Φ−1(1−C)]
exp

(
CUνα(x)

)
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is obtained either for x = a and α = a or by symmetry for x = b and α =
Φ−1(1 − C). Choosing the former pair of parameters and with x′ = −1, it
follows that

Uνa(a) = − log
(C(b − a)

2e

)
− log(2) = log

( e

C(b− a)

)
,

so that

min
x∈[a,b]

exp
(
V C,µ(x)

)
=

( e

C(b− a)

)C

= 2−C exp(CU0). (4.17)

With

V C,µ
1 (z) = max

α∈[a,Φ−1(1−C)]
CUνα

1 (z) (4.18)

and equation (4.16), the contours can thus be given more explicitly as

CR =
{
z ∈ C : 2C exp

(
V C,µ
1 (z)

)
= R

}
.

Finally it can be seen from (4.10) in the proof of Lemma 4.4 for the spe-
cial case of equispaced nodes, that the maximum in (4.18) is attained for
α = max{a,Re(s)−C(b− a)/2}, with s, the singularity of f closest to [a, b] on
CR.
Remark. The lower bound

min
x∈[a,b]

∣∣∣∣
n−d∑

i=0

λi(x)

∣∣∣∣ ≥
((b− a

n

)d+1

d!

)−1

was derived in the proof of [46, Thm. 2], here for the case of equispaced nodes,
and is valid for any set of nodes after the factor (b−a)/n is replaced by h. This
lower bound asymptotically coincides with (4.17): Using Stirling’s approxima-
tion

d! ∼
√
2πd

(d
e

)d

,

we obtain, with d = Cn and upon taking the nth root, that

((b− a

n

)d+1

d!

)−1/n

∼
((b− a

n

)Cn+1√
2πCn

(Cn
e

)Cn
)−1/n

∼
( e

C(b− a)

)C

as n→ ∞.
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4.2.4 Stabilisation

In the literature there are only few recommendations for how to choose the
parameter d in rn. As suggested in [88], in practice, d is typically chosen as a
fixed small integer and n is successively increased until the desired accuracy is
achieved. Based on the asymptotic convergence theory from Section 4.2.1, we
may give a different recommendation for how to choose d if some information on
f is available—for example, its region of analyticity. For simplicity of exposition,
we will focus on equispaced nodes, but the same reasoning applies to arbitrary
nonconstant node density functions φ.

For an arbitrary distribution of interpolation nodes and f ∈ Cd+2[a, b], the
interpolation error decreases like O(hd+1), as explained in Chapter 2. Large
values of d should therefore lead to fast convergence as long as the function f
is sufficiently smooth. However, rounding errors and their amplification during
the interpolation process also come into play as we explained in Section 3.3.3.
We thus need to address the growth of the condition number, i.e., the Lebesgue
constant Λn, which increases exponentially with d at least for equispaced nodes;
see (3.15). When d grows too rapidly with n, the rounding errors might be so
strongly amplified that the approximation error increases again after a certain
accuracy has been reached for relatively small n.

To see how the interpolation error might behave in the presence of rounding
of the data, we suppose that a relative perturbation fiεi is added to every
function value fi, where every |εi| is less than or equal to some positive ε. The
rational interpolants of these perturbed values will be denoted by r̃n. As the
interpolants are linear in the data, the error can be estimated as

‖f − r̃n‖ = max
a≤x≤b

∣∣∣∣f(x)−
∑n

i=0
wi

x−xi
(fi + fiεi)∑n

i=0
wi

x−xi

∣∣∣∣

≤ ‖f − rn‖+ ε max
a≤x≤b

∑n
i=0

|wi|
|x−xi| |fi|∣∣∑n

i=0
wi

x−xi

∣∣
≤ ‖f − rn‖+ ε‖f‖Λn.

The numerical error is thus governed by two terms—the theoretical error from
exact arithmetic and the amplification of the rounding error. If f satisfies the
hypotheses of Theorem 4.6, then for n large enough,

‖f − r̃n‖ / DRn + ε‖f‖Λn.

In IEEE double precision, ε = eps = 2−52 ≈ 2.22 · 10−16.
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Figure 4.4: Convergence rates R for C varying in (0, 1] and various s on the
upper imaginary axis (left), and on the positive real line outside the interval
[−1, 1] (right); in both pictures, the dotted line shows the upper bound on the
nth root of the amplification of rounding errors for n = 50.

With the choice d = round(Cn) for a fixed C ∈ (0, 1], the upper bound (3.15)
on Λn grows at least like 2Cn. This indicates that simultaneously large C and
n are prohibitive, which equivalently corresponds to choosing a large parameter
d for rn. The convergence rate R in Theorem 4.6 also depends on C—however,
not monotonically for every admissible singularity s. The solid, dashed, and
dash-dot lines in Figure 4.4 illustrate the behaviour of R for C ∈ (0, 1] and
various values of s on the upper imaginary axis in the left picture, and positive
values outside the interval [−1, 1] on the right. The dotted lines show the nth
root of the upper bound (3.15) on the Lebesgue constants multiplied by ε.
The maximum of the dotted line and that corresponding to a convergence rate
gives a good approximation for (Rn + εΛn)

1/n, which can be interpreted as the
observed convergence or divergence rate. We set both factors D and ‖f‖ to 1
since we focus on relative errors. One can see that R monotonically decreases
with increasing C when s is a real number, so that in this case it would be
attractive to choose C as large as possible in exact arithmetic. On the other
hand, if s is on the imaginary axis, then choosing too large a C might result in
a large R as well; see also Figures 4.5 to 4.10.

Let us now investigate what a good choice of C would be if we want to
find a compromise between fast convergence and a reasonably small condition
number. From [85] we know that no interpolation method for equispaced nodes
exists that converges geometrically and whose condition number does not in-
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crease geometrically. Our aim thus is the determination of an optimal value of
C for a given singularity s and number of nodes n. This C should lead to an
interpolation error that is nearly as small as possible and that is not dominated
by the amplification of errors in the interpolated data. The suggestion we pre-
sented in [57] is to minimise an upper bound on the numerical error, which is a
superposition of geometric convergence or divergence of the interpolant in exact
arithmetic and the amplification of rounding errors:

observed error(C, n) ≈ interpolation error in exact arithmetic

+ imprecision× condition number

/ D
(
exp

(
V C,µ(s)− C

)(
C(b − a)

)C)n

+ eps · 2Cn−1
(
2 + log(n)

)
‖f‖

=: predicted error(C, n).

Similar reasoning had been followed by the authors of [116]. We propose
determining C ∈ (0, 1] such that the predicted error is nearly minimal. We
performed this minimisation for the functions f1(x) = 1/(x− 1.5) and f2(x) =
1/(x− 0.3i) and display the results in Figure 4.5 together with the values of C
chosen by the minimisation process for each n. Observe that we are minimising
only an approximate upper bound on the observed error; the convergence of the
interpolation process can be faster than predicted, for instance, because of sym-
metry effects, as described in Section 4.2.2, or other favourable simplifications
in the error term. This is also the reason for the nonmonotone error curve ob-
tained with the interpolation of f2. One can expect only that the observed error
curve will stay (up to a constant factor) below the predicted slope. We observed
that this nonmonotone behaviour disappears with almost equispaced nodes, or
if one heuristically chooses D < 1 in order to give more importance to the term
with the Lebesgue constant. The rightmost picture illustrates the choice of d
from the minimisation process. For small n, d may be increased quickly, but
then it needs to be decreased again in order to maintain the attained accuracy
and avoid the growth of the condition number.

Remark1. Our asymptotic upper bound on the interpolation error may be
crude due to symmetry effects. However, we observe that the convergence is
typically geometric with a rate R̃ ≤ R if d = round(Cn), that is, error(C, n) ≈
KR̃n with some constant K. In many applications, the closest singularity s
of f , in terms of level lines, is not known or difficult to determine. In such

1This remark is entirely due to Stefan Güttel.
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Figure 4.5: Relative errors (solid line) together with predicted relative error
slope (dashed line) and upper bound on eps·Λn (dotted line) for the functions
f1(x) = 1/(x−1.5) in the picture labelled (a), and f2(x) = 1/(x−0.3i) (b) after
choosing, for each n ∈ {1, . . . , 250}, the value of C such that the predicted error
slope is nearly minimal (c) and interpolating with d = round(Cn) (d).
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situations, interpolation is usually done for an increasing number n of nodes
until the approximation is accurate enough. The indication that convergence is
geometric allows us to establish a heuristic method for the estimation of a value
of C for which the approximation error, error(C, n), is below some prescribed
relative tolerance reltol and n is as small as possible. To this end, we assume that
we have an estimator esterr(C, n) for the error of the rational interpolant with n
nodes and parameter d = round(Cn). Such an estimator can be obtained, e.g.,
from the evaluation of |f(x)− rn(x)| at sufficiently many points in the interval.
After choosing moderate numbers n1 and n2 of nodes, say, n1 = 10 and n2 = 40,
and computing esterr(C, n1) and esterr(C, n2), these estimators can be used to
calculate the observed convergence or divergence rate as

R̃ ≈
(
esterr(C, n2)

esterr(C, n1)

)1/(n2−n1)

.

Slightly more sophisticated and robust ways of calculating R̃ could certainly be
derived, e.g., by taking into account more than just two values of n. Under
the assumption that convergence is indeed geometric, in order to find a smallest
possible n, we are interested in minimising the rate R̃ among all C ∈ (0, 1] under
the constraint that the error contribution of the growing Lebesgue constant
stays below reltol. In the following we sketch a simple golden-section search [88,
Sec. 10.2] for locally optimal C and n:

1. Set C1 = 0 and C4 = 1.

2. Set C2 = φC1 + (1− φ)C4 and C3 = (1− φ)C1 + φC4, where φ =
√
5−1
2 .

3. Compute estimates esterr(Cj , n1) and esterr(Cj , n2) of the interpolation
error for j = 1, . . . , 4 (or reuse previously computed values).

4. Compute an estimate for the slope of convergence as

R̃j =

(
esterr(Cj , n2)

esterr(Cj , n1)

)1/(n2−n1)

, j = 1, . . . , 4.

5. Compute critical values nj such that

R̃
nj

j = 2Cjnj−1(2 + lognj)eps, j = 1, . . . , 4.

6. If log(reltol)/ log(R̃j) > nj for some j, set Rj = 1 + Cj (the desired
accuracy is not attainable with this value ofCj , and henceRj is interpreted
as divergence).
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7. If R̃2 ≥ R̃3, then set C1 = C2; else set C4 = C3.

8. If C4 − C1 is larger than some tolerance (e.g., 0.01), go to Step 2.

9. Use C4 as an approximation to the optimal C, and n = log(reltol)/ log(R̃4).

4.2.5 Numerical Experiments

In this section we demonstrate the convergence result from Theorem 4.6 and
the approach for the stabilisation of the rational interpolants presented in Sec-
tion 4.2.4. We sampled in 1 ≤ n ≤ 250 points from [−1, 1] various functions
whose regions of analyticity are known, and computed the relative errors in
their rational interpolants. Moreover, we computed the relative error for all
admissible values of d with every n and kept the smallest error together with
the corresponding d. For every example, we display, in addition to the relative
interpolation error, the chosen values of C and d in the smaller pictures.

The first example, the interpolation of f(x) = log(1.2−x)/(x2+2), illustrates
the behaviour of the relative interpolation error for C fixed, namely 0.01, 0.03,
and 0.1; see Figure 4.6 (left). The steps in the error curves are caused by the
restriction that d must be an integer and every step corresponds to a change of
d, taken as d = round(Cn). The curve labelled var C is obtained by choosing C
and d according to the minimisation process, whose values are shown for each
n in the pictures on the right. For n ≈ 150, the value C = 0.1 is optimal,
and the corresponding curves intersect. The curve corresponding to constant C
increases again because of the bad conditioning with d too large.

Figure 4.7 shows that for the interpolation of f(x) = arctan(πx) the error
behaviour is similar to that of f2(x) = 1/(x − 0.3i) in Figure 4.5. Since the
poles ±i/π are too close to the interval, polynomial interpolation of this function
suffers from Runge’s phenomenon. We observed that rational interpolation with
a fixed d = 6 converges rather slowly and a relative error of 10−12 is attained
with as many as n = 100 nodes, whereas with the help of our minimisation
process, the latter error is already reached for n = 50. For small n, our method
chose near-optimal values of d leading to minimal errors. However, with n larger
than 75, this is not true any longer. This is due to the fact that the level lines
of |∑n−d

i=0 λi(z)|1/(n+1) with equispaced nodes yield cusps in the region where f
has poles; see again the top left picture in Figure 4.3. The speed of convergence
is thus faster than predicted, and the slope of the predicted error is less steep
than that of the experimental error, so that the minimisation procedure does
not take the growth of the Lebesgue constant into account, which leads to a
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Figure 4.6: Relative errors for the interpolation of f(x) = log(1.2−x)/(x2 +2).
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Figure 4.7: Relative errors for the interpolation of f(x) = arctan(πx).
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recommendation of slightly too large values of d compared to optimal values.
This is, however, not a contradiction to our theory: The error decreased faster
than predicted and therefore suffers earlier from the amplification for rounding
errors measured by the Lebesgue constant. If we considerably increase the
contribution of the Lebesgue constant in our minimisation algorithm, then such
a hump in the error curve does not show up, and the values chosen for d are
almost equal to those giving minimal errors. This strategy might be adopted
when it is known that a function has a singularity exactly in the cusp region of
the level lines describing the speed of convergence.

We investigated the same example with quasi-equispaced nodes and global
mesh ratio M = 3 and we estimated the error using the bound on the Lebesgue
constant associated with this kind of nodes. The resulting error follows the pre-
dicted error curve more closely. We omit the corresponding plots. We repeated
a similar computation with numerically estimated Lebesgue constants, which
again gave very similar results. Such a procedure might be used for nodes with
unknown Lebesgue constants or bounds thereof.

We also applied the minimisation process to the Runge example 1/(1+25x2)
and observed error curves such as those in Figure 4.7—however, with a slightly
slower convergence; a relative error of about 10−14 was observed for n ≈ 125.
This was to be expected since the poles are closer to the interval. The chosen
values for C did not exceed 0.12, so that d increased very slowly and decreased
for n larger than 200.

A function that is similar to Runge’s example is f(x) = (1+x)/(1+sin(x)2),
which we approximated on [−5, 5]. The closest poles to the interval are at
s = ±arcsinh(1)i ≈ ±0.8814i. Due to symmetry effects, the error decreases
faster than predicted, increases again following the growth of the condition
number and finally decreases till 10−15 with larger n and that relative error
remains small even with much larger values of n; see Figure 4.8.

The relative error in the interpolation of f(x) = Γ(x + 1.1) is plotted in
Figure 4.9. This function has a singularity at s = −1.1, which is very close to
the left endpoint of the interval. The convergence therefore is rather slow. In
the minimisation process, d can thus be chosen larger, as effects of the growing
Lebesgue constants become apparent only with larger n. Therefore, the values
for d chosen by our method are very close to those giving the smallest relative
errors. The estimate of the condition number is slightly too large since we
manipulate only upper bounds on the Lebesgue constants, which are not always
very tight, and the Lebesgue constant itself is already an upper bound on the
condition number.

Although the function f(x) = sin(x) is entire, we may arbitrarily take s = 10
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Figure 4.8: Relative errors for the interpolation of f(x) = (1 + x)/(1 + sin(x)2)
on [−5, 5] with 2 ≤ n ≤ 1000.

in our algorithm, which is sufficiently far away from the interval to guarantee
fast convergence. We changed the interval to [−5, 5] for this example in order
to compare the present results with those obtained in [46, Tab. 1] for d = 4
constant. The authors of the latter paper tabulated absolute errors, equivalent
to relative errors in this example, on the order of 10−12 for n > 600. Figure 4.10
shows that an error of the same magnitude is attained for n ≈ 30 already with
the choice of d of our minimisation process. The chosen values for d are smaller
than in most of the previous examples. For this example we plotted the error
for 2 ≤ n ≤ 1000 to show that it remains close to machine precision even for
large values of n. With n in the tens of thousands the error did not increase
significantly either. We also observed that for each n, the value of d that gives
the smallest error is very close to the value we determined with the stabilisation
process, so that the errors displayed are almost smallest possible.

The next demonstration concerns the heuristic choice of “optimal” param-
eters n and d without having any information on the function f , as proposed
in the remark of Section 4.2.4. For all functions in this section we have run
this algorithm with a targeted relative error tolerance of 10−6 and 10−9, respec-
tively. The convergence slope was estimated using interpolants with n1 = 10
and n2 = 40 points. The results are shown in Table 4.1. They indicate that
this approach can give quite good results, although a careful user would always
revalidate the accuracy of the obtained interpolant rn by comparing f and rn
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Figure 4.9: Relative errors for the interpolation of f(x) = Γ(x + 1.1).
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Figure 4.10: Relative errors for the interpolation of f(x) = sin(x) on [−5, 5]
with 2 ≤ n ≤ 1000.
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Table 4.1: Results of the algorithm described in the remark of Section 4.2.4.

Target relative error Function f Copt n d Observed error

log(1.2− x)/(x2 + 2) 0.61 40 24 5.56 · 10−8

Γ(x+ 1.1) 0.42 75 32 5.90 · 10−7

10−6 Γ(x+ 2) 0.29 26 7 3.66 · 10−8

arctan(πx) 0.19 31 6 2.27 · 10−7

sin(5x) 0.33 22 7 4.80 · 10−6

log(1.2− x)/(x2 + 2) 0.30 73 22 2.36 · 10−10

Γ(x+ 1.1) 0.15 151 22 3.06 · 10−9

10−9 Γ(x+ 2) 0.29 39 11 2.51 · 10−11

arctan(πx) 0.19 47 9 2.47 · 10−10

sin(5x) 0.39 34 11 5.50 · 10−10

at sufficiently many points.
The last example demonstrates that the presented convergence theory is also

valid for nodes that are not equispaced. To this end we consider the node density
φ(x) = (4+ arctan(4x))/8 on the interval [−1, 1]. We have computed the nodes
distributed according to this density by evaluating the inverse cumulative node
distribution Φ−1(i/n) for i = 0, 1, . . . , n; see Figure 4.11 (left). The level lines
with the convergence rates for C = 0.2 are shown in Figure 4.2 (right). They
predict the somewhat counterintuitive effect which we observe numerically in
Figure 4.11 (right): When interpolating f+(x) = (x − 1.2)−2, the convergence
is slower than for f−(x) = (x + 1.2)−2, although for f+ the singularity s = 1.2
is to the right of [−1, 1], where the nodes are about twice as dense as on the left
end of the interval. This suggests that local refinement close to a singularity
may not yield the desired faster convergence; the overall node distribution φ
must be taken into account.

4.3 A Good Choice of Nodes

We keep the parameter d variable as in the preceding section, i.e., we suppose
that d = d(n) = round(Cn) with C between 0 and 1. If C = 1, the rational
interpolants rn simplify to the polynomial pn and if C = 0, then rn is Berrut’s
interpolant. As we want to discuss a good choice of interpolation nodes, we
begin with polynomial interpolation, i.e., with the case C = 1. A standard
result [31, Chap. 3.1] on the error in polynomial interpolation says that for
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Figure 4.11: Nonequispaced nodes, n = 100, with their density φ(x) = (4 +
arctan(4x))/8 on [−1, 1] (left) and convergence of the interpolation in these
nodes for f− and f+ with singularity s = −1.2 and s = 1.2, respectively, together
with the predicted error slope 0.860n and 0.914n, respectively, for 1 ≤ n ≤ 150
(right).

f ∈ C[a, b] and x ∈ [a, b],

|f(x) − pn(x)| ≤ ‖f (n+1)‖ |x− x0| · · · |x− xn|
(n+ 1)!

. (4.19)

This error bound may be split into two parts as explained, e.g., in [31, Chap. 3.3].
The first part involves the (n + 1)st derivative of f and cannot be influenced
by a good choice of nodes. However, the other factor, the absolute value of the
nodal polynomial L, and its maximum over [a, b] depend only on the nodes.
We suppose without restriction of generality that the interval of interpolation
is [−1, 1]. Any other interval [a, b] can be obtained via the transformation x 7→
(a+ b)/2+x(b−a)/2. It can be proven [31, 87] that ‖L‖ is smallest if the nodes
are the Chebyshev points of the first kind. With this choice of nodes, L(x) =
Tn+1(x)/2

n, where Tn+1 is the (n+ 1)st Chebyshev polynomial, and the latter
equi-oscillates between its extrema; see Figure 4.12. This is a characterisation
of best approximation, and Tn+1/2

n can be seen as the best monic polynomial
approximation of degree n+ 1 to the zero function, see, e.g., [118], so that ‖L‖
is minimal if the nodes are Chebyshev points of the first kind. ‖L‖ is almost as
small with Chebyshev points of the second kind, whereas with equispaced points
it shows large oscillations at the ends of the interval; see again Figure 4.12.
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Figure 4.12: The nodal polynomial L with n = 20 and Chebyshev points of
the first kind (left), second kind (middle), and equispaced points (right); L
equi-oscillates with Chebyshev points of the first kind (left).

In polynomial interpolation, the optimality of Chebyshev points of the first
kind as well as the near-optimality of Chebyshev points of the second kind, is also
seen by the fact that the corresponding logarithmic potential (4.7) is constant
in the interval; see [110]. There is no difference between Chebyshev points of
either kind since their density is the same, so that the logarithmic potential for
both kinds of Chebyshev points is identical. The picture on the right-hand side
in Figure 4.14 illustrates that this potential is constant over the interval; see
the curve labelled C = 1. This is not the case for the potential (4.6) associated
with equispaced points in polynomial interpolation as can be seen in the picture
on the left in Figure 4.14. The relation between equi-oscillation of L and the
constant logarithmic potential comes from the fact that − log(|L|1/(n+1)) is the
discrete analogue of the potential.

Two additional arguments in favour of Chebyshev points can be found, e.g.,
in [8]. The first addresses near-optimality of polynomial interpolation in Cheby-
shev points. Equations (3.9) and (3.10) reveal that the interpolation error is
bounded by 2+ 2

π log(n+1) multiplied by the error of best polynomial approx-
imation of degree n. The approximation error, in maximum norm, of a merely
continuous function is therefore within a factor of 10 of the best polynomial
approximation if n < 105. For this reason, polynomial interpolation between
Chebyshev points is often called near-best . If the interpolated function is ana-
lytic in a closed ellipse with foci ±1 and whose semimajor and semiminor axis
length sum up to κ, then the error is on the order of O(κ−n), as n → ∞. This
result is closely related to Theorem 4.2.
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Chebyshev points are doubtlessly a very good choice of nodes for polynomial
interpolation. Chebyshev points of the second kind are often preferred, since
they include the endpoints of the interval and yield results which are nearly as
good as those obtained with Chebyshev points of the first kind.

One could stop the theory at this point and admit that, whenever very good
approximation is needed, it is enough to sample f at Chebyshev points and
to interpolate the data by a polynomial interpolant. However, one cannot al-
ways choose the interpolation nodes and sometimes the data is only available
at equispaced nodes, e.g., if the nodes are measurement points in an exper-
iment from applied natural science. Moreover equispaced nodes are a much
more natural choice if we want to sample a function on which we do not have
further information regarding differentiability and other behaviour. We have
seen in Section 3.3.2 that polynomial interpolation with equispaced nodes is
ill-conditioned, which means that small perturbations in the data will be highly
amplified during the interpolation process. Even worse, the interpolants do not
always converge for analytic functions which have singularities near the interval
as we explained in Section 4.1.

As mentioned in Chapter 1, a similar behaviour is to be expected from any
method with equispaced nodes which would converge exponentially in theory:
The condition number of such a method necessarily grows at the same expo-
nential rate [85].

We have seen so far that Floater–Hormann interpolation with equispaced
nodes is much more successful than polynomial interpolation. We showed sta-
bility of the interpolants when evaluated in barycentric form, the good condi-
tion as long as d is reasonably small, fast convergence for analytic functions
and absence of Runge’s phenomenon if d is kept constant. This indicates that
the combination of Floater–Hormann interpolation with equispaced nodes is
powerful. We want to add two more (heuristic) arguments in favour of this
statement; these two are, however, only of speculative nature and might give
additional hints why equispaced nodes are nearly optimal for Floater–Hormann
interpolation. At the end of Section 3.3.3 we already observed that the Lebesgue
constant increases most of the time as soon as the nodes are slightly changed
from being equispaced; see Figure 3.5.

Chebyshev points of the first kind are optimal in polynomial interpolation
because they minimise L, the part of the error that does not depend on f . The
error in Floater–Hormann interpolation can be written as in (2.19), namely as
a quotient whose numerator depends on the function and whose denominator
depends only on the nodes. The denominator may be rewritten as
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(−1)n−d L(x)
∑n−d

i=0 µi(x)
, (4.20)

where µi(x) = (−1)n−dL(x)λi(x), as in the proof of Theorem 2.2, shown in [46],

on the absence of real poles. It is proven there that
∑n−d

i=0 µi(x) is positive for
all real x, so that the rational function (4.20) cannot have more than n+1 real
roots. It is thus natural to think that if the function (4.20) equi-oscillates in
the interval, then the corresponding nodes should be at least close to optimal.
We plotted this expression with equispaced nodes, n = 100 and various values
of d in Figure 4.13. It can be observed that for d = 0, corresponding to Berrut’s
interpolant, the function almost equi-oscillates, and with increasing d, equi-
oscillation occurs only in the middle part of the interval whereas near the ends,
higher oscillations show up. This observation and the similar behaviour of the
Lebesgue functions motivate to investigate nodes that are distributed equally
in the middle part of the interval and cluster more and more toward the ends
as d increases so as to reach Chebyshev points for d = n.

In addition to the almost equi-oscillation of (4.20), the potential function
(4.13) associated with equispaced nodes is almost constant in the interval for
small C, which corresponds to small d as well. As C decreases, the potential is
constant over a larger part of the interval; see the left picture in Figure 4.14. The
exact opposite is true with Chebyshev points. This gives a heuristic explanation
of observations from extensive numerical experiments that Floater–Hormann
interpolation with equispaced nodes improves when d is decreased from n toward
0. Again, the opposite is observed with Chebyshev points: As d increases
from 0 to n, the interpolation quality becomes better until it reaches the good
approximation of polynomial interpolation in Chebyshev points.

From the proven theoretical arguments and the above heuristics, one can
state that the combination of Floater–Hormann interpolation and equispaced
nodes is almost as successful a combination as polynomial interpolation between
Chebyshev points of the second kind. The speed of convergence is of course not
exactly the same and the condition and stability must be slightly worse [85],
but Floater–Hormann interpolation is still a stable and well-conditioned inter-
polation scheme, that can be evaluated easily and cheaply with the barycentric
form and gives good to near optimal approximation with the natural equispaced
nodes.

The closeness to optimal of equispaced nodes for Floater–Hormann interpo-
lation can be observed in Figure 4.15, where we computed again the denomi-
nator of rn, this time with equispaced nodes and optimised nodes. The latter
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Figure 4.13: The reciprocal of the denominator
∑n−d

i=0 λi(x) of rn plotted as

L(x)/
∑n−d

i=0 µi(x) with n = 100 and d = 0, 1, 2, 3, 4, 5 (from left to right and
top to bottom).
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Figure 4.14: The potential function V C,µ for equispaced nodes (left) and Cheby-
shev points (right) and various values of C.

are obtained with Matlab’s fmincon, configured to give the minimum under
the constraints x1 < x2 < . . . < xn−2 < xn−1 using sequential quadratic pro-
gramming (sqp); see [81]. The argument which we passed to fmincon is the

maximum of L(x)/
∑n−d

i=0 µi(x) in 3000 equispaced nodes and the starting vec-
tor2 was a vector rescaled to [−1, 1], whose first and last few nodes are taken
from a set of d + 1 Chebyshev points of the second kind and the nodes in the
middle are equispaced. The picture on the right clearly shows that the nodes
from the optimisation are nearly equispaced, they cluster only slightly toward
the ends of the interval. This behaviour seems natural since Floater–Hormann
interpolation is blended polynomial interpolation and the first and last few of
these polynomials only share parts of their nodes with some of the remaining
polynomials. Therefore, a distribution like that of Chebyshev points throughout
the interval is not particularly good for the blended polynomials which interpo-
late only between subsets of the nodes in the interval, so that Chebyshev points
are not much better than random points in Floater–Hormann interpolation.

2This idea of this distribution of nodes was originally formulated by Kai Hormann during
a discussion on a slightly different topic.
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Figure 4.15: The reciprocal of the denominator
∑n−d

i=0 λi(x) of rn plotted as

L(x)/
∑n−d

i=0 µi(x) with n = 50 and d = 4, with optimised nodes and equispaced
nodes (left). The horizontal lines indicate the maximum of the denominator
function; the outer lines give the overall maximum with optimal nodes and the
inner lines show the maximum in the middle of the interval with equispaced
nodes. The picture on the right shows the location of the optimised, nearly
equispaced nodes compared with that of equispaced nodes.
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Chapter 5

Approximation of
Derivatives

Derivatives of polynomial interpolants lead in a natural way to approximations
of derivatives of the interpolated function, e.g., through finite differences [47,
48, 49, 50]. In polynomial and spline interpolation the kth derivative of the
interpolant, as a function of the mesh size h, typically converges at the rate
of O(hd+1−k) as h → 0, where d is the degree of the polynomial or spline [33].
Taking into account that the rational Floater–Hormann interpolant rn is a blend
of polynomial interpolants of degree at most d, it is not unreasonable to expect
that the kth derivative of the interpolation error e from (2.19) satisfies

‖e(k)‖ ≤ Khd+1−k.

Here and in all what follows, K is again a constant depending only on d, on
derivatives of f , on the length b − a of the interval and possibly on other con-
stants. Notice that the linearity of the derivative implies that the derivative of
the interpolation error matches the error of the approximation of the derivative
of a function by the same derivative of the interpolant.

In this chapter we establish this convergence rate for rn with arbitrary nodes
in the cases k = 1, 2 and with equispaced and quasi-equispaced nodes for deriva-
tives of higher order, k = 3, . . . , d, but then only at the nodes. We suggest an
even cheaper alternative with almost the same rate for the approximation of
derivatives of higher order at intermediate points. Thereafter, as an applica-
tion, we present improved finite difference formulas deduced from these rational
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interpolants. The formulas contain the classical polynomial finite differences as
a special case, but are more stable for calculating one-sided approximations of
derivatives as well as derivatives close to boundaries.

The main references for this chapter are [14] and [76], in addition to those
cited in the text.

5.1 Error at the Nodes

We start from the representation (2.19) of the interpolation error e and denote
its numerator by

A(x) :=

n−d∑

i=0

(−1)if [xi, . . . , xi+d, x] (5.1)

and the denominator by

B(x) :=

n−d∑

i=0

λi(x), (5.2)

so that

e(x) =

∑n−d
i=0 (−1)if [xi, . . . , xi+d, x]∑n−d

i=0 λi(x)
=
A(x)

B(x)
. (5.3)

Consider the first derivative of e at a node xj , 0 ≤ j ≤ n. We look at

qj(x) :=
e(x)

x− xj
, (5.4)

which, by the definition of the derivative and the fact that e(xj) = 0, satisfies

e′(xj) = lim
x→xj

qj(x). (5.5)

This motivates us to look at the product (x− xj)B(x). Defining the functions

Bj(x) :=
∑

i∈Jj

(−1)i
i+d∏

k=i
k 6=j

1

x− xk
(5.6)

and

Cj(x) :=
∑

i∈In\Jj

(−1)i
i+d∏

k=i

1

x− xk
, (5.7)
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where the index sets In and Jj are defined in (2.13), we may rewrite qj as

qj(x) =
A(x)

gj(x)
(5.8)

with

gj(x) := Bj(x) + (x− xj)Cj(x). (5.9)

Lemma 5.1.1

e′(xj) =
A(xj)

Bj(xj)
.

Proof. By (5.4), (5.8) and (5.9) we have

qj(x) =
A(x)

Bj(x) + (x− xj)Cj(x)
, (5.10)

and taking the limit of both sides as x→ xj gives the result; see (5.5).

We can use this formula to obtain an error bound at the nodes that requires
f to be in Cd+2[a, b], the same as for the bound on the interpolation error itself
from Theorem 2.3. We introduce the following notation:

di(x) := |x− xi|, dik := |xi − xk|,

for nodes xi and xk and for x ∈ [a, b], and when it is clear, we also write
di = di(x).

Theorem 5.2. If f ∈ Cd+2[a, b], then

|e′(xj)| ≤ Khd, 0 ≤ j ≤ n.

Proof. With x = xj in (5.6), the products alternate in sign as (−1)i does, so
that all the terms in the sum have the same sign and

|Bj(xj)| =
∑

i∈Jj

i+d∏

k=i
k 6=j

d−1
jk .

1This lemma and the idea of working with the definition of the derivative are due to an
earlier collaboration of Jean-Paul Berrut with Michael Floater.
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Therefore, by choosing any i ∈ Jj , we deduce that

1

|Bj(xj)|
≤

i+d∏

k=i
k 6=j

djk ≤ Khd, ∀ i ∈ Jj . (5.11)

On the other hand it has been shown in [46] that

|A(x)| ≤ K, x ∈ [a, b], (5.12)

whence the bound follows.

To deal with higher derivatives, we consider the Taylor expansions of e and
qj at x = xj , namely

e(x) = (x − xj)e
′(xj) +

1

2!
(x− xj)

2e′′(xj) +
1

3!
(x − xj)

3e′′′(xj) + · · · (5.13)

and

qj(x) = qj(xj) + (x − xj)q
′
j(xj) +

1

2!
(x − xj)

2q′′j (xj) + · · · .

Dividing (5.13) by x− xj and equating terms in the two expansions imply that

e(k)(xj) = kq
(k−1)
j (xj), (5.14)

in particular,
e′′(xj) = 2q′j(xj). (5.15)

Differentiating (5.10) and substituting x = xj give

q′j(xj) =
A′(xj)

Bj(xj)
−
B′

j(xj)A(xj)

B2
j (xj)

− Cj(xj)A(xj)

B2
j (xj)

, (5.16)

which we will use to derive a bound for e′′(xj). We begin with a lemma.

Lemma 5.3. If f ∈ Cd+2+k[a, b] for k ∈ N, then

|A(k)(x)| ≤ K, x ∈ [a, b].

Proof. The case k = 0 has been treated in [46]. For k 6= 0 and using the
derivative formula for divided differences (see [2] and [69]), we have

A(k)(x) = k!

n−d∑

i=0

(−1)if [xi, . . . , xi+d, (x)
k+1],
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where (x)k stands for a k-fold argument. Then, with a similar approach to [46,
p. 322], A(k)(x)/k! is seen to be

−
n−d−1∑

i=0, i even

(xi+d+1 − xi)f [xi, . . . , xi+d+1, (x)
k+1],

if n− d is odd and

−
n−d−2∑

i=0, i even

(xi+d+1 − xi)f [xi, . . . , xi+d+1, (x)
k+1] + f [xn−d, . . . , xn, (x)

k+1],

if n− d is even. Using the same argument as in [46], we are done.

Theorem 5.4. If d ≥ 1 and if f ∈ Cd+3[a, b], then

|e′′(xj)| ≤ Khd−1.

Proof. We write equation (5.15) with (5.16) in the form

e′′(xj) = 2(L1 − L2 − L3),

where

L1 :=
A′(xj)

Bj(xj)
, L2 :=

B′
j(xj)A(xj)

B2
j (xj)

, L3 :=
Cj(xj)A(xj)

B2
j (xj)

,

and we show that
|L1| ≤ Khd, (5.17)

and
|L2|, |L3| ≤ Khd−1. (5.18)

Equation (5.17) immediately follows from (5.11) and Lemma 5.3. To deal with
L2, we notice that

B′
j(x) =

∑

i∈Jj

(−1)i+1
i+d∑

m=i
m 6=j

1

x− xm

i+d∏

k=i
k 6=j

1

x− xk
,

so that its absolute value in x = xj is bounded by

|B′
j(xj)| ≤

∑

i∈Jj

i+d∑

m=i
m 6=j

d−1
jm

i+d∏

k=i
k 6=j

d−1
jk . (5.19)

85



5.1. ERROR AT THE NODES

To derive a bound of the quotient of (5.19) with |Bj(xj)|2, we use (5.11) with
i ∈ Jj equal to the index in the outer sum in (5.19):

|B′
j(xj)|

|Bj(xj)|2
≤

∑

i∈Jj

i+d∑

m=i
m 6=j

d−1
jm

i+d∏

k=i
k 6=j

d2jk

i+d∏

k=i
k 6=j

d−1
jk ≤

∑

i∈Jj

i+d∑

m=i
m 6=j

i+d∏

k=i
k 6=j
k 6=m

djk ≤ Khd−1

and this, together with (5.12), gives the bound on L2 in (5.18).
Finally, we treat L3. We split Cj(xj) into two parts,

Cj(xj) =

j−d−1∑

i=0

(−1)i
i+d∏

k=i

1

xj − xk
+

n−d∑

i=j+1

(−1)i
i+d∏

k=i

1

xj − xk
,

where empty sums are meant to equal 0. The terms in both sums alternate in
sign, and increase and decrease, respectively, in absolute value, so that

|Cj(xj)| ≤
j−1∏

k=j−d−1

d−1
jk +

j+1+d∏

k=j+1

d−1
jk . (5.20)

We now divide every term in equation (5.20) by |Bj(xj)|2. Using (5.11) with
i = j − d for the first term and i = j for the second, we obtain

|Cj(xj)|
|Bj(xj)|2

≤
∏j−1

k=j−d d
2
jk∏j−1

k=j−d−1 djk
+

∏j+d
k=j+1 d

2
jk∏j+d+1

k=j+1 djk
=

∏j−1
k=j−d djk

dj,j−d−1
+

∏j+d
k=j+1 djk

dj,j+d+1
.

Since
dj,j−d

dj,j−d−1
≤ 1,

dj,j+d

dj,j+d+1
≤ 1,

it follows that

|Cj(xj)|
|Bj(xj)|2

≤
j−1∏

k=j−d+1

djk +

j+d−1∏

k=j+1

djk ≤ Khd−1,

which, together with (5.12), gives the bound on L3 in (5.18).

Let us now investigate the approximation of derivatives of higher order at
equispaced and quasi-equispaced nodes.
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Theorem 5.5. Suppose n, d, d ≤ n, and k, k ≤ d, are positive integers and
f ∈ Cd+1+k[a, b]. If the nodes are equispaced or quasi-equispaced, then

|e(k)(xj)| ≤ Khd+1−k, 0 ≤ j ≤ n. (5.21)

Proof. For k = 1 and k = 2, the statement is covered by the general case of
differentiation at arbitrarily distributed nodes from Theorems 5.2 and 5.4.

We expand the derivatives of qj in (5.14) by applying the Leibniz rule to the
right-hand side of (5.8):

q
(k−1)
j (x) =

k−1∑

ℓ=0

(
k − 1

ℓ

)
A(k−1−ℓ)(x)

(
g−1
j (x)

)(ℓ)
. (5.22)

Lemma 5.3 guarantees that the absolute value of every factor A(k−1−ℓ)(x) is
bounded in [a, b] by a constant; we thus merely look at the last factor of the
terms in the sum. We will bound the ℓth derivative of the reciprocal of gj(x) for
ℓ = 0, 1, . . . , k − 1 at x = xj . To this aim, we apply the “set partition version”
of the Faà di Bruno formula for higher order derivatives of composite functions
as given in [71], see also [28, 45],

(g−1
j (x))(ℓ) =

∑
(−1)p

p!

gp+1
j (x)

ℓ∏

i=1

(
g
(i)
j (x)

)bi
, (5.23)

where the sum runs over all partitions of the set {1, 2, . . . , ℓ} and, for each
partition, p is its number of blocks and bi is the number of these blocks with
precisely i elements.

We shall use (5.23) to show (5.21) by means of a lower bound on gj(xj) and
an upper bound on the ℓth derivative of gj(x) at x = xj for ℓ = 1, . . . , k − 1.
The former has been explicitly established in the proof of Theorem 5.2 and is
valid for any distribution of the nodes:

|gj(xj)| = |Bj(xj)| ≥
i+d∏

k=i
k 6=j

d−1
jk ≥ Kh−d, ∀i ∈ Jj . (5.24)

For the latter we consider

g
(ℓ)
j (xj) = B

(ℓ)
j (xj) + ℓC

(ℓ−1)
j (xj) (5.25)
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and use the Leibniz rule to obtain

B
(ℓ)
j (x) =

∑

i∈Jj

(−1)i+ℓℓ!
∑

|Li,j|=ℓ

i+d∏

k=i
k 6=j

1

(x− xk)1+ℓk−i
,

where Li,j := (ℓ0, . . . , ℓj−i−1, ℓj−i+1, . . . , ℓd), j = 0, . . . , n and i ∈ Jj , are vectors
whose components are nonnegative integers which sum up to

|Li,j | :=
d∑

k=0
k 6=j−i

ℓk.

Taking the absolute value of B
(ℓ)
j at x = xj leads to

|B(ℓ)
j (xj)| ≤

∑

i∈Jj

ℓ!
∑

|Li,j|=ℓ

i+d∏

k=i
k 6=j

d
−(1+ℓk−i)
jk ≤ Kh−(d+ℓ), (5.26)

since every product in the inner sum involves the reciprocal of d+ ℓ factors

djk ≥ |j − k|h∗ ≥ Kh.

Analogously for Cj , with L := (ℓ0, . . . , ℓd), it follows that

C
(ℓ−1)
j (x) = (ℓ− 1)!

∑

|L|=ℓ−1

∑

i∈In\Jj

(−1)i+l−1
i+d∏

k=i

1

(x− xk)1+ℓk−i
.

We split the inner sum into its two parts with consecutive indices

j−d−1∑

i=0

(−1)i+l−1
i+d∏

k=i

1

(x− xk)1+ℓk−i
+

n−d∑

i=j+1

(−1)i+l−1
i+d∏

k=i

1

(x− xk)1+ℓk−i
,

where empty sums are meant to equal 0. The terms in the left and right sums
alternate in sign, and increase and decrease, respectively, in absolute value.
Therefore, we obtain

|C(ℓ−1)
j (xj)| ≤ (ℓ − 1)!

∑

|L|=ℓ−1

( j−1∏

k=j−d−1

d
−(1+ℓk−j+d+1)
jk +

j+1+d∏

k=j+1

d
−(1+ℓk−j−1)
jk

)
,
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which is bounded by a constant times h−d−ℓ, in the same fashion as (5.26). This
result and (5.26) again, inserted into (5.25), yield

|g(ℓ)j (xj)| ≤ Kh−(d+ℓ), ℓ = 1, . . . , k − 1. (5.27)

Finally we show by induction that for ℓ = 1, . . . , k − 1,

|(g−1
j (xj))

(ℓ)| ≤ Khd−ℓ. (5.28)

For ℓ = 0 and ℓ = 1, this has been established in Theorems 5.2 and 5.4. Now
suppose that (5.28) holds for a certain ℓ. Following Johnson’s proof of the set
partition version of the Faà di Bruno formula in [71], we use the form (5.23) to
facilitate the step from the ℓth to the (ℓ+1)st derivative of the reciprocal of gj.
Differentiating (5.23) adds terms to the sum which equal the former ones with
one of the following two changes:

1

gp+1
j (x)

−→ −(p+ 1)
g′j(x)

gp+2
j (x)

or (g
(i)
j (x))bi −→ bi(g

(i)
j (x))bi−1g

(i+1)
j (x).

Equations (5.24) and (5.27) show that the bound on the (ℓ + 1)st derivative of
the reciprocal of gj at x = xj includes an additional factor 1/h as compared
with the bound on the ℓth derivative.

5.2 Error at Intermediate Points

We now turn our attention to intermediate points, i.e., the x ∈ [a, b] that are
not interpolation points. For the first derivative we obtain the same rate of
convergence as at the nodes, namely O(hd), but only under the stricter condition
that f ∈ Cd+3[a, b].

Theorem 5.6. If d ≥ 2 and if f ∈ Cd+3[a, b], then

‖e′‖ ≤ Khd.

Proof. Due to the continuity of e′, it is sufficient to let x ∈ (xj , xj+1) and to
show that

|e′(x)| ≤ Khd, (5.29)

independently of j. To establish (5.29), we differentiate (5.3), to obtain

e′(x) =
A′(x)

B(x)
−A(x)

B′(x)

B2(x)
. (5.30)
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In the proof of Theorem 2 of [46] it was shown that, see also (2.20),

|B(x)| ≥ 1

d!hd+1
, ∀x ∈ [a, b],

and so, from Lemma 5.3, it follows that

|A′(x)|
|B(x)| ≤ Khd+1.

Since |A(x)| ≤ K, it remains to show that

|B′(x)|
|B2(x)| ≤ Khd. (5.31)

We use the following index sets introduced in [46] and which subdivide In:

I1 = {i ∈ In : i ≤ j − d},
I2 = {i ∈ In : j − d+ 1 ≤ i ≤ j},
I3 = {i ∈ In : j + 1 ≤ n− d}.

Now

|B′(x)| =
∣∣∣∣
∑

i∈In

d∑

m=0

(−1)i+1

(x − xi) · · · (x− xi+d)(x − xi+m)

∣∣∣∣

≤
d∑

m=0

(Mm,1 +Mm,2 +Mm,3), (5.32)

where we have interchanged the summation order and set

Mm,p :=

∣∣∣∣
∑

i∈Ip

(−1)i+1

(x− xi) · · · (x − xi+d)(x − xi+m)

∣∣∣∣, p = 1, 2, 3.

If Ip = ∅, then Mm,p = 0. I2 is not empty since d ≥ 2.
For every fixed m, the terms in the sums in Mm,1 and Mm,3 alternate in

sign, and increase and decrease, respectively, in absolute value and so

Mm,1 ≤ 1

dj−d · · · djdj−d+m
and Mm,3 ≤ 1

dj+1 · · · dj+1+ddj+1+m
.
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In the same proof in [46, p. 322], it has been shown that, see also (2.21),

|B(x)| ≥ |λi(x)|, ∀ i ∈ I2. (5.33)

Next, we divide Mm,1 by |B(x)|2 and use (5.33) with i = j − d+ 1, so that

Mm,1

|B(x)|2 ≤
d2j−d+1 · · · d2j+1

dj−d · · · djdj−d+m
=
dj−d+1 · · · djd2j+1

dj−ddj−d+m
,

and since dj/dj−d+m ≤ 1 for m = 0, . . . , d and dj−d+1/dj−d ≤ 1:

Mm,1

|B(x)|2 ≤ dj−d+2 · · · dj−1d
2
j+1 ≤ Khd.

Similarly
Mm,3

|B(x)|2 ≤ Khd.

Finally we bound Mm,2/|B(x)|2. Choosing the same i ∈ I2 in (5.33) as in each
term of the sum in Mm,2, it follows

Mm,2

|B(x)|2 ≤
∑

i∈I2

d2i · · · d2i+d

di · · · di+ddi+m
=

∑

i∈I2

di · · · di+m−1di+m+1 · · · di+d ≤ Khd.

Thus (5.31) follows from (5.32).

In the case d = 1, we obtain the same rate of convergence, O(h), as for the
larger d in Theorem 5.6 but only under a bounded local mesh ratio.

Theorem 5.7. If d = 1 and if f ∈ C4[a, b], then

‖e′‖ ≤ K(β̃ + 1)h,

where

β̃ := max
{

max
1≤i≤n−1

di,i+1

di,i−1
, max
0≤i≤n−2

di+1,i

di+1,i+2

}
.

Proof. Again we determine the open subinterval (xj , xj+1) containing x and
consider (5.30). Since the bounds for |A(x)|, |A′(x)| and |B(x)| from the pre-
vious theorem also hold for d = 1, we bound |B′(x)|/|B(x)|2 for d = 1 and
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I2 = {j}. Using similar arguments as in that theorem, we obtain

|B′(x)|
|B(x)|2 ≤

1∑

m=0

(
1

|B(x)|2
∣∣∣∣
∑

i∈In

(−1)i+1

(x − xi)(x− xi+1)(x − xi+m)

∣∣∣∣
)

≤
1∑

m=0

(
d2jd

2
j+1

dj−1djdj−1+m
+

d2jd
2
j+1

djdj+1dj+m
+

d2jd
2
j+1

dj+1dj+2dj+1+m

)

≤ 2
d2j+1

dj−1
+ dj+1 + dj + 2

d2j
dj+2

≤ 2(2β̃ + 1)h ≤ 4(β̃ + 1)h. �

For the second derivative the mesh ratio enters every bound.

Theorem 5.8. If d ≥ 3 and if f ∈ Cd+4[a, b], then

‖e′′‖ ≤ K(β̃ + 1)hd−1.

Proof. We continue to work with x ∈ (xj , xj+1), and we express the error e
in (5.3) as

e(x) = ψ(x)ẽ(x),

where

ψ(x) := (x− xj)(x− xj+1), ẽ(x) :=
A(x)

B̃(x)
and B̃(x) := ψ(x)B(x).

Now, by the Leibniz rule,

e′′(x) =
2∑

i=0

(
2

i

)
ψ(2−i)(x)ẽ(i)(x)

= 2
A(x)

B̃(x)
+ 2ψ′(x)

(
A′(x)

B̃(x)
−A(x)

B̃′(x)

B̃2(x)

)
(5.34)

+ ψ(x)

(
A′′(x)

B̃(x)
− 2A′(x)

B̃′(x)

B̃2(x)
+ 2A(x)

B̃′2(x)

B̃3(x)
−A(x)

B̃′′(x)

B̃2(x)

)
.

Every factorA(k)(x) can be bounded using Lemma 5.3. In the coming arguments
we use the following result.
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Lemma 5.9. If d ≥ 1 and if x ∈ [a, b], then

1∣∣B̃(x)
∣∣ ≤ Khd−1.

Proof. For x ∈ (xj , xj+1), the definition of B̃ reads

B̃(x) = ψ(x)B(x) = ψ(x)
n−d∑

i=0

λi(x).

Since
|B(x)| ≥ |λi(x)|,

for any i ∈ I2, we deduce from the definition of λi that

1∣∣B̃(x)
∣∣ ≤

∏i+d
k=i dk
djdj+1

=

i+d∏

k=i
k 6=j,j+1

dk ≤ Khd−1, ∀i ∈ I2, (5.35)

which evidently holds also at the nodes.

The factors which remain to be bounded are the following:

N1(x) :=
B̃′(x)

B̃2(x)
, N2(x) := ψ(x)

B̃′(x)

B̃(x)
, N3(x) := ψ(x)

B̃′′(x)

B̃2(x)
. (5.36)

We split B̃ into five parts:

B̃(x) = ψ(x)

(j−d−1∑

i=0

λi(x) + λj−d(x) +

j∑

i=j−d+1

λi(x) + λj+1(x) +

n−d∑

i=j+2

λi(x)

)

(5.37)

=: K1(x) +K2(x) +K3(x) +K4(x) +K5(x).

For symmetry reasons, it is sufficient to study the first three terms, K1, K2 and
K3, since K4 and K5 are analogous to K2 and K1. We begin with the first
derivative of K1:

K ′
1(x) = ψ′(x)

j−d−1∑

i=0

λi(x) + ψ(x)

j−d−1∑

i=0

λ′i(x). (5.38)
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The terms in both sums alternate in sign and increase in absolute value; we
deduce that

|K ′
1(x)| ≤ 2h

j−1∏

k=j−d−1

d−1
k + djdj+1

j−1∑

m=j−d−1

d−1
m

j−1∏

k=j−d−1

d−1
k . (5.39)

We next turn to K2, which after simplification reads

K2(x) = (x− xj+1)(−1)j−d

j−1∏

k=j−d

(x− xk)
−1. (5.40)

It follows that

|K ′
2(x)| ≤

j−1∏

k=j−d

d−1
k + dj+1

j−1∑

m=j−d

d−1
m

j−1∏

k=j−d

d−1
k . (5.41)

We may rewrite K3 as

K3(x) =

j∑

i=j−d+1

(−1)i
i+d∏

k=i
k 6=j,j+1

(x− xk)
−1, (5.42)

which yields the following bound for its derivative:

|K ′
3(x)| ≤

j∑

i=j−d+1

i+d∑

m=i
m 6=j,j+1

d−1
m

i+d∏

k=i
k 6=j,j+1

d−1
k . (5.43)

In view of deriving a bound on N1, we first take the quotient of (5.39) with∣∣B̃(x)
∣∣2. Choosing i = j − d+ 1 in (5.35), we obtain

|K ′
1(x)|∣∣B̃(x)

∣∣2 ≤ 2h

∏j−1
k=j−d+1 d

2
k∏j−1

k=j−d−1 dk
+ dj+1

j−1∑

m=j−d−1

dj
∏j−1

k=j−d+1 d
2
k

dm
∏j−1

k=j−d−1 dk

≤ 2h

∏j−1
k=j−d+1 dk

dj−d−1dj−d
+ h

j−1∑

m=j−d−1

dj
∏j−1

k=j−d+1 dk

dmdj−d−1dj−d
.

Since dj−d+1/dj−d−1 ≤ 1 and dj−d+2/dj−d ≤ 1, and dj/dm ≤ 1 for m ≤ j − 1,
we see that

|K ′
1(x)|∣∣B̃(x)

∣∣2 ≤ 2h

j−1∏

k=j−d+3

dk + h

j−1∑

m=j−d−1

j−1∏

k=j−d+3

dk ≤ Khd−2.
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With similar arguments, a bound of the same order may be derived for |K ′
2|/

∣∣B̃
∣∣2

and for |K ′
3|/|B̃|2. The result is

|N1(x)| ≤ Khd−2.

To deal with N2, we use the mesh ratio β̃. Again we begin with the term
involving K ′

1, choose i = j − d + 1 in (5.35) and, instead of cancelling factors
in the numerator and denominator, we use the fact that dk/dk−1 ≤ 1 for k =
j − d+ 1, . . . , j − 1:

|ψ(x)| |K
′
1(x)|∣∣B̃(x)

∣∣ ≤ 2h
djdj+1

∏j−1
k=j−d+1 dk∏j−1

k=j−d−1 dk
+ d2j+1

j−1∑

m=j−d−1

d2j
∏j−1

k=j−d+1 dk

dm
∏j−1

k=j−d−1 dk

≤ 2h
djdj+1

dj−d−1dj−1
+ h

j−1∑

m=j−d−1

d2jdj+1

dmdj−d−1dj−1
.

Since dj/dj−d−1 ≤ 1, and dj/dm ≤ 1 for m ≤ j − 1, we obtain

|ψ(x)| |K
′
1(x)|∣∣B̃(x)

∣∣ ≤ 2h
dj+1

dj−1
+ h

j−1∑

m=j−d−1

dj+1

dj−1
≤ Kβ̃h.

Similar arguments lead to a bound of the same order for |ψ(x)||K ′
2|/|B̃|. For

|ψ(x)||K ′
3|/|B̃| we may cancel the whole product in every term of the inner sum

without making use of the mesh ratio:

|ψ(x)| |K
′
3(x)|∣∣B̃(x)

∣∣ ≤ djdj+1

j∑

i=j−d+1

i+d∑

m=i
m 6=j,j+1

d−1
m ≤ Kh.

Thus we have
|N2(x)| ≤ K(β̃ + 1)h.

A bound for N3 may be derived using similar arguments as for N1 and the
following observation: The differentiation of B̃′ leads to an extra factor (x−xi)−1

in some of the terms of B̃′′. Since i 6= j, j + 1, the absolute value of this factor
can be eliminated through multiplication with |ψ|:

|ψ(x)|
|x− xi|

=
djdj+1

di
≤ Kh.
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Consequently

|N3(x)| ≤ Khd−1.

This last step concludes the proof, since bringing together all the bounds on the
terms of the expansion (5.34) of e′′ yields the claimed result.

Theorem 5.10. If d = 2 and if f ∈ C6[a, b], then

‖e′′‖ ≤ K(β̃2 + β̃ + 1)h.

Proof. If we again expand the factors N1, N2 and N3 in (5.36) in the special
case d = 2, we see that everyone of them may be bounded by a linear function
of β̃.

The kth (k ≥ 3) order derivative of f at intermediate points may also be
approximated by the kth derivative of rn, evaluated at such a point. However, if

x is not a node, the expressions given in [97] for r
(k)
n (x) as barycentric rational

interpolants of divided differences get more and more expensive to evaluate
and the formulas for the corresponding error e(k)(x) become very intricate.
For this reason, and inspired by the polynomial case, we suggest that higher
order derivatives of a function f be approximated at intermediate points by the

rational interpolant R
(k)
n of the approximations r

(k)
n (xi) =: f

(k)
i of corresponding

higher order derivatives at the nodes:

R(k)
n (x) :=

n∑

i=0

wi

x− xi
f
(k)
i

/ n∑

i=0

wi

x− xi
. (5.44)

In Section 5.3, we shall review and use elegant formulas for f
(k)
i involving differ-

entiation matrices. The following proposition shows that the maximum norm
of the error,

E(k)(x) := R(k)
n (x) − f (k)(x),

decreases almost as O(hd+1−k) with an increasing number of equispaced or
quasi-equispaced nodes.

Proposition 5.11. Suppose n, d, d ≤ n, and k, k ≤ d, are positive integers
and f ∈ Cd+2+k[a, b]. If the nodes are equispaced or quasi-equispaced, then

‖E(k)‖ ≤ Khd+1−k
(
1 + log(n)

)
. (5.45)
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Proof. As the error |E(k)| is equal to |e(k)| at the nodes, we need only consider
intermediate points x 6= xj . First, we see that f (k) belongs to Cd+2[a, b] and
may thus be interpolated by the rational function rn[f

(k)] with parameter d and
approximation rate O(hd+1), leading to

|E(k)(x)| ≤
∣∣R(k)

n (x)− rn[f
(k)](x)

∣∣ +
∣∣rn[f (k)](x) − f (k)(x)

∣∣. (5.46)

The first term may be bounded by

∑n
i=0

∣∣ wi

x−xi

∣∣|f (k)
i − f (k)(xi)|∣∣∑n

i=0
wi

x−xi

∣∣ (5.47)

and the second by Khd+1−k, using h ≤ (b− a). We have shown in Theorem 5.5
that

|f (k)
i − f (k)(xi)| = |e(k)(xi)| ≤ Khd+1−k,

so that (5.47) may be further bounded by

Khd+1−kΛn(x),

where Λn(x) is the Lebesgue function from Section 3.3.3 associated with the
rational interpolant rn. We have seen in Theorem 3.7 that the maximum Λn of
Λn(x) is bounded by 2d−1Md(2+M log(n)) for d ≥ 1 and by 3

4M(2+M log(n))
for d = 0, independently of the length of the interval. The sum of the bounds
on the first and second terms in (5.46) yields the claimed result.

Observe that the Lebesgue constant shows up in this proof. It coincides
with the condition number of the interpolation process; see also Section 3.3.1.

This measure very naturally comes into play since R
(k)
n can be interpreted as

the rational interpolant to the perturbed values f
(k)
i of the derivatives f (k)(xi)

at the nodes.
Notice that a result similar to that of Proposition 5.11 holds for any distri-

bution of nodes, provided the Lebesgue constant associated with those nodes
may be bounded appropriately.

In the next section we apply the results of Theorem 5.5 for constructing
rational finite difference formulas.

5.3 Rational Finite Difference (RFD) Formulas

Finite difference (FD) methods based on polynomial interpolants have a long
tradition and are still the subject of much investigation; see, for instance, [47,
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48, 49, 50]. The idea behind the corresponding formulas is the approximation
of the kth order derivative of f at some point ξ ∈ [a, b] by the kth derivative
of the polynomial interpolant pn of f at ξ. In view of the linearity of pn in the
data f0, . . . , fn, an FD formula is obtained as follows:

f (k)(ξ) ≈ p(k)n (ξ) =
n∑

j=0

cjfj .

For the determination of the weights cj , Fornberg has presented a very efficient
algorithm, which requires an average of four operations per weight. (Weights
of finite differences must be distinguished from the weights of the barycentric
form of rational interpolants.)

As an application of Theorem 5.5 and Proposition 5.11, we now introduce ra-
tional finite difference2 (RFD) formulas for the approximation of the kth deriva-
tive of a sufficiently smooth function. For the approximation at a node, we
compute

f (k)(xi) ≈ r(k)n (xi) =
n∑

j=0

D
(k)
ij fj , (5.48)

where D
(k)
ij is the kth derivative at the node xi of the jth Lagrange fundamental

rational function (2.14). At an intermediate point ξ ∈ [a, b], we consider

f (k)(ξ) ≈ R(k)
n (ξ) =

∑n
i=0

wi

ξ−xi
f
(k)
i∑n

i=0
wi

ξ−xi

=

n∑

j=0

∑n
i=0

wi

ξ−xi
D

(k)
ij∑n

i=0
wi

ξ−xi

fj ,

which is also a finite difference formula, since the coefficients in the linear com-
bination of the fj are constant for fixed ξ.

The methods presented here may be based on any linear barycentric ra-
tional interpolant. We nevertheless focus on the Floater–Hormann family of
barycentric rational interpolants.

In order to establish formulas for the weights D
(k)
ij in (5.48), we use the

centro-skew symmetric differentiation matrix D(1) with elements

D
(1)
ij :=

{wj

wi

1
xi−xj

, i 6= j,

−∑n
ℓ=0,ℓ 6=iD

(1)
iℓ , i = j,

(5.49)

2The idea of these formulas is originally due to Jean-Paul Berrut.
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Figure 5.1: Absolute values of the weights for one-sided RFD formulas with
d = 3 and n = 3, . . . , 20 for the approximation of the first derivative at x = 0
on an integer grid, x0 = 0, . . . , xn = n.

introduced in [5] for the first order derivative and similarly [58, 108, 109],

D
(k)
ij :=





k
xi−xj

(wj

wi
D

(k−1)
ii −D

(k−1)
ij

)

= k
(
D

(1)
ij D

(k−1)
ii − D

(k−1)
ij

xi−xj

)
, i 6= j,

−∑n
ℓ=0,ℓ 6=iD

(k)
iℓ , i = j,

(5.50)

for higher order derivatives. The formulas for these differentiation matrices were
originally derived in [4, 5] from Proposition 11 given by Schneider and Werner
in [97]. The negative sum, which guarantees exact derivatives of constants,
should always be used for the computation of the diagonal elements of such
matrices as this is crucial for better accuracy and stability [4].

From (5.48) it is obvious that the approximations of f (k)(xi) at all the nodes
can be computed at once in the form of a vector by multiplying the vector f of
all the values fj from the left by D(k).

The weights for the approximation of the kth derivative at the node xi are
given by the elements of the (i + 1)st row of D(k). As each element of the ith
row of D(k) depends only on three elements of the ith row in D(1) and D(k−1),
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Table 5.1: Weights for one-sided RFD formulas with d = 4 and n = 4, 5, 6, 7
for the approximation of the first four derivatives at x = 0 on an integer grid,
x0 = 0, . . . , xn = n.

0 1 2 3 4 5 6 7

1st derivative (order 4): D
(1)
0j , j = 0, . . . , n,

−

25
12

4 −3 4
3

−

1
4

−

137
60

5 −5 10
3

−

5
4

1
5

−

9
4

5 −

11
2

14
3

−

11
4

1 −

1
6

−

949
420

5 −

11
2

5 −

15
4

11
5

−

5
6

1
7

2nd derivative (order 3): D
(2)
0j , j = 0, . . . , n,

35
12

−

26
3

19
2

−

14
3

11
12

15
4

−

77
6

107
6

−13 61
12

−

5
6

319
90

−

25
2

77
4

−

161
9

11 −

41
10

25
36

379
105

−

529
42

8129
420

−

809
42

211
14

−

1903
210

293
84

−

127
210

3rd derivative (order 2): D
(3)
0j , j = 0, . . . , n,

−

5
2

9 −12 7 −

3
2

−

17
4

71
4

−

59
2

49
2

−

41
4

7
4

−

2129
600

47
3

−

3553
120

476
15

−

2519
120

613
75

−

57
40

−

22363
5880

229
14

−

1221
40

1465
42

−

1641
56

1287
70

−

1223
168

631
490

4th derivative (order 1): D
(4)
0j , j = 0, . . . , n,

1 −4 6 −4 1

3 −14 26 −24 11 −2
1774
1125

−

83
10

2827
150

−

5383
225

451
25

−

5741
750

637
450

9701
4410

−

3127
294

33253
1470

−

26069
882

2719
98

−

27577
1470

6901
882

−

2113
1470
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Table 5.2: Weights for centered RFD formulas with d = 4 and n = 4, 6, 8 for
the approximation of the first four derivatives at x = 0 on an integer grid,
x0 = −n/2, . . . , xn = n/2.

−4 −3 −2 −1 0 1 2 3 4

1st derivative (order 4): D
(1)
n/2,j

, j = 0, . . . , n,

1
12

−

2
3

0 2
3

−

1
12

−

1
42

5
28

−

11
14

0 11
14

−

5
28

1
42

1
64

−

5
48

11
32

−

15
16

0 15
16

−

11
32

5
48

−

1
64

2nd derivative (order 3): D
(2)
n/2,j

, j = 0, . . . , n,

−

1
12

4
3

−

5
2

4
3

−

1
12

1
63

−

5
28

11
7

−

355
126

11
7

−

5
28

1
63

−

1
128

5
72

−

11
32

15
8

−

1835
576

15
8

−

11
32

5
72

−

1
128

3rd derivative (order 2): D
(3)
n/2,j

, j = 0, . . . , n,

−

1
2

1 0 −1 1
2

109
588

−

365
294

1133
588

0 −

1133
588

365
294

−

109
588

−

1763
12288

2845
3072

−

17017
6144

3415
1024

0 −

3415
1024

17017
6144

−

2845
3072

1763
12288

4th derivative (order 1): D
(4)
n/2,j

, j = 0, . . . , n,

1 −4 6 −4 1

−

109
441

365
147

−

1133
147

4826
441

−

1133
147

365
147

−

109
441

1763
12288

−

2845
2304

17017
3072

−

3415
256

327787
18432

−

3415
256

17017
3072

−

2845
2304

1763
12288
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Figure 5.2: Absolute values of the weights for centered RFD formulas with d = 3
and n = 4, 6, . . . , 40 for the approximation of the first derivative at x = 0 on an
integer grid, x0 = −n/2, . . . , xn = n/2.

the computation of every additional RFD weight will require an average of four
operations, as in the polynomial case.

In Tables 5.1 and 5.2, we list the weights for the first left one-sided (i = 0)
and centered (i = n/2) RFD formulas on an equispaced grid for d = 4, with
a mesh size h = 1. With a different spacing, the weights must be divided by
hk. Since the differentiation matrices are centro-skew-symmetric for odd k and
centro-symmetric for even k, the weights of the right one-sided RFD formulas
are the same as those of the left one-sided RFD (i = n), though taken from
right to left and multiplied by (−1)k. Observe that for d = n the RFD weights
are the same as the FD weights. This is due to the fact that, in this special
case, the rational interpolant rn is the polynomial interpolant. Polynomial FD
formulas indeed are a special case of their rational analogues.

Figures 5.1 and 5.2, show the absolute values of the weights of the first
one-sided and centered RFD formulas with d = 3 for the approximation of the
first derivative at x = 0 on an equispaced grid. Let us discuss these values and
compare them with those obtained from polynomials in [48]; see Figures 3.2-1
and 3.2-2 in that reference.

The difference between polynomial FD and RFD is most striking with one-
sided FD weights. In the polynomial case, the weights grow exponentially at the
center of the interval with increasing order or number of points [48]. The weights
presented here behave much more favourably. To see this, we recall that the
quotient of the largest to the smallest Floater–Hormann interpolation weight [46]
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is less than or equal to 2d if the nodes are equispaced. Equation (5.49) shows
that the one-sided RFD weights for the approximation of the first derivative
oscillate in sign and decrease in absolute value (relatively) at least as 1/(i− j),

where i is the index of the maximal weight. Thus the weight D
(1)
00 is neither the

largest nor the smallest. This yields the following property:

1

b− a
≤ |D(1)

0j | ≤
2d

h
, j = 0, . . . , n,

for every n and d, d ≤ n. For the approximation of higher order deriva-
tives, (5.50) shows that the maximal weight is roughly bounded by O(k!2kd/hk)
for every n and the neighbouring weights decrease again as 1/(i− j) in absolute
value. The rather small values of the weights influence positively the numerical
stability of the computation of one-sided RFD approximations as compared to
their polynomial analogues.

An additional advantage of one-sided RFD is the fact that the maximal
weight has index less than n/2. This is very favourable since, as the derivative
of a function is a local property, it is not natural to give much importance to
function values located too far away from the point of interest.

In the centered case, the RFD weights behave similarly to the polynomial
ones. For the approximation of the first derivative, they are bounded by 1 and
decrease in absolute value as 1/(i − j) from the maximal weight with index i.
For higher order derivatives, the RFD weights also decrease in absolute value,
like 1/(i − j) for odd and 1/(i − j)2 for even order derivatives; see the first

formula in (5.50) and observe that D
(k)
n
2

n
2
= 0 when both k and n are even.

5.4 Numerical Results

To illustrate our theoretical results, we begin this section with the approxima-
tion of the first and second order derivatives of functions at the nodes and at
intermediate points.

We start with an example of [46], namely the interpolation of the function
f1(x) = sin(x) for x ∈ [−5, 5]. We use the rational interpolant with d = 4 and f1
sampled at equispaced nodes. Our aim is to survey the estimated approximation
orders of the derivatives of the interpolant and compare them with the results
obtained for the interpolant itself. We compute the error at the same eleven
nodes for different values of n. Table 5.3 shows the errors and orders for the
first and second derivatives. Comparing these results with the approximated
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Table 5.3: Error in the derivatives of rn with d = 4 interpolating f1 at equispaced
nodes.

first derivative second derivative
n error order error order

10 1.2e−01 5.0e−01
20 5.2e−03 4.5 4.5e−02 3.5
40 1.9e−04 4.7 3.3e−03 3.8
80 7.2e−06 4.7 2.5e−04 3.7
160 2.9e−07 4.6 2.1e−05 3.6
320 1.3e−08 4.5 1.9e−06 3.4
640 6.8e−10 4.3 1.9e−07 3.3

Table 5.4: Error in the derivatives of rn with d = 3 interpolating f2 at equispaced
nodes.

first derivative second derivative
n error order error order

10 4.1e−01 1.5e+00
20 3.3e−02 3.6 2.7e−01 2.5
40 9.4e−05 8.5 1.6e−03 7.4
80 1.9e−06 5.7 7.2e−05 4.5
160 1.4e−07 3.7 1.4e−05 2.3
320 1.2e−08 3.5 2.3e−06 2.7
640 1.5e−09 3.0 3.1e−07 2.9

orders in [46], we see that the order decreases almost exactly by one unit at
every differentiation.

With the next example we study the convergence rates at intermediate
points. For that purpose, we sampled Runge’s function f2(x) = 1/(1 + x2)
at equispaced nodes in the interval [−5, 5]. We chose d = 3 and computed
the maximum error at 1000 equispaced points inside the interval which are not
nodes. Table 5.4 displays our results, which illustrate Theorems 5.6 and 5.8 in
this particular case.
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Table 5.5: Error in the derivatives of rn with d = 3 interpolating f3 between
Chebyshev points of the second kind.

first derivative second derivative
n error order error order

10 2.8e−01 2.0e+01
20 7.7e−02 1.9 2.0e+00 3.3
40 1.2e−02 2.7 5.9e−01 1.7
80 1.5e−03 3.0 1.6e−01 1.9
160 2.0e−04 2.9 3.9e−02 2.0
320 2.4e−05 3.0 9.9e−03 2.0
640 3.0e−06 3.0 2.5e−03 2.0

The results of this chapter might be applied to the numerical solution of
differential equations. For this reason we experiment with the exact solution of
a model problem from Stoer and Bulirsch [105], adapted to the interval [−1, 1],
namely

f3(x) =
e−20

1 + e−20
e10(x+1) +

1

1 + e−20
e−10(x+1) − cos2

(π
2
(x+ 1)

)
.

This time, we sample the function at Chebyshev points of the second kind
and interpolate the computed values using the rational interpolant with d = 3.
Table 5.5 shows the maximum error at 1000 equispaced points and the experi-
mental convergence rates. Again, the kth derivative of the rational interpolant
converges at the rate of O(hd+1−k) as h → 0 in the cases k = 1, 2. We also
supply a graphical survey of this same experiment at even values of n in Fig-
ure 5.3. In a log-log scale, the error curves in the approximation of the first two
derivatives of f3 are added to those of its rational interpolant. For n ≥ 20 the
curves are nearly straight lines of slopes −4, −3 and −2.

We sampled all three functions at equispaced nodes and at Chebyshev points
of the second kind. The experimental convergence rates, in the cases not dis-
played in Tables 5.3, 5.4 and 5.5, are very similar and thus omitted.

We repeated the computation with f2, this time using the cubic spline with
not-a-knot end conditions. Since Runge’s function is analytic, the spline in-
terpolant and its derivatives have the same convergence orders as the rational
interpolant with d = 3 and its derivatives; see [33]. Table 5.6 reveals that the
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Figure 5.3: Errors in the rational interpolation with d = 3 of f3 sampled at
4 ≤ n ≤ 1000 Chebyshev points of the second kind in [−1, 1] and approximation
of its first and second derivatives.
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Figure 5.4: Errors in the spline and rational (FH) approximations with d = 3 of
the first (k = 1) and second (k = 2) derivatives of f2 sampled at 4 ≤ n ≤ 1000
equispaced points in [−5, 5].
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Table 5.6: Error in the derivatives of the cubic spline interpolating f2.

first derivative second derivative
n error order error order

10 7.6e−02 3.7e−01
20 2.0e−02 1.9 2.9e−01 0.3
40 3.4e−03 2.5 1.1e−01 1.4
80 3.9e−04 3.1 2.5e−02 2.2
160 4.7e−05 3.0 6.1e−03 2.0
320 5.9e−06 3.0 1.5e−03 2.0
640 7.1e−07 3.1 3.8e−04 2.0

experimental orders coincide for large enough n, but the error in the rational
function is considerably smaller than that with the spline. The difference is
due to the faster error decay of the derivatives of the rational interpolant for
small values of n. Figure 5.4 confirms this observation: For n ≥ 50 the curves
corresponding to the errors in the spline and rational approximations of the first
respectively second derivative of f2 are almost parallel.

Let us now focus on the approximation of derivatives via finite differences
and rational finite differences.

We illustrate Theorem 5.5 and the observations from Section 5.3 concerning
the weights involved in polynomial and rational FD approximation. To this end,
we investigate the approximation of the second and fourth order derivatives of
Runge’s original example f2 at the nodes x = −5 and x = 0, and the modified
example f4(x) = 1/(1+25x2) at x = 0. We sampled them both at odd numbers
of equispaced points, f2 in the interval [−5, 5], respectively [0, 5] for one-sided FD
approximation, and f4 in [−5, 5] for centered FD approximation. In the rational
interpolant rn, we chose d = 4, the minimal value according to Theorem 5.5,
to guarantee decreasing errors in the RFD approximation of the fourth order
derivative.

Our aim was to observe estimated approximation orders of RFD approxima-
tions and to compare the error behaviours of polynomial and rational FD. For
every example we computed the absolute error in the various approximations.
We perform this survey graphically on a log-log scale to avoid less informative
tables and to display more details and data.
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Figure 5.5: Errors in the one-sided FD, respectively RFD, approximations at
x = −5 (with d = 4 and n = 4, . . . , 1000) of the second and fourth order
derivatives of f2 sampled in [−5, 5].
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Figure 5.6: Errors in the one-sided FD, respectively RFD, approximations at
x = 0 (with d = 4 and n = 4, . . . , 1000) of the second and fourth order deriva-
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Figure 5.7: Errors in the one-sided FD, respectively RFD, approximations at
x = 0 (with d = 5 and n = 5, . . . , 50) of the first order derivative of exp(−50(x−
0.4)2) + sinh(x) sampled in [0, 0.04n].

Figure 5.5 displays the absolute errors in one-sided polynomial FD and RFD
approximations at x = −5 of the second (k = 2) and fourth (k = 4) order
derivatives of f2. The error in polynomial FD grows very rapidly with increasing
values of n. This failure arises from Runge’s phenomenon and the large growth
rates of the polynomial FD weights [48]; for n = 140, the largest absolute value
of these weights for the approximation of the fourth order derivative is 7.6e+41.
In RFD with d = 4, in contrast, the largest value is only 28.6. From the slopes
of the curves, we see that the errors in RFD approximation of the second and
fourth order derivatives of f2 decrease at an experimental rate of 3, respectively
1, which is the lower bound d + 1 − k on the order predicted in Theorem 5.5.
The good quality of approximation in the present example is also to be expected
in RFD approximation at nodes near the ends of the interval.

In the next example, namely one-sided FD and RFD approximations at x =
0 of the same derivatives of f2 as above, Runge’s phenomenon does not appear,
only the bad conditioning of one-sided polynomial FD makes the error grow as
n becomes larger than 45; see Figure 5.6. The errors in RFD approximation
are larger until this value of n, but, as n increases, they keep decreasing at
experimental rates of 4, respectively 2, which is one more unit than predicted
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by the upper bound (5.21) on the error.
We performed a similar study with the analytic function f(x) = exp(−50(x−

0.5)2); namely we sampled it in [0, 1] and compared one-sided FD and RFD
approximations at x = 0 of the first and third derivatives for various values
≤ 6 of d and for n between d and 1000. The convergence rates of the RFD
approximation from Theorem 5.5 are observable as soon as n ≥ 15, whereas the
relative error in polynomial FD is larger than one with small values of n and
starts diverging when n exceeds 50.

The absolute errors in centered polynomial FD and RFD approximations of
the second and fourth order derivatives of f4 at x = 0 nearly coincide. We thus
omit plotting them. While the error in polynomial FD decays exponentially,
as expected since there is no Runge phenomenon in the middle of the interval,
the error in the RFD approximation decreases much faster than predicted in
this particular example for n between 50 and 450. For larger values of n, the
absolute errors start oscillating. Other examples with centered RFD yield the
expected algebraic decay of the error as the number of nodes increases, while
the errors in polynomial centered FD always decayed exponentially for smooth
functions.

Another approach to finite difference approximation is to keep n constant
and small, and decrease h as much as needed to reach the desired accuracy. In
this setting, the classical FD methods are best since their weights have roughly
the same magnitude, the Runge phenomenon disappears due to the shrinkage
of the interval—the regions, where the function needs to be analytic for the
polynomial interpolant to converge, shrink—and every reasonable continuous
function can be represented by a polynomial of small degree in a short interval.

Finally we performed the converse experiment: We choose h fixed and in-
crease n, a situation which may arise when the function cannot be sampled with
arbitrarily small resolution. The first derivative of f(x) = exp(−50(x− 0.4)2)+
sinh(x) was approximated at x = 0 using n + 1 function values in the interval
[0, 0.04n]. Increasing the number of nodes and thus the information about the
function does not help to gain any accuracy when using polynomial FD methods;
see Figure 5.7. With RFD and the proper choice of d, it is possible to further
decrease the error in the approximation of the derivative in this example. The
methods presented in Section 4.2.4 may be used for the determination of a good
d.
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Chapter 6

Quadrature Rules

Linear interpolation schemes very naturally lead to quadrature rules. In this
chapter we present the construction of two linear rational schemes for the ap-
proximation of antiderivatives, which simplify to linear rational quadrature rules
when evaluated at the right end of the interval. The first kind is obtained
through the direct numerical integration of the Lagrange fundamental rational
functions; the other is based on the solution of a simple boundary value problem.

We begin this chapter with a short introduction to quadrature rules and state
a selection of relevant and known results. In Section 6.2 we explain in more de-
tail how to obtain quadrature rules from barycentric rational interpolants in
general and thereafter, in Section 6.3, we present our concepts for the approxi-
mation of antiderivatives and integrals of differentiable functions. The conver-
gence order of the quadrature rule obtained from integrating Floater–Hormann
interpolants is studied and shown to be one unit larger than that of the inter-
polation, if the nodes are equispaced. The efficiency of the various approaches
is demonstrated with numerical tests. Finally we apply our convergence the-
ory for Floater–Hormann interpolation of analytic functions from Section 4.2 to
numerical quadrature and establish in Section 6.4 even more efficient rules for
functions whose nearest singularity to the interval is known.

This chapter is essentially built upon the results presented in [75], whereas
the last part on the efficient rules for analytic functions will be published in [56].
Most of the general theory on quadrature rules presented in the introduction
stems from [21].
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6.1 Introduction

We suppose again that we are given the discrete data f0, . . . , fn, corresponding
to a real or complex function f which is defined and integrable on a bounded
interval [a, b] and sampled at strictly ordered nodes in [a, b]. Our aim is to either
approximate the (definite) integral

I :=

∫ b

a

f(x) dx (6.1)

by a quadrature rule Qn =
∑n

k=0 ωkfk, where the ωk are called the quadrature
weights, or to approximate an antiderivative (primitive) of f . A more general
setting would be the approximation of the integral in (6.1) with f multiplied by
some positive weight function; see, e.g., [32, 78]. We shall concentrate here only
on the special case when that weight function is equal to 1. No fundamental
reason would hinder the extension of the study from this chapter to integrals
with nontrivial weight functions.

Let us begin by reviewing some basic but important results on numerical
quadrature. These can be found, e.g., in [21, 32, 78].

The most straightforward idea leading to quadrature rules is to integrate
the unique polynomial interpolant of degree at most n of the given data. The
quadrature weights are then simply given by the exact integral of the funda-
mental Lagrange functions (2.2). Such quadrature rules are called interpolatory
quadrature rules and Newton–Cotes rules in the special case of equispaced nodes.
The most common Newton–Cotes rules are the trapezoid rule (2 nodes, conver-
gence order 3), Simpson’s rule (3 nodes, convergence order 5), Simpson’s 3

8 rule
(4 nodes, convergence order 5) and Boole’s rule (5 nodes, convergence order 7).
These methods are not suited for long intervals. Subdividing the interval into
subintervals and defining a Newton–Cotes rule on each of these leads to com-
posite Newton–Cotes rules, which are very simple and often perform sufficiently
well. The error formula for the composite trapezoid rule, the Euler–McLaurin
formula [11, 61], shows that this very simple method is very accurate if the
integrand and its derivatives are periodic.

An important characterisation of quadrature rules is their degree of preci-
sion [69], also called degree of accuracy [78]. A quadrature rule has degree of
precision m if it is exact for all polynomials in Pm and if there exists at least
one polynomial in Pm+1 for which the rule is not exact.

The positivity of the quadrature weights also plays an important role. It can
be shown that quadrature rules with positive weights have many good proper-
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ties; here are just a few. The first, taken from [86] (see also [21]), deals with the
convergence of such a rule.

Theorem 6.1. Let {Qn} be a sequence of interpolatory quadrature rules or
a sequence of quadrature rules which converge for all polynomials. If all the
weights are positive, then {Qn} converges for all Riemann-integrable functions.

The weights of the Newton–Cotes rules are not all positive. Their asymptotic
behaviour has been studied in [82, 86]. It can be shown that for these rules
limn→∞ |ωk| = ∞ except for k = 1, 2, so that the rules do not converge to I
as n increases. The author of [21] concludes that this reveals “die praktische
Unbrauchbarkeit dieser Verfahren” (meaning the uselessness of these rules in
practice). In addition to the unfavourable properties of the weights, it can be
shown [86] that Newton–Cotes rules also diverge for some analytic functions,
as is also the case for polynomial interpolation with equispaced nodes; see also
Section 4.1 and Section 6.4 for quadrature rules obtained from integrating linear
barycentric rational interpolants of analytic functions.

The positivity of the weights and the degree of precision are related by the
following result [21].

Theorem 6.2. A quadrature rule with degree of precision m has at least ⌊m
2 ⌋+1

positive weights.

Moreover, the approximation error of a given quadrature rule can be com-
pared with the best approximation via the degree of precision and the positivity
of the weights [32, 78].

Theorem 6.3. A quadrature rule Qn with degree of precision m satisfies

∣∣∣
∫ b

a

f(x) dx −Qn

∣∣∣ ≤
(
(b− a) +

n∑

k=0

|ωk|
)
e∗m,

where e∗m = inf{‖pm− f‖ : pm ∈ Pm}. If all the quadrature weights are nonneg-
ative, then ∣∣∣

∫ b

a

f(x) dx−Qn

∣∣∣ ≤ 2(b− a)e∗m.

The condition of a quadrature rule also directly depends on the positivity
of the weights; see, e.g., [66]. If the data fk are perturbed to f̃k, such that all

|f̃k − fk| ≤ εp for some positive εp, then
∣∣∣∣

n∑

k=0

ωkfk −
n∑

k=0

ωkf̃k

∣∣∣∣ ≤ εp

n∑

k=0

|ωk|. (6.2)
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If the weighs are all positive and if the quadrature rule integrates constant func-
tions exactly, then this upper bound is simply εp(b−a), whereas it is necessarily
larger if the weights are not all positive.

From the discussion in Section 4.3 of the appropriate choice of nodes for
polynomial interpolation, we know that Chebyshev points of the first and sec-
ond kinds are well suited for such interpolation, whereas equispaced nodes are
not; see also [30] for a study of analytic integrands and the included historic
part at the end. Therefore it is not surprising that the same is true for quadra-
ture rules, called Clenshaw–Curtis rules [27] when the nodes are Chebyshev
points. For Clenshaw–Curtis methods, Chebyshev points of the second kind
are called practical abscissas [32, 78] while Chebyshev points of the first kind
are the classical ones. Methods based on the latter are sometimes called Fejér
methods [78] or Pólya methods [21]. Their degree of precision is n and it was
shown, among other things in [44, 68], that the weights are all positive so that by
Theorem 6.1 these methods converge for all Riemann-integrable functions. The
speed of convergence and other interesting properties of Fejér and Clenshaw–
Curtis quadrature are investigated in [127]; a fast construction of these methods
is described in [120].

Interpolatory quadrature rules have a total of 2n + 2 degrees of freedom,
namely the nodes and the weights. It is therefore obviously possible to construct
methods that have degree of precision 2n+1. On the other hand, one can show
that no interpolatory rule exists that integrates exactly all polynomials from
P2n+2; see, e.g., [21]. Quadrature rules that attain the maximum degree of
precision are called Gauss rules [53]. In our case, when the weight function
is equal to one, if [a, b] = [−1, 1] the rule is called Gauss–Legendre and the
nodes are the roots of the (n + 1)st Legendre polynomial Pn+1; for various
representations, see [32]. It follows from Theorem 6.2 that the weights in Gauss
rules are all positive. The convergence speed for integrands that are several times
differentiable or analytic is described and proven in [112], where the author
mainly compares the Gauss–Legendre rule with Clenshaw–Curtis quadrature
and observes that in most cases both methods perform almost equally well; see
also [127].

Gauss quadrature integrates exactly polynomials of the highest possible de-
gree. However, these methods do not include the endpoints of the interval [a, b].
Quadrature rules with maximum degree of precision, 2n− 1 in this case, includ-
ing the ends of the interval, are the Lobatto rules whose nodes are the roots of
Pn+1 − Pn−1, where Pn is again the nth Legendre polynomial. These methods
are implemented as adaptive rules in the Matlab built-in command quadl;
more details about adaptive quadrature may be found in [54]. A successful
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alternative is of course Clenshaw–Curtis quadrature.
Gauss-type quadrature rules that integrate rational functions exactly have

been investigated; see, e.g., [36, 37, 119] and the references therein. Such quadra-
ture rules, require the knowledge of the poles of the rational function. Related
approaches are explained, e.g., in [35, 51, 117, 126], where the rational inter-
polant is supposed to simulate the poles of the integrand, so that again the poles
are fixed in advance and do not depend on n.

If, for the approximation of I from (6.1), we are free to choose the set of nodes
at which the function f is to be sampled, we can opt for any efficient distribution
of points. The situation is different when the nodes cannot be chosen. If the data
set stems from measurements, for instance, it is most likely that these are taken
on a regular grid. As we have seen, Newton–Cotes quadrature rules diverge
or are unstable with a growing number of points. One way to avoid problems
is using Gregory rules [21] or composite Newton–Cotes rules of low order such
as the composite trapezoid or Simpson rules. Their frequent use in practical
calculations documents the importance of these slowly converging formulas for
nonperiodic functions; see [32] and the included (not very serious) reference to
M. Abramowitz, that “95% of all practical work in numerical analysis boiled
down to applications of Simpson’s rule and linear interpolation”.

Any attempt to construct geometrically converging interpolants from equis-
paced data necessarily fails, as it leads to the Gibbs and Runge phenomena [85].
It is plausible that the same is true for interpolatory quadrature rules from non-
periodic equispaced samples. The interpolation schemes for equispaced nodes
presented in [85] as well as those from [67] may also be used to derive quadrature
rules. Other ideas have been pursued; see, e.g., [66].

In what follows, we present methods for the approximation of antiderivatives
and integrals. We analyse some of their properties for equispaced points. The
methods obtained can be called rational interpolatory quadrature rules; see [36,
117] and the references therein for other such methods.
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6.2 Integration of Barycentric Rational

Interpolants

Every linear interpolant with no poles in [a, b],

n∑

k=0

γk(x)fk ≈ f(x),

trivially leads to a linear quadrature rule through the integration of the factors
γk. The behaviour of the so-obtained rule regarding convergence and stability
simply follows from the respective properties of the interpolant. In the case of
an (n+1)-point linear rational interpolant (2.8) with arbitrary nonzero weights
wk, we have

I =

∫ b

a

f(x) dx ≈
∫ b

a

rn(x) dx =

∫ b

a

∑n
k=0

wk

x−xk
fk∑n

k=0
wk

x−xk

dx =
n∑

k=0

ωkfk =: Qn,

(6.3)
where

ωk :=

∫ b

a

wk

x−xk∑n
k=0

wk

x−xk

dx (6.4)

is the integral of the kth Lagrange fundamental rational function. For the point-

wise approximation of antiderivatives, it is enough to replace
∫ b

a by
∫ x

a in (6.3)
and (6.4), and to proceed analogously as above. If rn is a true rational inter-
polant with nonconstant denominator, then the so-called quadrature weights ωk

can be easily determined in exact arithmetic only if the poles are known.

The choice wk = λk of (2.5) in (6.3) reproduces the Newton–Cotes rules.
The same is true if d = n in the Floater–Hormann interpolant, since it then
coincides with the interpolating polynomial.

For the computation of the weights (6.4), we decided to neglect algebraic
methods as they mostly require the polynomials in the numerator and denom-
inator of rn to be in canonical form. The step from the representation (2.8) of
these polynomials to the canonical one is impeded by stability problems [61].

For a rational interpolant whose denominator degree exceeds 4 there is no
formula for the poles, and the question of the location of the poles of Floater–
Hormann interpolation is not yet settled; see also Section 2.3.3. As we wish
to avoid approximating complex poles and determining expensive partial frac-
tion decompositions, we pursue two ideas for generating linear quadrature rules
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based on linear rational interpolants. If the location of the poles were known,
techniques like those described in [37] could be applied to rn.

Equation (6.2) gives a bound on the condition number of a quadrature rule
involving the quadrature weights. If the quadrature rule is obtained from a
barycentric interpolant, it is natural that the condition number of the quadra-
ture rule may also be characterised via the Lebesgue constant associated with
the interpolant, which we investigate in Section 3.3. Indeed, with the expression
for the weights from (6.4), it follows that

n∑

k=0

|ωk| =
n∑

k=0

∣∣∣∣
∫ b

a

wk

x−xk∑n
k=0

wk

x−xk

dx

∣∣∣∣

≤
∫ b

a

n∑

k=0

∣∣∣∣
wk

x−xk∑n
k=0

wk

x−xk

∣∣∣∣ dx =

∫ b

a

Λn(x) dx ≤ (b − a)Λn,

(6.5)

which is a rather crude bound on the expression on the left-hand side of (6.2).
We can therefore expect the quadrature rules to be better conditioned than
the interpolation scheme itself. The smallest condition numbers are obtained
when all the quadrature weights are positive, in which case the condition is
overestimated by the Lebesgue constant. We investigate the positivity of the
weights with equispaced nodes in Section 6.3.5.

Under direct rational integration we shall here mean the approximation of
an antiderivative via that of an accurate approximation of rn, e.g., a polynomial
interpolant in Chebyshev points. Direct rational quadrature will be the result of
applying existing quadrature rules such as Gauss–Legendre or Clenshaw–Curtis
to approximate the integrals in (6.4).

Indirect rational quadrature uses the fact that the integral (6.1) may be
obtained through the solution of an ordinary differential equation; see, e.g., [110,
Chap. 12]. This will lead to approximations of antiderivatives and integrals.

6.3 Quadrature Rules for Differentiable

Functions

6.3.1 Direct Rational Integration (DRI)

In Chebfun [8, 111, 115], functions are approximated to almost machine preci-
sion by polynomial interpolants between sufficiently many Chebyshev points of
the second kind. More than 200 Matlab commands are overloaded in this tool-
box. One of these is cumsum, which in Matlab computes the cumulative sum
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of a vector, and in Chebfun approximates the antiderivative of functions. This
command can also be used to integrate a rational interpolant rn interpolating at
arbitrary nodes. We suppose that n is not excessively large, to avoid the number
of Chebyshev points required to resolve rn becoming too large. In this way, rn is
implicitly approximated close to machine precision by a polynomial interpolant
in Chebyshev points, which is then integrated, and the integration constant is
chosen such that the antiderivative is equal to 0 at the left end of the interval.
We shall call this method direct rational integration (DRI). This procedure can
be established from any other method that allows one to compute antideriva-
tives of functions. DRI can as well be used for the approximation of definite
integrals and it is not as prone to loose accuracy as IRQ, which we describe
in Section 6.3.4 and mainly uses differentiation. We will see in Section 6.3.5
that the maximum errors in DRI approximation are almost identical to those
in DRQ approximation of definite integrals, which we establish in Section 6.3.2.
Moreover, the approximation obtained from DRI is the Chebfun analogue of
an entire function, in this case a polynomial, so that it is well suited for fur-
ther computations and approximations such as the solution of, e.g., integral
equations.

6.3.2 Direct Linear Rational Quadrature (DRQ)

The linearity of the rational interpolant (2.8) leads to the quadrature rule (6.3)
with the weights ωk given by (6.4). Since the integrand in (6.4) is analytic and
may be evaluated at every point in the interval, we can approximate the integral
by any efficient quadrature rule with rapid convergence, such as Gauss–Legendre
or Clenshaw–Curtis. Let ωD

k , k = 0, . . . , n, be corresponding approximations of
the weights in (6.4); the direct rational quadrature rule then replaces Qn by

I =

∫ b

a

f(x) dx ≈
n∑

k=0

ωD
k fk. (6.6)

If we do not need the weights, we may apply a rule directly on the whole
interpolant, since rn can be evaluated stably everywhere in the interval. Not
evaluating the quadrature weights explicitly can thus make for much faster
quadrature. Notice that this could be done as well with the classical nonlinear
rational interpolant, whose barycentric representation is computed in [16].

The convergence of such a quadrature rule is guaranteed, provided the inter-
polant itself converges. Moreover, if the interpolation error converges as hp for
some p as h→ 0, then the integration error will converge to 0 at least with the
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same order, if we choose a quadrature rule for the integral of rn that converges
at a rate O(hq) with q ≥ p; indeed,

∣∣∣∣
∫ b

a

f(x) dx−
n∑

k=0

ωD
k fk

∣∣∣∣ ≤
∫ b

a

|f(x)− rn(x)| dx +

∣∣∣∣
∫ b

a

rn(x) dx −
n∑

k=0

ωD
k fk

∣∣∣∣

≤ K1h
p +K2h

q ≤ Khp, (6.7)

where K, K1, and K2 are constants.
By a similar argument, we see that the degree of precision of the direct

rational quadrature rule attains at least the highest integer s such that every
polynomial of degree at most s is exactly reproduced by the interpolant.

We have thus established that the integral of every function f with a converg-
ing rational interpolant can be approximated, by a direct rational quadrature
rule, with at least the same accuracy as the interpolant. For the Floater–
Hormann interpolant rn, this yields the following result, which is valid for any
distribution of the nodes and which we shall tighten in particular cases; see
Section 6.3.3.

Theorem 6.4. Suppose n and d, d ≤ n, are nonnegative integers, f ∈ Cd+2[a, b]
and rn is the rational interpolant with parameter d given in (2.10). Let the
quadrature weights ωk in (6.4) be approximated by a quadrature rule which con-
verges at least at the rate O(hd+1) and has degree of precision at least d + 1.
Then ∣∣∣∣

∫ b

a

f(x) dx−
n∑

k=0

ωD
k fk

∣∣∣∣ ≤ Khd+1,

where K is to be multiplied by the mesh ratio β from (2.18) in the case d = 0.
The quadrature rule (6.6) has degree of precision d for any n and d+ 1 if n− d
is odd.

The ratio β shows up as well in the corresponding result of Theorem 2.3 on
the convergence of the rational interpolants. The last statement stems from the
fact that rn reproduces polynomials of the said degrees; see Corollary 2.4.

6.3.3 Properties of DRQ with Equispaced Nodes

In this section we study the theoretical behaviour of DRQ when the rational
interpolant rn in (6.3) is a member of the Floater–Hormann family of linear
rational interpolants. We shall first investigate the convergence rates of the
DRQ rules for equispaced nodes. We show that, in this special case, the rate
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of approximation of the quadrature rule is O(hd+2) if the rational interpolant
converges at the rate O(hd+1). At the end of this section we establish the degree
of precision and the symmetry of these rules. Some of the tools we use in the
proofs stem from [69].

Let us begin with a symmetry property of the denominator of the rational
interpolant (2.10). In what follows, we denote this denominator as in Chapter 5
by

B(x) =

n−d∑

i=0

λi(x) (6.8)

and call x := a+b
2 the midpoint of the interval [a, b].

Lemma 6.5. Suppose the nodes are distributed symmetrically about x, i.e.,
(x − xi) = (xn−i − x) for all i. Then the denominator B in (6.8) of (2.10) is
either symmetric or antisymmetric about x, in the sense that for every real x,

B(x + x) = (−1)n+1B(x− x). (6.9)

Proof. We show that for every i ∈ {0, . . . , n− d} the following identity holds:

λi(x+ x) = (−1)n+1λn−d−i(x− x). (6.10)

By the definition (2.11), we have

λ−1
i (x+ x) = (−1)i

d∏

k=0

(x+ x− xi+k).

Since the nodes are distributed symmetrically about x, it follows that the above
right-hand side is equal to

(−1)i+d+1
d∏

k=0

(x − x− xn−i−k).

Reversing the order of the factors in the last product, and with (2.11) again, we
obtain (6.10).

For the next steps, we use the real functions

Ωn(y) :=

∫ y

xd+1

1

B(x)
dx. (6.11)

This definition trivially leads to the following corollary of Lemma 6.5.
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Corollary 6.6. For any positive integers n and d, d ≤ n,

Ωn(xd+1) = 0,
Ωn(xn−d−1) = 0, if n is even,
Ωn(xn−d−1) = 2Ωn(x), if n is odd.

Before we state the next lemma, we recall from the sketched proof of Theo-
rem 2.2 that the reciprocal of the denominator B may be rewritten as

1

B(x)
= (−1)n−dL(x)

s(x)
, (6.12)

where L is the nodal polynomial (2.4) and s, defined in (2.17), is positive for all
real x. This means that the reciprocal of the denominator changes sign only at
the n+ 1 nodes xi.

The following lemma will be essential for our proof of the convergence rates.

Lemma 6.7. Suppose the nodes are equispaced. Then Ωn does not change sign
in (xd+1, xn−d−1). In particular, if d ≤ n/2− 1, then

Ωn(y) < 0. (6.13)

Proof. We will show (6.13) only for d ≤ n/2 − 1 and y ∈ (xd+1, x). The
other cases then become obvious from Lemma 6.5. The claim (6.13) remains
to be checked at y = xd+3, xd+5, . . . in (xd+1, x), since by (6.12) the function
1/B(x) changes sign exclusively at the nodes xi and is negative in (xd+1, xd+2),
independently of n and d. In order to prove (6.13), we show that

∫ xk+2

xk

1

B(x)
dx < 0, (6.14)

for k = d + 1, d + 3, . . . such that [k, k + 2] ⊆ [d + 1, n/2]. This means that
every negative contribution to Ωn(y) dominates the positive contribution that
immediately follows it. It is then easy to see that the remaining contribution to
Ωn(n/2) is also negative, if it occurs.

We first transform (6.14) into an integral over one subinterval
∫ xk+2

xk

1

B(x)
dx =

∫ xk+1

xk

( 1

B(x)
+

1

B(x+ h)

)
dx.

Since the nodes are equispaced, we can express B(x+ h) in terms of B(x):

B(x+ h) = λ0(x+ h)−B(x) + λn−d(x). (6.15)
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This lets us further modify the right-hand side of (6.14) to
∫ xk+2

xk

1

B(x)
dx =

∫ xk+1

xk

λ0(x+ h) + λn−d(x)

B(x)B(x + h)
dx.

Finally, we discuss the sign of the last integrand. The denominator is negative
since x ∈ (xk, xk+1) and B(x) changes sign at the nodes. As x ≥ xd+1, we see
from its definition (2.11), that λ0(x+h) is positive. Moreover, λn−d(x) is smaller
in magnitude than λ0(x+ h) for x ≤ x. Thus the numerator is positive and the
left-hand side of (6.13) may be interpreted as a sum of negative terms.

An essential ingredient of our proof of the convergence rates will be the
following change of variable:

x = a+ th, t ∈ [0, n]. (6.16)

This will enable us to separate the powers of h from the constant factor in the
error term. As a preparation, we introduce the functions

λi(t) :=
(−1)i

(t− i) · · · (t− (i + d))
, i = 0, . . . , n− d, and B(t) :=

n−d∑

i=0

λi(t),

which are the λi(x) defined in (2.11), and B(x) from (6.8), after changing vari-
ables and neglecting the powers of h.

The next lemma shows that the integral of λ0 is bounded.

Lemma 6.8. For any positive integers n and d, d ≤ n, the integral

∫ n/2

d+1

λ0(t+ 1) dt

is bounded as a function of n.

Proof. We first observe that, after a partial fraction decomposition, λ0(t + 1)
may be expressed as

λ0(t+ 1) =

d∑

i=0

Ki

t+ 1− i
, where Ki :=

(−1)i+d

i!(d− i)!
.

This expression is now easy to integrate,

∫ n/2

d+1

λ0(t+ 1) dt =

d∑

i=0

Ki log
(n
2
+ 1− i

)
−

d∑

i=0

Ki log(d+ 2− i).
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As the last term does not depend on n, it is constant for fixed d. We will show
that the first term converges to 0 as n→ ∞ for fixed d. To this end, we use the
property of the log function to transform products into sums,

d∑

i=0

Ki log
(n
2
+ 1− i

)
=
(−1)d

d!

d∑

i=0

(−1)i
(
d

i

)
log

(n
2
+ 1− i

)

=
(−1)d

d!
log

(P (n/2)
Q(n/2)

)
,

where P and Q are monic polynomials of the same degree in n/2, since∑d
i=0(−1)i

(
d
i

)
= 0. Consequently, this term vanishes as n→ ∞.

As a last preparation for the main results, we prove yet another lemma.

Lemma 6.9. For any positive integers n and d, d ≤ n/2− 1, the expressions

∫ n/2

d+1

1

B(t)
dt and

∫ n/2

d+1

(t− n/2)/n

B(t)
dt

are bounded as functions of n.

Proof. As in the proof of Lemma 6.7, we may split the integrals into two parts.
To this end, we define the set

K :=
{
k = d+ 1, d+ 3, . . .

∣∣[k, k + 2] ⊂
[
d+ 1,

n

2

]}
.

Moreover let

R := [d+ 1, n/2] \
⋃

k∈K
[k, k + 2]

be the remaining part of the interval [d + 1, n/2]. The integrals over R are
clearly bounded, since Bn(t) is bounded from below as shown in Theorems 2
and 3 from [46], see also (2.20), and (t− n/2)/n is smaller than 1/2 in absolute
value for 0 ≤ t ≤ n/2. We proceed to show the boundedness of the first part of
the first integral,

∑

k∈K

∫ k+2

k

1

B(t)
dt =

∑

k∈K

∫ k+1

k

λ0(t+ 1) + λn−d(t)

B(t)B(t+ 1)
dt.
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We have shown in the proof of Lemma 6.7 that the integrand does not change
sign. Thus we may study the denominator separately. Its reciprocal is bounded
by K2, where K = d! if d 6= 0 and K = 2 if d = 0. We may therefore write

∣∣∣∣
∑

k∈K

∫ k+2

k

1

B(t)
dt

∣∣∣∣ ≤ K2

∣∣∣∣
∫ n/2

d+1

λ0(t+ 1) dt+

∫ n/2

d+1

λn−d(t) dt

∣∣∣∣.

The first term is covered by Lemma 6.8 and the second is obviously bounded
by (n/2)λn−d(n/2), which converges to a constant for d = 0 and vanishes as
n→ ∞ if d > 0.

To deal with the second integral of the claim, we proceed analogously. First,
we observe that

∑

k∈K

∫ k+2

k

(t− n/2)/n

B(t)
dt

=
∑

k∈K

1

n

∫ k+1

k

(t− n/2)(λ0(t+ 1) + λn−d(t)) +B(t)

B(t)B(t+ 1)
dt.

Similar arguments as above lead to

∣∣∣∣
∑

k∈K

∫ k+2

k

(t− n/2)/n

B(t)
dt

∣∣∣∣ ≤
K2

2

∣∣∣∣
∫ n/2

d+1

λ0(t+ 1) dt+
n

2
λn−d(n/2)

∣∣∣∣+
K

2
,

which is clearly bounded.

The preceding lemmas help us to prove the main results.

Theorem 6.10. Suppose n and d, d ≤ n/2 − 1, are nonnegative integers, f ∈
Cd+3[a, b], and rn is the rational interpolant with parameter d given in (2.10)
and interpolating f at equispaced nodes. Let the quadrature weights ωk in (6.4)
be approximated by a quadrature rule converging at least at the rate O(hd+2).
Then ∣∣∣∣

∫ b

a

f(x) dx −
n∑

k=0

ωD
k fk

∣∣∣∣ ≤ Khd+2.

The hypothesis d ≤ n/2−1 is no real limitation, for two reasons. Firstly, d is
meant to be fixed in advance and not to depend on n here. In consequence the
hypothesis on d will become satisfied as n increases. Secondly, if d ≥ n/2, we can
use Theorem 6.4 and (6.7) to change the factor b−a into 2dh and derive an error
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bound depending on hd+2. Integrating a function usually makes it smoother so
that the hypothesis on the differentiability of f in Theorem 6.10 are not very
natural when compared to the hypothesis for the interpolant to converge. As
observed in Section 2.3.2, this condition might sometimes be weakened. In
Section 6.10, we shall briefly come back to this observation with an example.

Proof. As exemplified in (6.7) it is sufficient to study the integral of the inter-
polation error, ∫ b

a

(
f(x)− rn(x)

)
dx. (6.17)

We rewrite the interpolation error at x ∈ [a, b] as at the beginning of Section 5.1
as

f(x)− rn(x) =

∑n−d
i=0 (−1)if [xi, . . . , xi+d, x]∑n−d

i=0 λi(x)
=
A(x)

B(x)
.

We have shown in Lemma 5.3 that the numerator A is bounded by a constant
depending only on d, on low order derivatives of f and on the length of the
interval. As usual, such bounds will be denoted generically by K.

Our study of (6.17) begins with a splitting of the integral into three parts:
∫ b

a

(
f(x)− rn(x)

)
dx =

∫ xd+1

a

A(x)

B(x)
dx+

∫ xn−d−1

xd+1

A(x)

B(x)
dx

+

∫ b

xn−d−1

A(x)

B(x)
dx.

The first and last terms are bounded by Khd+2: Simply apply the change of
variable (6.16) and take the maximum norm. The difficult part is the second
one. We will show that the oscillations of the reciprocal of B almost cancel
throughout that central part of the interval [a, b]. To see this, we recall the
definition (6.11) of Ωn and integrate by parts:

∫ xn−d−1

xd+1

A(x)

B(x)
dx = A(xn−d−1)Ωn(xn−d−1)−

∫ xn−d−1

xd+1

A′(x)Ωn(x) dx.

On account of Corollary 6.6 we know that Ωn(xn−d−1) vanishes if n is even. If
n is odd, it is equal to 2Ωn(x), which with the change of variable (6.16) and by
Lemma 6.9 may be bounded by Khd+2. Lemma 6.7 enables us to deal with the
second term by applying the mean value theorem for integrals:

∫ xn−d−1

xd+1

A′(x)Ωn(x) dx = A′(ξ)

∫ xn−d−1

xd+1

Ωn(x) dx
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for some ξ ∈ [xd+1, xn−d−1]. Since we assume that f ∈ Cd+3[a, b], A′(ξ) is
bounded by a constant, as shown in Lemma 5.3. Since x−x is an antiderivative
of 1, one more integration by parts yields

∫ xn−d−1

xd+1

Ωn(x) dx = (xn−d−1 − x)Ωn(xn−d−1)−
∫ xn−d−1

xd+1

x− x

B(x)
dx.

If n is odd, the last integral vanishes, as its integrand is antisymmetric about
x by a trivial modification of Lemma 6.5. If n is even, we repeat the change of
variable (6.16) and we use the symmetry of the integrand about x. To conclude
by means of Lemma 6.9, we recall that h = (b − a)/n.

Lemma 6.5 and Corollary 6.6 enable us to establish a more general result
about the degree of precision of the DRQ rule with a rational Floater–Hormann
interpolant. The nodes only need to be distributed symmetrically about x.

Theorem 6.11. Suppose n and d, d ≤ n, are nonnegative integers, rn in the
DRQ rule is the rational interpolant with parameter d given in (2.10) and the
nodes are distributed symmetrically about x. Let the linear quadrature rule Q
approximating the integral of rn be symmetric and have degree of precision at
least d+ 2. Then the resulting DRQ rule has degree of precision

d+ 2, if n is even and d is odd,
d+ 1, if n and d are even,
d+ 1, if n is odd and d is even,
d, if n and d are odd.

Proof. The last two results follow immediately from Corollary 2.4.
The proof for the remaining claims will be divided into two parts. Firstly,

we show that the interpolation error for xd+2, and xd+1, respectively, is anti-
symmetric about x. Secondly, we use this result to prove that xd+2 and xd+1,
respectively, are integrated exactly by DRQ in these cases.

We begin with the case where n is even and d is odd. Following the lines of
the proof of Theorem 2 in [46] for f(x) = xd+2, we write the interpolation error
for x ∈ [a, b] as

rn(x)− xd+2 =

n−d−1∑

i=0, i even

(xi+d+1 − xi)x
d+2[xi, . . . , xi+d+1, x]

/
B(x),

where xd+2[xi, . . . , xi+d+1, x] stands for the corresponding divided difference of
order d+3 of xd+2, which is equal to 1; see for example [69]. Thus the numerator

126



CHAPTER 6. QUADRATURE RULES

is constant and the whole function is anti-symmetric by Lemma 6.5. Similar
arguments may be used for the case where both n and d are even.

Now we treat the second part of the proof. To this aim let P (x) be the
polynomial under consideration, that is, either xd+2 or xd+1. As the linear
quadrature rule Q has degree of precision at least d + 2, the total quadrature
error of the DRQ rule is

∫ b

a

P (x) dx −Q[rn] =
(∫ b

a

P (x) dx−Q[P ]
)
+
(
Q[P ]−Q[rn]

)
= Q[P − rn].

Since Q is assumed to be symmetric and the interpolation error P (x)− rn(x) is
anti-symmetric, this error vanishes.

Finally we use Lemma 6.5 to show that the DRQ rule with a Floater–
Hormann interpolant is symmetric if the nodes are distributed symmetrically
about x.

Theorem 6.12. The DRQ rule (6.6), as determined by the hypotheses of the
previous theorem, is symmetric.

Proof. We show that the Lagrange fundamental rational functions

Rk(x) :=
wk

x− xk

/
B(x)

are pairwise symmetric about x, that is,

Rk(x+ x) = Rn−k(x− x)

for every real x. The symmetry of Q then guarantees that ωD
k = ωD

n−k. Notice
that the denominator in the barycentric representation (2.8) of rn is equal to
the denominator B in (2.10); see (2.15). The denominator B does not depend
on k and (6.9) holds. As the nodes are supposed to lie symmetrically about x,
we see that x+ x− xk = −(x− x− xn−k). We finally show that

wk = (−1)nwn−k. (6.18)

The barycentric weights are given in (2.12) as

wk = (−1)k−d
∑

i∈Jk

i+d∏

j=i
j 6=k

|xk − xj |−1, (6.19)
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with Jk from (2.13). The fact that, by the symmetry of the nodes,

|xk − xj | = |xn−k − xn−j |
and a rearrangement of the factors in the product and of the terms in the sum
in (6.19) yields (6.18).

6.3.4 Indirect Linear Rational Quadrature (IRQ)

As an alternative to integrating a rational interpolant of f as described in Sec-
tion 6.3.2, we shall now follow a different approach, in which the integral is
seen as the solution of an initial value problem, and which we shall call indirect
rational quadrature. This method is again applicable to any distribution of the
nodes. Approximating the integral I from (6.3) then requires the solution of a
full system of linear equations of order n—or an equivalent method—but the
procedure yields, like DRI, an approximation of an antiderivative of f ; I is then
automatically approximated by the endpoint value of the latter.

For this purpose, we approximate an antiderivative in the interval [a, b] by
a linear rational interpolant

rn(x) ≈
∫ x

a

f(y) dy, (6.20)

which we determine as the solution of the induced first order initial value prob-
lem

r′n(x) ≈ f(x), u0 = rn(a) = 0, x ∈ [a, b]; (6.21)

we solve (6.21) by the collocation solver for boundary value problems introduced
in [12] for the second order case; see also [110].

Here, this merely requires the first derivative at the nodes of a rational inter-
polant written in barycentric form with nonzero weights, which can be computed
as in Section 5.3: Denote by u the vector (u0, . . . , un)

T of the unknown values
of rn at the nodes and let u′ be the vector containing the first derivative of rn
at the nodes; then

u′ = Du,

where D is the differentiation matrix D(1), whose elements are given in (5.49).
Applying collocation to (6.21) (with the initial condition u0 = 0)—i.e., requiring
equality in (6.21) at the nodes x1, . . . , xn—leads to a system of n equations for
the n unknowns u1, . . . , un:

n∑

j=1

Dijuj = fi, i = 1, . . . , n. (6.22)
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Inserting into (2.8) the values uk obtained from solving this system yields an
approximation, valid in the whole interval, of an antiderivative of f :

∫ x

a

f(y) dy ≈ rn(x) =
n∑

k=0

wk

x− xk
uk

/ n∑

k=0

wk

x− xk
, x ∈ [a, b]. (6.23)

At x = b, the last expression is equal to un, an approximation of the integral of
f over the interval [a, b]:

∫ b

a

f(y) dy ≈ rn(b) = un.

In contrast to DRQ, and similarly to DRI, IRQ yields not only the value un
approximating the integral (6.1), but also approximate values of the antideriva-
tive

∫ x

a
f(y) dy at x1, . . . , xn−1 as u1, . . . , un−1 and at all other x ∈ [a, b] as the

interpolant (6.23). For sets of weights wk leading to interpolants with no poles
in [a, b], this approximate antiderivative is analytic.

Again, we can derive explicit formulas for the weights of the corresponding
quadrature rule1. To this end, we use Cramer’s rule with the notation of [65],
which denotes by D←

n
y the matrix D with its nth column replaced by y. Let

D̃ be the differentiation matrix D deprived of its first row and column (recall

that u0 = 0), let f̃ := (f1, . . . , fn)
T and let ek be the kth canonical vector in

Rn. Then

un =
det(D̃←

n
f̃ )

det(D̃)
=

n∑

k=1

ωI
k fk,

where the quadrature weights are given by

ωI
k :=

det(D̃←
n
ek)

det(D̃)
, k = 1, . . . , n.

6.3.5 Numerical Results

To illustrate the theoretical results from Section 6.3.3 and the efficiency of the
methods introduced so far in this chapter, we approximate the integral and
the antiderivative of two functions, Runge’s function f1(x) = 1/(1 + x2) and
f2(x) = sin(x). We sampled them both at equispaced nodes, f1 in the interval
[−5, 5]. We investigate f2 in the nonsymmetric interval [−4, 5] to avoid an

1The formulas for these weights were derived by Jean-Paul Berrut.
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Table 6.1: Error in the approximation of the integrals of f1 and f2 with DRQ
and IRQ.

n
Runge (d = 3)
DRQ Order IRQ Order

Sine (d = 4)
DRQ Order IRQ Order

10 7.5e−02 4.0e−01 2.5e−03 1.1e−01
20 1.3e−03 5.8 1.0e−02 5.3 5.0e−05 5.6 5.0e−03 4.4
40 1.0e−06 10.3 4.6e−05 7.8 7.8e−07 6.0 1.9e−04 4.7
80 6.0e−09 7.4 4.9e−06 3.2 1.2e−08 6.0 7.6e−06 4.7
160 1.8e−10 5.1 4.2e−07 3.6 1.8e−10 6.0 3.1e−07 4.6
320 5.4e−12 5.0 3.6e−08 3.5 2.8e−12 6.0 1.3e−08 4.6
640 1.6e−13 5.0 3.2e−09 3.5 8.6e−14 5.0 5.8e−10 4.5

approximation of 0, since the DRQ rule is symmetric and f2 is an odd function.
We used the Floater–Hormann interpolants with the same d as in [46], i.e.,
d = 3 for f1 and d = 4 for f2, so that the error in the approximation of definite
integrals can be compared with that of the interpolation of the same functions.

We want to observe estimated approximation orders with the DRQ, IRQ
and DRI rules and compute the DRQ rule with the Matlab built-in command
quadl applied to rn and with a very small tolerance. As mentioned earlier, this
can be done in many different ways. We did the same experiments with the
help of Chebfun: rn was re-interpolated between sufficiently many Chebyshev
points and then integrated with the overloaded command sum from Chebfun.
However, we do not display the results as they are almost identical to those
obtained with the former method. In [75] we computed the DRQ rules with the
help of the Gauss–Legendre rule with 1000 points. This may be too expensive
in many cases. However, the Chebfun command legpts, an implementation of
a method presented in [59], provides a very fast algorithm for the parameters of
Gauss–Legendre rules. Moreover, the Legendre points and weights need to be
computed only once for all the investigated examples.

Table 6.1 illustrates Theorem 6.10 on the convergence rates of the DRQ rule.
We find experimental orders of about 5 for the approximation of the integral
of f1 and 6 for that of f2 for large enough n, in accordance with the predicted
d + 2. With the IRQ rule, the order in the approximation of the integrals is
smaller than with DRQ. Several examples, including those displayed here, show
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Table 6.2: Error in the approximation of an antiderivative of f1 and f2 with
DRI and IRQ.

n
Runge (d = 3)
DRI Order IRQ Order

Sine (d = 4)
DRI Order IRQ Order

10 7.5e−02 4.1e−01 6.7e−03 1.2e−01
20 1.3e−03 5.8 1.1e−02 5.3 1.1e−04 5.9 5.4e−03 4.5
40 1.0e−06 10.3 4.9e−05 7.8 1.5e−06 6.2 2.1e−04 4.7
80 6.0e−09 7.4 5.3e−06 3.2 2.1e−08 6.2 8.1e−06 4.7
160 1.8e−10 5.1 4.5e−07 3.6 3.1e−10 6.1 3.3e−07 4.6
320 5.4e−12 5.0 3.9e−08 3.5 4.6e−12 6.1 1.4e−08 4.6
640 1.6e−13 5.0 3.4e−09 3.5 7.2e−14 6.0 6.1e−10 4.5

the experimental order d+ 1/2.
In Table 6.2 we display the results on the approximation of antiderivatives

of f1 and f2 obtained with DRI and IRQ, this time after interpolating the
elements of the vector u, as described in Section 6.3.4. The errors are computed
as the maximum over 3000 equispaced points in the interval. Table 6.2 yields
very similar values as Table 6.1; for IRQ this was to be expected from its
construction. For DRI, this is not as obvious. Nevertheless, it can be observed
that the approximation quality with DRI is as good as DRQ, with the same
experimental rates of convergence, namely also d+2 in the presented examples,
but for the approximation of an antiderivative on the whole interval.

The slower convergence of the IRQ rule as compared with the DRQ rule is
one reason why we did not further study the theoretical convergence behaviour
of the former. Additionally, we observed that some of the quadrature weights in
the IRQ rule are negative for almost every admissible choice of n and d. On the
other hand, numerical tests revealed that the weights in the DRQ rule, computed
with the Chebfun command sum applied on the integral of the fundamental
rational functions, are positive at least for n between d and 2500 for 0 ≤ d ≤
5. In consequence, these rules are stable; see (6.2) from Section 6.1 and [66].
Moreover, since the DRQ rules with fixed d converge for sufficiently smooth
functions, they converge in particular for all polynomials and thus converge for
every Riemann-integrable function; see Theorem 6.1.
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In a second experiment, we compare graphically the DRQ and IRQ rules for
various rather low values of d, namely d = 5, 6, 7, with Newton–Cotes rules; see
Figure 6.1. We sampled the function f3(x) = sin(100x)+ 2 at equispaced nodes
in [0, 1] and repeated the same computations as in the previous examples, i.e.,
we computed the DRQ rule with the quadl command. The example function is
chosen so as to avoid the approximation of 0 while integrating sin(100x) over one
period. The standard Newton–Cotes rules (for d = n) are known to be unstable
and to diverge with a growing number of points. We omit plotting these results
and concentrate on the composite Simpson rule and on the composite Boole
rule. The slopes of the curves reflect the experimental order 4 of the composite
Simpson rule for sufficiently large n [32] and the order 6 of the composite Boole
rule. We see here, in the top picture for DRQ and in the bottom one for IRQ,
rapidly decreasing errors for our quadrature rules based on linear barycentric
rational interpolants interpolating between a large number of equispaced points.
With an adequate choice of the parameter d, these quadrature rules outperform
composite Newton–Cotes rules, including those with higher theoretical conver-
gence rates; we do not show the corresponding results. For small to moderate
values of n, the error of composite Simpson is smallest in this example: For
such n, the piecewise parabolic interpolant turns out to be more accurate than
the linear rational one. Notice that in our rules n may be any positive number,
whereas it must be of the form 2k + 1 in composite Simpson and 4k + 1 in
composite Boole.

We also approximated an antiderivative of f3 with the DRI and IRQ rules.
The errors are again similar in size to those displayed in Figure 6.1, which
confirms that the DRI rule usually outperforms IRQ.

Finally we have repeated the experiments of the present section using B-
spline interpolants of order d + 1 computed with the spapi command from
Matlab’s curve-fitting toolbox. We omit presenting the results since these
spline-based methods yield almost identical errors as the DRQ and DRI rules in
our examples; only the errors with Runge’s function f1 were a bit smaller with
DRI than with the antiderivative obtained from the splines. The approximation
quality, as measured from the errors only, is thus nearly identical with the
methods constructed from linear rational interpolation and those from splines.
The former approximations, however, are analytic whereas the latter are merely
a few times differentiable.

As an illustration of the remark under Theorem 6.10 about the differentia-
bility hypothesis on the integrand, Figure 6.2 shows the absolute errors in the
approximation of a very particular example, namely the approximation of
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Figure 6.1: Comparison of the errors in the composite Simpson and Boole rules
with DRQ (top) and with IRQ (bottom) for f3 and with 16 ≤ n ≤ 1024.
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Figure 6.2: Comparison of the errors in Clenshaw–Curtis, Gauss–Legendre and
DRQ with d = 3 for f(x) = |x|3 and with 3 ≤ n ≤ 201 odd.

∫ 1

−1 |x|3 dx with Clenshaw–Curtis, Gauss–Legendre and DRQ with d = 3. It can

be seen that all three methods yield convergence rate O(h4) for this example,
which is more than what is to be expected from the standard theory for all three
methods; see also [32, 112]. Such a behaviour of the first two rules for functions
with low continuity is studied in [130]. The DRQ rule with d = 2 also shows the
same error behaviour, but the values are almost the same as those obtained from
Clenshaw–Curtis and Gauss–Legendre. With d = 2, the condition f ∈ Cd[−1, 1]
was thus sufficient for DRQ to converge at the rate d+2; increasing d does not
improve the convergence speed any more. Such an exceptional behaviour as the
one displayed in Figure 6.2 is of course not observed in general. In the present
example, the singularity of the integrand is located where the Chebyshev and
Legendre grids are coarser by a factor π/2 than the equispaced grid and one can
see that Clenshaw–Curtis and Gauss–Legendre need π/2 times more nodes to
reach the same accuracy as this DRQ rule, which can clearly be seen from the
picture since hCh ≈ (π/2)heq, where for every n, hCh and heq are the maximum
spacing between Chebyshev points and equispaced nodes, respectively.
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6.4 Rational Quadrature Rules for Analytic

Functions

Polynomial interpolation does not converge for arbitrary analytic functions and
arbitrary nodes, due to Runge’s phenomenon. For this reason Newton–Cotes
rules diverge, but the proof is not as trivial as it may seem; divergence of the
interpolant does not necessarily imply divergence of the quadrature rule ob-
tained from that interpolant. Ouspensky [82] showed the unfavourable growth
of the weights in Newton–Cotes rules and Pólya [86] proved divergence for cer-
tain analytic functions through an example. Davis [30] describes ellipses in
which a function must be analytic for Newton–Cotes rules to converge in exact
arithmetic.

The purpose of this section is to describe the convergence of DRQ and DRI
rules for analytic functions. For now we cannot reproduce a similar theory as
in [30], relying on the sum of the absolute values of the quadrature weights,
since we have only the integral form (6.4) of the weights at hand and the bound
on this sum involving the Lebesgue constant is too crude for such an analysis.

Let us suppose as in Section 4.2 that the blending parameter d = d(n) is vari-
able and increases with n, e.g., as d(n) = round(Cn), for some positive constant
C ≤ 1. The convergence theory from Section 4.2 for rational interpolation of an-
alytic functions can be trivially extended to the approximation of antiderivatives
and integrals. As the integral operator is linear, a crude but sufficient bound
on the error in the approximate antiderivative is the integral of the absolute
interpolation error. This is the same reasoning as in equation (6.7) from Sec-
tion 6.3.2 for quadrature rules obtained from linear interpolation schemes. With
the notions from Section 4.2, the following result is an immediate consequence
of Theorem 4.6 and the standard estimation of integrals.

Corollary 6.13. Let f be a function analytic in an open neighbourhood of [a, b],
and let R > 0 be the smallest number such that f is analytic in the interior of CR
defined in (4.14). Then the antiderivative of the rational interpolant rn defined
by (2.10), with limiting node measure µ and d(n)/n→ C, satisfies

lim sup
n→∞

∣∣∣∣
∫ x

a

f(y) dy −
∫ x

a

rn(y) dy

∣∣∣∣
1/n

≤ R,

for any x ∈ [a, b].

More details on this method are not required since its behaviour will be very
similar to that of the interpolation of analytic functions.
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We will concentrate for the remainder of this section on the quadrature rules
with equispaced nodes, even if all of what follows could immediately be done
for any distribution of nodes and also for any other method obtained from an
interpolation scheme with similar convergence and conditioning properties. The
computation of the approximations is done with the techniques explained for
differentiable functions and fixed d in Sections 6.3.1 and 6.3.2; see also Sec-
tion 6.3.5.

In Sections 4.2.3 and 4.2.4 we have derived specialised results for equispaced
nodes, more explicit contours in the former and, in the latter, a minimisation
procedure that balances the exponential convergence of the rational interpolants
with the exponential growth of the Lebesgue constants for increasing d in order
to deduce a near optimal choice for d. We directly apply these methods to
the approximation of antiderivatives and compare the obtained results with
another method designed for the approximation with equispaced nodes as well
as two methods which are almost optimal and require a special distribution of
the nodes. In some cases the present methods with equispaced nodes perform
almost as efficiently as those claimed to be close to optimal; this is evidently not
the case for every example. The described strategy for finding good values for
d does not take advantage of the slightly faster convergence of the quadrature
rules as compared to interpolation, which was shown in Section 6.3.3 for fixed
d, nor of the smaller condition numbers; see (6.5). The value chosen for d is
simply the one that is near optimal for interpolation.

For f(x) = 1/(1+8x2) and f(x) = 1/(1+8(x−0.5)2), we approximated the
antiderivative which is equal to 0 at the left end of the interval and is obviously
equal to the definite integral over [a, b] at the right end. The antiderivatives
are obtained after choosing an appropriate value for d via the minimisation
algorithm for interpolation and applying DRI on f . Besides, we computed the
minimal error over all admissible choices of d, and show the values of d, as
well as C = d/n, that lead to the minimum. In addition to the errors in the
antiderivatives, we investigated the errors in the approximation of the definite
integral with Clenshaw–Curtis and Gauss–Legendre quadrature. The results
of this experiment are displayed in Figures 6.3 and 6.4. We do not show the
errors in the approximation of the integral with the DRQ rule since these do not
significantly differ from those in the antiderivatives. Gauss–Legendre performs
best and Clenshaw–Curtis is very close, at least until the usual kink appears;
see [127]. In the first example, our method with equispaced nodes performs
nearly as well as Clenshaw–Curtis quadrature. These small errors are partly
due to the symmetry effects already discussed in Section 4.2.2. The small hump
in Figure 6.3 can be avoided by increasing the importance of the Lebesgue
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Figure 6.3: Maximal absolute errors in the approximation of an antiderivative
of f(x) = 1/(1 + 8x2) on [−1, 1] with 2 ≤ n ≤ 150.
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Figure 6.4: Maximal absolute errors in the approximation of an antiderivative
of f(x) = 1/(1 + 8(x− 0.5)2) on [−1, 1] with 2 ≤ n ≤ 150.
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constant as explained in Section 4.2.5. The errors in the second example behave
exactly as expected and a better value for d can hardly be found. This comes
from the fact that the singularities of the integrated function lie outside the cusp
regions of the level lines which describe the speed of convergence as illustrated
in Figure 4.3. The results obtained with our first example are quite similar to
those obtained with the nonlinear least squares procedures presented in [66],
also designed for equispaced nodes.

The methods presented which produce analytic approximations yield small
errors; the only drawback in the schemes for analytic integrands is that the
region of analyticity of the latter needs to be known in advance, unless one
applies a procedure to approximately determine it or one uses the idea from the
Remark in Section 4.2.4.
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Chapter 7

Extended Floater–Hormann
Interpolation and
Applications

The barycentric rational Floater–Hormann interpolants are good approxima-
tions and are also suited for some applications of interpolation, such as those
explained so far in Chapters 5 and 6. In particular, if the nodes may not be cho-
sen at will and, e.g., need to be equispaced, then these rational interpolants are a
much better scheme for smooth approximation than their polynomial analogue,
which, e.g., are ill-conditioned and lead to Runge’s phenomenon. Numerical
experiments show that the approximation quality with equispaced nodes and
measured with the error of approximation only, is similar to that of splines. For
such nodes, however, the condition of Floater–Hormann interpolation deterio-
rates exponentially with increasing d; see Chapter 3. As mentioned already, it is
not possible to construct a well-conditioned method with geometric convergence
from data at equispaced nodes [85].

In Section 7.1, we present an extension of the Floater–Hormann family of
barycentric rational interpolants for the equispaced case, before showing in Sec-
tion 7.2 that this extension has a very small Lebesgue constant for any choice of
n and d. In Section 7.3, we investigate some of its properties in the applications
already studied for the original family. We conclude with numerical examples
in Section 7.4.

The main reference for this chapter is [74].
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7.1. EXTENSION OF THE FLOATER–HORMANN INTERPOLANTS

7.1 Extension of the Floater–Hormann Family

of Barycentric Rational Interpolants

It is well known that polynomial interpolation with equispaced nodes is ill-con-
ditioned; see Section 3.3.2. The Lebesgue constant Λn grows exponentially with
increasing degree n and amounts already to about 3·1012 for n = 50. In floating-
point arithmetic, the interpolation process will generally fail to give any accuracy
at all whenever Λn exceeds the reciprocal of the precision of the data, which is
typically at most 1016. As the rational function (2.10) is a blend of polynomial
interpolants of degree at most d, increasing d deteriorates the condition of the
approximation method; see Section 3.3.3. For given data, f0, . . . , fn, rn may
display large oscillations between the nodes toward the ends of the interval for
a large d. The study of the Lebesgue function Λn(x) from (3.7) with equispaced
nodes explains this behaviour independently of the interpolation data. As we
already observed in the experiments at the end of Section 3.3.3, it turns out
that, for given d, Λn(x) has at most d large oscillations at the ends and is much
smaller in the remaining part of the interval; see Figure 3.1. This behaviour
in the middle part is very similar to that of the Lebesgue function associated
with polynomial interpolation at Chebyshev points of the second kind; see the
middle picture in Figure 7.1.

In order to improve the condition of rn, one may want to move the high
oscillations out of the interval [a, b]. One possibility is to evaluate and use the
rational function only in the middle part of the interval, neglecting d subintervals
at each end of the interval. An alternative approach consists in adding 2d new
data values f̃−d, . . . , f̃−1 and f̃n+1, . . . , f̃n+d, corresponding to additional nodes
x−d, . . . , x−1 and xn+1, . . . , xn+d, constructed from a smooth extension of f
beyond x0 and xn using only the given data f0, . . . , fn. The global data set
is then interpolated by a rational function rn+2d and evaluated only in the
interval [a, b]. The procedure resembles that of adding “fictitious points” in
finite difference approximation [48, Section 5.1] but it is not quite the same. Yet
another approach, which also constructs data outside the interval and aims at
regularising interpolants of nonperiodic functions, is that of Fourier extensions;
see [67] and the references therein.

Here we will look more closely at the second approach, which adds 2d new
data values, since the first approach is trivial and implies a waste of data. The
new data may be generated through a numerical Taylor expansion at each end of
the interval, where the derivatives involved are approximated by one-sided finite
difference formulas; see Section 5.3. To be precise, we choose positive integers
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ñ ≪ n and d̃ ≤ ñ, and compute r
(k)
ñ (x0) and r

(k)
ñ (xn), the kth derivatives at

x0 and xn, respectively, of the rational interpolant of the values f0, . . . , fñ and
fn−ñ, . . . , fn, respectively, both with parameter d̃, for k = 1, . . . , d̃, provided f

is 2d̃+ 1 times continuously differentiable; see Section 5.1. Then we set

f̃i :=





f0 +

d̃∑

k=1

r
(k)
ñ (x0)

(xi − x0)
k

k!
=: Tx0 [rñ](xi), −d ≤ i ≤ −1,

fi, 0 ≤ i ≤ n,

fn +

d̃∑

k=1

r
(k)
ñ (xn)

(xi − xn)
k

k!
=: Txn

[rñ](xi), n+ 1 ≤ i ≤ n+ d.

(7.1)

Our extension of the Floater–Hormann family of barycentric rational inter-
polants is then

r̃n(x) :=

n+d∑

i=−d

wi

x− xi
f̃i

/ n+d∑

i=−d

wi

x− xi
, (7.2)

where the barycentric weights wi are computed by means of the formula (2.12)
as for the original family, but this time for n+2d+1 nodes. If d = 0 the rational
interpolant rn remains unchanged; we may thus ignore this choice here.

From the above construction it is clear that no additional input data is

required for the interpolation. Moreover, the derivatives r
(k)
ñ (x0) and r

(k)
ñ (xn)

can be computed very efficiently because of the following observations. The
differentiation matrices from (5.50) need to be computed recursively, but every
coefficient in D(k) in a given row only depends on coefficients from the same

row of D(k−1) and D(1). Since r
(k)
ñ (x0) is the result of the scalar product of the

first row of D(k) by the vector (f0, . . . , fñ)
T and r

(k)
ñ (xn) can be computed as

the scalar product of that same row by (fn, . . . , fn−ñ)
T in the given inverted

sequence, only one row of each differentiation matrix is required.

The construction (7.1) only makes sense if the nodes are equispaced, as it
fights the special behaviour of the Lebesgue constants associated with original
Floater–Hormann interpolation exclusively between these nodes; we therefore
suppose from now on that we are dealing with equispaced nodes. Before giving
the first result on r̃n, we introduce the following notation:

D := min{d, d̃}. (7.3)
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Theorem 7.1. Suppose n, d, ñ, ñ < n, and d̃, d̃ ≤ ñ, are positive integers and

assume that f ∈ Cd+2[a− dh, b+ dh]∩C2d̃+1([a, a+ ñh]∪ [b− ñh, b]) is sampled
at n+ 1 equispaced nodes in [a, b]. Then

‖f − r̃n‖ ≤ KhD+1. (7.4)

Moreover, r̃n has no real poles and reproduces polynomials of degree at most D
for any n and min{d̃, d+ 1} if n+ d is odd.

Proof. Suppose we are given the exact data f−d, . . . , fn+d. This allows us to
form the rational interpolant rn+2d with parameter d, whose rate of convergence
is O(hd+1). We let x ∈ [a, b] and expand the absolute value of the error as

|f(x)− r̃n(x)| ≤ |f(x)− rn+2d(x)|+ |rn+2d(x) − r̃n(x)|. (7.5)

The first term is bounded by Khd+1, where K is a constant depending only on
d and derivatives of f ; see Theorem 2.3. As usual, we generically denote such
constants by K. The second term of the above right-hand side may be bounded
from above by

d!hd+1
∑

−d≤i≤−1
n+1≤i≤n+d

|wi|
|x− xi|

|fi − f̃i|, (7.6)

where we took the original definition (2.12) of the weights, and treated the
denominator of (7.2) as in (2.20) and (2.21):

∣∣∣∣
n+d∑

i=−d

wi

x− xi

∣∣∣∣ =
∣∣∣∣

n∑

i=−d

λi(x)

∣∣∣∣ ≥
1

d!hd+1
. (7.7)

Let us look at |fi− f̃i| for i = −d, . . . ,−1; for i = n+1, . . . , n+ d the argument

goes analogously. We denote by Tx0 [f ] the Taylor expansion of degree d̃ of f
about x0. Then

|fi − f̃i| ≤
∣∣f(xi)− Tx0 [f ](xi)

∣∣+
∣∣Tx0 [f ](xi)− f̃i

∣∣

≤
∣∣f (d̃+1)(ξi)

∣∣ |xi − x0|d̃+1

(d̃+ 1)!
+

d̃∑

k=1

∣∣f (k)(x0)− r
(k)
ñ (x0)

∣∣ |xi − x0|k
k!

,

for some ξi ∈ [xi, x0]. It is shown in Section 5.1 that

∣∣f (k)(x0)− r
(k)
ñ (x0)

∣∣ ≤ Khd̃+1−k, 1 ≤ k ≤ d̃,
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and since |xi − x0|k ≤ dkhk, we have

|fi − f̃i| ≤ Khd̃+1, (7.8)

for i = −d, . . . ,−1 and i = n + 1, . . . , n + d. Finally, we use the result from
Lemma 3.6 that the weights wi in (7.6) are bounded by

|wi| ≤
2d

d!hd
. (7.9)

Since x ∈ [a, b] and thus |x−xi| ≥ h, for i = −d, . . . ,−1 and i = n+1, . . . , n+d,
the claimed result (7.4) follows. The fact that r̃n in (7.2) has no real poles is
trivial since the rational function rn has no real poles for any number of nodes.
Equation (7.5) with a polynomial p instead of f reveals that the first term

vanishes if deg(p) ≤ d̃, see also (7.6) and (7.1), and that the second term is
equal to 0 if deg(p) ≤ d+1 for n+ d odd and deg(p) ≤ d for n+ d even, due to
Corollary 2.4 for n+ 2d+ 1 nodes.

The additional smoothness hypothesis in Theorem 7.1 and in the following
results, as compared to those for the original rn, might be weakened if f can be
extended sufficiently smoothly from [a, b] to [a−dh, b+dh]. On the other hand,
additional smoothness properties of f encourage the use of the interpolants we
have presented, which are numerically better conditioned than rn, as we will
see in the next section.

7.2 Lebesgue Constants

In Sections 3.3.2 and 3.3.3 we investigated the Lebesgue functions and constants
associated with polynomial and Floater–Hormann interpolation. We shall now
do the same for extended Floater–Hormann interpolation; for this we denote
the associated Lebesgue function by Λ̃n(x) and the Lebesgue constant by Λ̃n.

If the exact values of f are taken as f̃i at xi for i = −d, . . . ,−1 and
i = n + 1, . . . , n + d, then the Lebesgue function associated with extended
Floater–Hormann interpolation is the analogue of (3.7). Since these f̃i may
be obtained in a different way than presented in (7.1), and as we do not use
the interpolants outside the interval [a, b], we may ignore uncertainties in these
values and consider the analogue of (3.7) in [a, b] for the study of the condition.
With this interpretation, the extended rational interpolants (7.2) have Lebesgue
constants that grow logarithmically in n and d, as the following theorem shows.
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Theorem 7.2. For positive integers n and d, the Lebesgue constant Λ̃n for the
basis of the extended barycentric rational interpolants at n+1 equispaced nodes
in the interval [a, b] is bounded from above as

Λ̃n ≤ 2d−1

d!
∑d−1

i=0
1∏d−2

j=i
(d− 1

2−j)
∏

i
ℓ=1(ℓ+

1
2 )

(
2 + log(n+ 2d)

)
. (7.10)

Remark : The leading quotient in (7.10) is less than or equal to 1 for all positive
d and for d ≥ 5 it almost becomes constant, so that

Λ̃n ≤ 0.65
(
2 + log(n+ 2d)

)
, for d ≥ 5.

This means that Λ̃n grows merely logarithmically with n and d, and that its
upper bound is very close to the bound from (3.10) for polynomial interpolation
with Chebyshev points of the first and second kinds.

Proof. This proof uses some tools from Section 3.3.3. If x = xk for k = 0, . . . , n,
then Λ̃n(x) = 1, because of the interpolation property. Suppose that xk < x <
xk+1 for k ∈ {0, . . . , n−1}. We multiply the numerator and the denominator of
the Lebesgue function associated with (7.2) by (x−xk)(xk+1−x) and take (7.9)
into account to obtain

Λ̃n(x) ≤
2d

d!hd

∑n+d
i=−d

∣∣ 1
x−xi

∣∣(x− xk)(xk+1 − x)
∣∣∑n+d

i=−d
wi

x−xi

∣∣(x− xk)(xk+1 − x)
=

2d

d!hd
N(x)

D(x)
, (7.11)

where N and D are defined such as to match the numerator and the denomina-
tor, respectively, of the middle expression without the factor 2d/(d!hd). Let us
first look at the numerator:

N(x) = xk+1 − xk + (x− xk)(xk+1 − x)

( k−1∑

i=−d

1

x− xi
+

n+d∑

i=k+2

1

xi − x

)

≤ h+
(h
2

)2
( k−1∑

i=−d

1

xk − xi
+

n+d∑

i=k+2

1

xi − xk+1

)
.

Since the nodes xi are equispaced, the first sum simplifies to
∑k+d

i=1
1
ih , which

is less than log(2k + 2d+ 1)/h, and analogously for the second sum. An upper
bound for the numerator now follows:

N(x) ≤ h+
h

4
log

(
(2k + 2d+ 1)(2n+ 4d− (2k + 2d+ 1))

)

≤ h+
h

4
log

(2n+ 4d

2

)2

= h+
h

2
log(n+ 2d).

(7.12)
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For our study of the denominator D we recall some statements from Section 2.3
and adapt them to the present setting. To begin with, we rewrite D using the
original definition of the denominator of the rational interpolant,

D(x) = (x− xk)(xk+1 − x)

∣∣∣∣
n∑

i=−d

λi(x)

∣∣∣∣.

With the notations

µi(x) = (−1)n+dλi(x)

n+d∏

j=−d

(x − xj)

and

s(x) =
n+d∑

i=−d

µi(x)

it can be shown, see Theorem 2.2 and [46], that

s(x) > 0 and s(x) ≥
k∑

i=k−d+1

µi(x) =: s2(x) > 0.

We do not need to modify the notation here even though we already defined s
and the µi since they are defined in the same manner, the only difference being
that the value of n in (2.17) has been implicitly increased to n+2d. From these
results, we may proceed with

D(x) ≥ (x− xk)(xk+1 − x)
s2(x)∏n+d

j=−d |x− xj |
,

whose right-hand side yields after cancellations

k∑

i=k−d+1

λ̃i(x) with λ̃i(x) :=
1

∏k−1
j=i (x− xj)

∏i+d
ℓ=k+2(xℓ − x)

.

We may now deduce that the last sum has exactly one minimum in (xk, xk+1),
at x = xk + h

2 . It is not difficult to see that the sum, as a function of x, is

symmetric about xk + h
2 . Moreover, its derivative

d

dx

k∑

i=k−d+1

λ̃i(x) =

k∑

i=k−d+1

λ̃i(x)

(
−

k−1∑

j=i

1

x− xj
+

i+d∑

ℓ=k+2

1

xℓ − x

)
(7.13)
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Figure 7.1: Lebesgue functions with n = 50 associated with extended Floater–
Hormann interpolation with equispaced nodes and d = 3 (left), polynomial
interpolation with Chebyshev points of the second kind (center) and first kind
(right).

is negative in (xk, xk + h
2 ), since the mth term (m = 1, . . . , ⌊d

2⌋) in the sum
in the right-hand side is negative and strictly larger in absolute value than the
(d−m)th term, which is positive. The middle term, if it exists, is also negative
in the interval in question. A similar argument shows that (7.13) is strictly
positive in (xk + h

2 , xk+1) and it is easy to see that it vanishes at x = xk + h
2 .

We have thus established that

D(x) ≥ h−d+1
k∑

i=k−d+1

1
∏k−1

j=i (k +
1
2 − j)

∏i+d
ℓ=k+2(ℓ− k − 1

2 )
.

After a rearranging the indices, this gives a bound on the denominator:

D(x) ≥ h−d+1
d−1∑

i=0

1
∏d−2

j=i (d− 1
2 − j)

∏i
ℓ=1(ℓ +

1
2 )
. (7.14)

Together with (7.11), the bounds on the numerator (7.12) and denominator
(7.14) yield the upper bound (7.10) for the Lebesgue constants.

To conclude this section, we take a look at the behaviour of the Lebesgue
functions and constants associated with various methods; see also [34, 73]. In
Figure 7.1 we compare graphically the Lebesgue functions associated with ex-
tended Floater–Hormann interpolation with equispaced nodes and d = 3, and
polynomial interpolation with Chebyshev points of the second and first kinds,

146



CHAPTER 7. EXTENDED FLOATER–HORMANN INTERPOLATION
AND APPLICATIONS

200 400 600 800 1000

10
1

10
2

 

 

FH

EFH

bound for EFH

Figure 7.2: Lebesgue constants associated with Floater–Hormann (FH) and
extended Floater–Hormann (EFH) interpolation with d = 8 and 8 ≤ n ≤ 1000,
together with the upper bound on the EFH Lebesgue constant.
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Figure 7.3: Lebesgue constants associated with Floater–Hormann (FH) and
extended Floater–Hormann (EFH) interpolation with equispaced nodes, n =
200, and 1 ≤ d ≤ 25.
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all three with n = 50. The maxima of the respective functions, i.e., the Lebesgue
constants, are very close to one another; the shapes of the first two are simi-
lar. This picture does not fundamentally change with a different choice of n
or d. From Figure 7.2 we see that, already with d = 8, the difference in mag-
nitude between the Lebesgue constants associated with the original Floater–
Hormann interpolation and its extended counterpart is striking. This is further
stressed with Figure 7.3 which shows that the Lebesgue constant associated
with Floater–Hormann interpolation grows exponentially with d whereas that
associated with the extended family increases very slowly from 4.19 with d = 1
to 4.26 with d = 25.

7.3 Applications

The family of rational interpolants (2.10) may be used in applications such as the
approximation of derivatives of a function, its integral or an antiderivative, as
presented in Chapters 5 and 6. In this section, we will investigate the behaviour
of r̃n from (7.2) regarding these applications for functions sampled at equispaced
nodes. The rates of convergence stay roughly the same as with the original
family of interpolants, but the constants involved in the error bounds are smaller
in many cases, as documented in Section 7.4.

7.3.1 Differentiation

Let us begin with the approximation of derivatives at the nodes.

Theorem 7.3. Suppose n, d, ñ, ñ < n, d̃, d̃ ≤ ñ, and k, k ≤ D, are positive

integers and assume that f ∈ Cd+1+k[a−dh, b+dh]∩C2d̃+1([a, a+ñh]∪[b−ñh, b])
is sampled at n+ 1 equispaced nodes in [a, b]. Then

|f (k)(xj)− r̃(k)n (xj)| ≤ KhD+1−k, −d ≤ j ≤ n+ d.

Proof. Suppose again we are given the exact data f−d, . . . , fn+d. We split the
absolute value of the kth derivative of the interpolation error at x = xj , −d ≤
j ≤ n+ d, into two parts,

|f (k)(xj)− r̃(k)n (xj)| ≤ |f (k)(xj)− r
(k)
n+2d(xj)|+ |r(k)n+2d(xj)− r̃(k)n (xj)|. (7.15)

The first term is bounded by Khd+1−k for j = −d, . . . , n + d as an immediate
consequence of Theorem 5.5. It therefore remains to bound the second term.
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For j = 0, . . . , n we may consider the expression inside the absolute values and
write it as

dk−1

dxk−1

∣∣∣∣
x=xj

∑−1
i=−d

wi

x−xi
(fi − f̃i) +

∑n+d
i=n+1

wi

x−xi
(fi − f̃i)

gj(x)
k, (7.16)

where

gj(x) := (x− xj)

n∑

i=−d

λi(x).

Expression (7.16) is obtained by comparing coefficients in the Taylor expansions
at x = xj of the interpolation error and this error divided by (x − xj); see the
beginning of Section 5.1. Let us call A the numerator of the quotient in (7.16).
Applying the Leibniz rule and dividing by k then yields

k−1∑

ℓ=0

(
k − 1

ℓ

)
A(k−1−ℓ)(x)

(
gj(x))

−1
)(ℓ)

∣∣∣∣
x=xj

.

The ℓth derivative of the reciprocal of gj is bounded by Khd−ℓ at x = xj , as
shown in the proof of Theorem 5.5. It remains to deal with the absolute values
of the derivatives of A at x = xj . We observe that for 0 ≤ ℓ ≤ k − 1,

|A(k−1−ℓ)(xj)| ≤ (k − 1− ℓ)!
∑

−d≤i≤−1
n+1≤i≤n+d

|wi||xj − xi|ℓ−k|fi − f̃i|,

which we bound from above by Khd̃+1−d−k+ℓ, using (7.8) and (7.9). This,
together with the bound on the ℓth derivative of the reciprocal of gj in the

absolute value of (7.16), gives the bound Khd̃+1−k for the first term in (7.15)
in the present case.

For j = −d, . . . ,−1 and j = n+ 1, . . . , n+ d we write the expression inside
the absolute values in the first term in (7.15) as

dk

dxk

∣∣∣∣
x=xj

∑−1
i=−d wi

x−xj

x−xi
(fi − f̃i) +

∑n+d
i=n+1 wi

x−xj

x−xi
(fi − f̃i)

gj(x)
. (7.17)

With the Leibniz rule and the observation that the ℓth derivative, 1 ≤ ℓ ≤ k,
at x = xj of the numerator Ã of the quotient in (7.17) is bounded as

|Ã(ℓ)(xj)| ≤ ℓ!
∑

−d≤i≤−1
n+1≤i≤n+d

i6=j

|wi||xj − xi|−ℓ|fi − f̃i|
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and that |Ã(xj)| ≤ Khd̃+1−d, it follows that the first term in (7.15) is also

bounded by Khd̃+1−k in this second case.

This result leads us to define extended rational finite difference (ERFD)
methods, which are FD methods, see Section 5.3, derived from the extended
family of rational interpolants (7.2) for the approximation at the nodes in [a, b],
of the kth derivative of a sufficiently smooth function,

f (k)(xi) ≈ r̃(k)n (xi) =
n+d∑

j=−d

D
(k)
ij f̃j =: f̃

(k)
i . (7.18)

The weights D
(k)
ij are the elements from the (d+1)st to the (n+ d+1)st row of

the (n+2d+1)× (n+2d+1) differentiation matrix D(k) from (5.49) and (5.50);
the indices are shifted according to the indices of the extended set of nodes.
The weights for the first order left one-sided ERFD approximation, i.e., that at
x = x0, satisfy

1

2d(b− a+ dh)
≤ |D(1)

0j | ≤
1

h
, j = −d, . . . , n+ d,

for all admissible n and d.
For the approximation of the kth derivative of a function f at intermediate

points x ∈ [a, b], we suggest, similarly to the end of Section 5.2, see, e.g., Propo-

sition 5.11, to interpolate the approximations at the nodes f̃
(k)
i from (7.18) by

a rational function (7.2):

R̃(k)
n (x) :=

n+d∑

i=−d

wi

x− xi
f̃
(k)
i

/ n+d∑

i=−d

wi

x− xi
. (7.19)

This formula is less expensive to evaluate outside the nodes than the exact
derivative of r̃n and, as we shall now see, it follows from Theorems 7.2 and 7.3
that its rate of convergence to the exact derivative of f throughout the interval
[a, b] is almost the same as the O(hD+1−k) rate at the nodes from Theorem 7.3.

Proposition 7.4. Suppose n, d, ñ, ñ < n, d̃, d̃ ≤ ñ, and k, k ≤ D, are positive

integers and assume that f ∈ Cd+2+k[a−dh, b+dh]∩C2d̃+1([a, a+ñh]∪[b−ñh, b])
is sampled at n+ 1 equispaced nodes in [a, b]. Then

‖f (k) − R̃(k)
n ‖ ≤ KhD+1−k

(
1 + log(n+ 2d)

)
.
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Proof. The function f is supposed to belong to Cd+2+k[a− dh, b+ dh]. Its kth
derivative may be interpolated at the nodes x−d, . . . , xn+d with approximation
rate O(hd+1) by the rational function rn+2d[f

(k)] with parameter d from (2.10).
For x ∈ [a, b], we expand the absolute value of the error as

|f (k)(x)− R̃(k)
n (x)| ≤

∣∣f (k)(x) − rn+2d[f
(k)](x)

∣∣

+

∑n+d
i=−d

|wi|
|x−xi| |f

(k)(xi)− f̃
(k)
i |

∣∣∑n+d
i=−d

wi

x−xi

∣∣ .
(7.20)

From Theorem 7.2, we see that the second term is bounded by

Λ̃n max
−d≤i≤n+d

|f (k)(xi)− f̃
(k)
i |,

which is less than hD+1−k(1+log(n+2d)); see also Theorem 7.3. This, combined
with the O(hd+1) bound on the first term in (7.20), gives the result.

7.3.2 Quadrature and Approximation of Antiderivatives

Suppose we want to approximate the integral of an integrable function f over the
interval [a, b], where it is sampled at n+1 equispaced nodes. For data available
at equispaced nodes and at a few additional points, quadrature rules obtained
from applying endpoint corrections to the trapezoid rule are derived in [1] and
in the references therein. In Section 6.3.2 we studied direct rational quadrature
(DRQ), which is based on the original Floater–Hormann family (2.10). Let us
follow the same approach for the extended family (7.2), i.e.,

∫ b

a

f(x) dx ≈
∫ b

a

r̃n(x) dx =

∫ b

a

∑n+d
i=−d

wi

x−xi
f̃i

∑n+d
ℓ=−d

wℓ

x−xℓ

dx =
n+d∑

i=−d

ωif̃i,

where this time

ωi :=

∫ b

a

wi

x−xi∑n+d
ℓ=−d

wℓ

x−xℓ

dx. (7.21)

Analogously as for the weights in the DRQ rule, the integrand in the definition of
the quadrature weights ωi may be evaluated at every point in the interval [a, b].
For this reason we approximate the integral giving ωi by an efficient quadra-
ture rule, e.g., Gauss–Legendre or Clenshaw–Curtis, and call the approximated

151



7.3. APPLICATIONS

weights ωD
i . The corresponding method, the extended direct rational quadrature

(EDRQ), then reads
∫ b

a

f(x) dx ≈
n+d∑

i=−d

ωD
i f̃i. (7.22)

An explicit knowledge of the weights ωD
i is not always necessary in practice:

As r̃n is analytic, it is sufficient to apply a quadrature rule on the interpolant
to directly compute (7.22). The following theorem gives the main properties of
EDRQ.

Theorem 7.5. Suppose n, d, ñ, ñ < n, and d̃, d̃ ≤ ñ, are positive integers

and assume that f ∈ Cd+3[a − dh, b + dh] ∩ C2d̃+1([a, a + ñh] ∪ [b − ñh, b])
is sampled at n + 1 equispaced nodes in [a, b]. Let the quadrature weights ωi

in (7.21) be approximated by a linear quadrature rule Q converging at least at
the rate O(hd+2). Then

∣∣∣∣
∫ b

a

f(x) dx −
n+d∑

i=−d

ωD
i f̃i

∣∣∣∣ ≤ KhD+2 log(n).

Moreover, if the quadrature rule Q is symmetric and has degree of precision at
least min{d + 1, d̃}, then the resulting EDRQ rule is symmetric and its degree

of precision is D for any n and min{d+ 1, d̃} if n+ d is odd.

Proof. We begin with splitting the absolute value of the quadrature error into
two parts,

∣∣∣∣
∫ b

a

f(x) dx −
n+d∑

i=−d

ωD
i f̃i

∣∣∣∣ ≤
∣∣∣∣
∫ b

a

(
f(x)− r̃n(x)

)
dx

∣∣∣∣

+

∣∣∣∣
∫ b

a

r̃n(x) dx −
n+d∑

i=−d

ωD
i f̃i

∣∣∣∣.

The second part is bounded by KhD+2 because of the rate of convergence of Q.
We subdivide the first part into

∫ x1

a

∣∣f(x)− r̃n(x)
∣∣ dx+

∣∣∣∣
∫ xn−1

x1

(
f(x)− r̃n(x)

)
dx

∣∣∣∣+
∫ b

xn−1

∣∣f(x)− r̃n(x)
∣∣ dx.

The sum of the first and last terms is bounded by 2h‖f− r̃n‖, which is less than
or equal to KhD+2 by Theorem 7.1. To treat the middle term, we assume that
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the values of the function f are given at all the nodes x−d, . . . , xn+d and we
interpolate it by the rational function (2.10) with parameter d at these nodes.
After adding and subtracting rn+2d(x) in the argument, simplifying and writing
the interpolation error as in (2.19), the latter becomes

∑

−d≤i≤−1
n+1≤i≤n+d

wi(fi − f̃i)

∫ xn−1

x1

1

(x − xi)
∑n

ℓ=−d λℓ(x)
dx

+

∫ xn−1

x1

∑n
i=−d(−1)if [xi, . . . , xi+d, x]∑n

ℓ=−d λℓ(x)
dx.

It is shown in the proof of Theorem 6.10 that the absolute value of the second
term is bounded by Khd+2, as it corresponds to the integral of the interpolation
error over the middle part of the interval of interpolation, i.e., the part without
the first and last d+1 sub-intervals. The factors (x−xi) in the integrand of the
first part of the above expression do not change sign in the interval [x1, xn−1]
since i /∈ {1, . . . , n− 1}; the application of the mean value theorem for integrals
yields

∑

−d≤i≤−1
n+1≤i≤n+d

wi(fi − f̃i)
1∑n

ℓ=−d λℓ(ξi)

∫ xn−1

x1

1

x− xi
dx,

for some ξi ∈ [x1, xn−1]. The claimed error bound now follows with (7.7), (7.8)
and (7.9).

The symmetry of EDRQ follows directly from Theorem 6.12, which shows
that the integrand in the mth quadrature weight is symmetric to that in the
(n+1−m)th weight with respect to the midpoint of the interval. The degree of
precision follows from the fact that the extended rational interpolants reproduce
polynomials of the claimed degree; see Theorem 7.1.

We also studied indirect rational quadrature (IRQ), a method based on linear
barycentric rational interpolation for the approximation of an antiderivative
of such a function; see Section 6.3.4. With the extended family of rational
interpolants (7.2), the method (EIRQ) becomes the following: We approximate∫ x

a f(y) dy by the rational function

r̃n(x), (7.23)

interpolating the result u of a collocation [12] at the nodes x−d, . . . , xn+d applied
to the initial value problem

r̃′n(x) ≈ f̃(x), u0 = 0, x ∈ [a− dh, b+ dh],
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where f̃(x) is a function with values f̃−d, . . . , f̃n+d at the nodes as defined in
Section 7.1. In other words, we solve the system of n+ 2d equations

n+d∑

j=−d
j 6=0

D̃
(1)
ij uj = f̃i, i = −d, . . . ,−1, 1, . . . , n+ d,

with D̃(1) the first order differentiation matrix from Section 5.3, without its
(d+1)st row and column, and insert the so-obtained u−d, . . . , un+d into (7.23).
Note that, analogously to IRQ, un gives an approximation of the integral of f
over [a, b] and that the approximation (7.23) is analytic.

The experimentally more accurate approach presented in Section 6.3.1, na-
mely to compute an antiderivative of the rational interpolant with the cumsum

command from Chebfun, also works with extended Floater–Hormann interpola-
tion and we shall call that method extended direct rational integration (EDRI).

7.4 Numerical Results

Let us now look at a few numerical examples illustrating the results and re-
marks from Sections 7.1 to 7.3. The examples document the error behaviour
of extended Floater–Hormann interpolation from equispaced samples and of its
applications, i.e., the approximation of derivatives, integrals and antiderivatives.
We compare it with original Floater–Hormann interpolation with the same value
of the parameter d and with B-splines of order d + 1 obtained with the spapi

command from the Matlab curve-fitting toolbox. In all the tests, the values of
n are even and the parameters for the extended Floater–Hormann interpolants
remain fixed at d̃ = 7 and ñ = 11. The experimental convergence rates may
be read from the slopes in the logarithmic plots. The errors are computed as
the maximum absolute values of the differences between the interpolant and the
exact function at 2000 equispaced points in the interval [a, b].

Figure 7.4 shows the interpolation of Runge’s function f1(x) = 1/(1+x2) in
the interval [−5, 5] for the three interpolants with theoretical convergence rate
O(h5). The slopes in the error curves are almost identical for n large enough,
but the errors in the rational interpolants are much smaller than those in the
spline. With the interpolation of sin(x) the picture is similar, only the values of
the errors are closer together; we omit the corresponding plot.

The next example deals with the conditioning of the interpolation process. It
is well known that, due to the Runge phenomenon, the polynomial interpolant of
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Figure 7.4: Error behaviour of spline, Floater–Hormann (FH) and extended
Floater–Hormann (EFH) interpolation of f1 in [−5, 5] with d = 4 and 20 ≤ n ≤
1000.

f1, sampled at equispaced nodes in the chosen interval, diverges as n increases.
Suppose the perturbation 10−12 is alternatively added and subtracted to the
given data, i.e., to the sample of f1 at equispaced points. In Figure 7.5 the error
behaviour of the investigated interpolants of the perturbed f1 in [−5, 5] with
n = 1000 is shown as a function of d. As the value of the theoretical convergence
order of the spline and the blending parameter of Floater–Hormann interpolants
varies from 2 to 51, a minimum is attained in the error but the latter increases
exponentially thereafter; see Section 4.2.4. Once it reaches its minimum, the
error in the extended Floater–Hormann interpolant, in contrast, remains small-
est possible, namely 10−12, which is the magnitude of the perturbation of the
data. One may therefore conclude that choosing an inadequate value for d is
much less likely with the extended Floater–Hormann interpolants than with the
original family. Even more extreme examples confirm this observation: Floater–
Hormann interpolation with d too large and for severely perturbed data yields
large deviations toward the ends of the interval, whereas the extended inter-
polants merely oscillate in the direct vicinity of the perturbation and with small
amplitude. Every possible choice of d becomes admissible with the extended fam-
ily of rational interpolants : The interpolation of sin(x) in [−5, 5] with n = 50000

155



7.4. NUMERICAL RESULTS

10 20 30 40 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

 

 

spline

FH

EFH

Figure 7.5: Error behaviour of spline, Floater–Hormann (FH) and extended
Floater–Hormann (EFH) interpolation of f1 with sign alternating 10−12-
perturbation of the data, n = 1000 and 1 ≤ d ≤ 50.

and d = 200 gives an error of 3 · 10−12, this is in clear contrast to the error of
0.68 with the original Floater–Hormann interpolant.

This observation is further stressed by the plots in Figure 7.6. Similarly to
the experiments from Section 4.3 for the original Floater–Hormann family, we
plotted the reciprocal of the denominator

∑n
i=−d λi(x) of the extended Floater–

Hormann interpolants with d = 1 and d = 6. This time the denominator
function yields a behaviour that is very close to equi-oscillation, does this for
the other values of d as well, and thus might show that equispaced nodes are
very close to optimal for these rational interpolants. What is more, this be-
haviour avoids a larger increase of the approximation error toward the ends of
the interval than in the middle.

As mentioned earlier, the question about a good choice of d for extended
Floater–Hormann interpolation is not as important as for the classical one; the
choice of ñ and d̃ must, however, be adequate. With the former it is most
often sufficient to take d rather large: Due to the good conditioning, the errors
are then mostly automatically smallest. It is because of this observation and
the fact that no noticeable improvements were possible that we refrain from
developing a similar theory as in Section 4.2 for the extended family.
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Figure 7.6: The reciprocal of the denominator
∑n

i=−d λi(x) of r̃n plotted as
L(x)/

∑n
i=−d µi(x) with n = 100 and d = 1 and d = 6.

We now turn our attention to the applications of the presented interpolants
described in Section 7.3. The first and second derivatives of f2(x) = sin(x) are
approximated as suggested at the end of Section 7.3.1, namely by the rational
interpolant with d = 4 of the derivatives at the nodes of the interpolant of
f2; see (7.19) for the extended family and the analogous expression (5.44) for
the original family of rational interpolants. In Figure 7.7, where k denotes
the order of differentiation, we see that the experimental convergence rates are
similar with the three methods, as to be expected. The approximation based
on the extended family yields smaller errors in both cases, with a remarkable
difference in the approximation of the second derivative, where the errors with
the methods based on the spline interpolant of order 5 and the original family
almost coincide.

One-sided rational finite difference approximation at the ends and RFD ap-
proximation near the ends of the interval are very successful for large numbers
of nodes, as already noticed in Section 5.4. One-sided ERFD approximation
at x = −5 with d = 4 of the second and fourth derivatives of f1, sampled in
[−5, 5], still improves upon RFD; see Figure 7.8. In this example the experi-
mental rates of convergence are even larger with the ERFD method; classical
FD approximation fails, mainly because of Runge’s phenomenon. The fact that
the extended family of rational interpolants displays reduced oscillations toward
the ends of the interval as compared to the original family definitely helps in
this application, in addition to the better conditioning.

We consider the approximation of an antiderivative and the integral of
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Figure 7.7: Error behaviour of spline, Floater–Hormann (FH) and extended
Floater–Hormann (EFH) approximations of the first (left) and second derivative
(right) of f2 in [−5, 5] with d = 4 and 20 ≤ n ≤ 1000.

f3(x) = sin(100x) + 2 in the interval [0, 1] using rational interpolants with
d = 5. The errors in the indirect rational methods for the approximation of an
antiderivative are larger than those obtained with the antiderivative of the spline
interpolant of order 6; see Figure 7.9. This result was to be expected since the
former methods use the differentiation matrix for the computation of the deriva-
tive at the nodes of the rational interpolant approximating the antiderivative,
which does not improve the convergence rates; numerical experiments with the
IRQ in Section 6.3.5 already revealed experimental orders O(hd+1/2). It must,
nevertheless, be kept in mind that the indirect rational methods give analytic
approximations of an antiderivative. The Chebfun based EDRI method pre-
forms slightly better than spline integration. As can be seen in Figure 7.9, the
experimental convergence rate is the same as with the spline, namely d + 2 for
sufficiently large n.

Figure 7.10 displays the errors in the approximation of the integral of f3
over the interval [0, 1] by the integral of the spline interpolant of order 6 of f3,
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Figure 7.8: Error behaviour of one-sided RFD and ERFD (with d = 4 and
10 ≤ n ≤ 1000) approximations at x = −5 of the second and fourth derivatives
of f1 sampled in [−5, 5].

by DRQ and EDRQ with d = 5 as well as the composite Boole rule, i.e., the
composite Newton–Cotes rule of order 6. To be specific about the direct quadra-
ture rules, the integrals of the rational interpolants are approximated here as
in Section 6.3.5 with the Matlab built-in command quadl with high preci-
sion and also with the Chebfun command sum; both alternatives yield nearly
identical plots with the present example. For small values of n, the four meth-
ods yield similar results. With larger values of n (≥ 150), the error curves show
smallest errors in the EDRQ. In this example EDRQ beats Boole’s rule, whereas
DRQ does not. Numerical experiments reveal that there are even fewer negative
quadrature weights in the EDRQ rules than in the DRQ ones, which already
contain only few of them for small values of d; see the end of Section 6.3.5.
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Figure 7.9: Error behaviour of spline antiderivative, IRQ and EIRQ of f3 in
[0, 1] with d = 5 and 20 ≤ n ≤ 1000.
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Figure 7.10: Error behaviour of spline quadrature, DRQ, EDRQ and Boole’s
rule for the integral of f3 in [0, 1] with d = 5 and 20 ≤ n ≤ 1000.
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Chapter 8

Conclusions and Outlook

The promising fact that the blended polynomial interpolation scheme presented
by Floater and Hormann in [46] allows fast, stable and well-conditioned in-
terpolation between equispaced nodes, even for the notorious Runge function,
was a major motivation for this thesis. The goal was to study why the com-
bination of this interpolation scheme with equispaced nodes is so successful,
which arguments explain the stability and the good condition, how to choose
the blending parameter d, and whether the scheme is suited for an initial se-
lection of applications. The publication of the paper [85] by Platte, Trefethen
and Kuijlaars, which shows that it is not possible to construct an approxima-
tion scheme between equispaced nodes that is simultaneously well-conditioned
and exponentially convergent, further led me to investigate how close the con-
vergence of Floater–Hormann interpolation to analytic functions sampled at
equispaced nodes can be to exponential, while still being well-conditioned.

After the introduction in Chapter 1, our investigations began in Chapter 2,
where we reviewed the Floater–Hormann interpolation scheme with some of its
fundamental properties, such as the convergence rates for differentiable func-
tions, the absence of real poles and the barycentric representation. Moreover,
we studied experimentally the location of the complex poles with equispaced
nodes. A theoretical knowledge of the exact location of the poles would lead
to interesting additional results: Among others, a rigorous explanation of the
near-optimality of equispaced nodes, quadrature rules which do not rely on the
second “stage” of a more accurate rule, a different approach to bounding deriva-
tives using Markov-type inequalities, and some knowledge of the region around
the nodes in the complex plane where at least some accuracy can be expected.
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We studied the stability of Floater–Hormann interpolation evaluated with
the barycentric formula in Chapter 3 and observed that this scheme with small
values of d and equispaced nodes is almost as forward stable as polynomial
interpolation between Chebyshev points evaluated with the second barycentric
formula. The investigation of the numerical condition was presented in that
same chapter. The Lebesgue constants have been proven to grow logarithmically
with increasing n and exponentially with d, when the nodes are equispaced or
quasi-equispaced. This shows that Floater–Hormann interpolation with such
nodes and small to moderate values of d is well-conditioned.

Thereafter, in Chapter 4, a further property of the Floater–Hormann scheme
was studied, namely that of its convergence or divergence rate when d increases
with n while interpolating analytic functions; this rate was found to be exponen-
tial in exact arithmetic; the speed depends on the location of the singularity of
the interpolated function nearest to the interval. Since simultaneous exponen-
tial convergence and well-conditioned interpolation between equispaced nodes
is provably impossible, we had to derive a stabilisation algorithm that allows
one to balance the fast convergence and the growing condition number so as to
obtain a very satisfactory approximation between equispaced nodes; this was
demonstrated with several numerical examples. As a by-product, we obtained
a good recommendation for the choice of d. The elements from potential the-
ory used to prove the aforementioned convergence results, together with other
ideas, lead to a discussion about a good choice of nodes for Floater–Hormann
interpolation; moreover, rather speculative arguments combined with confirmed
ones make us believe that equispaced nodes must be near optimal for this in-
terpolation scheme, when d is small compared to n.

Following the properties of Floater–Hormann interpolation in Chapters 2-4,
we presented in Chapters 5 and 6 two applications, namely the approximation
of derivatives, and that of integrals and antiderivatives.

We began with the analysis of the convergence of derivatives of linear ratio-
nal interpolants to the respective derivatives of functions and proved that the
rate roughly decreases by one unit per differentiation. For the approximation
of higher order derivatives between the nodes, we suggested a fast and cheap
alternative to the computation of the exact derivatives of the interpolant. The
results on convergence and the formulas for derivatives of barycentric rational
interpolants allowed us to construct rational finite difference formulas, the ra-
tional analogues of polynomial finite differences. These new formulas are more
stable for calculating one-sided approximations of derivatives with equispaced
nodes. The results and observations from Chapter 5 may be used in the con-
struction of methods for the solution of differential equations.
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CHAPTER 8. CONCLUSIONS AND OUTLOOK

As a second class of applications we presented the DRI and IRQ methods
for the approximation of antiderivatives and DRQ for integrals. These methods
can be used with any barycentric rational interpolation scheme, but for IRQ the
scheme must be linear. The rate of convergence of DRQ with Floater–Hormann
interpolation and equispaced nodes is shown to be one unit larger than for the
interpolation itself; the same was observed numerically for DRI, while IRQ gave
experimental rates one half smaller than the interpolation. In our theoretical
results we had to impose slightly stricter hypotheses on the differentiability
than for the interpolation. This was also the case with our convergence results
for the derivatives. These hypotheses can sometimes be weakened, also for the
interpolation itself; this was observed numerically. The convergence of the DRQ
rule with variable d and equispaced nodes for analytic functions immediately
follows from the theory in Chapter 4. A similar stabilisation algorithm was
tested on several examples.

Inspired from the investigations on the Lebesgue functions and constants in
Chapter 3, and especially from the fact that the Lebesgue functions grow much
faster at the ends of the interval that in the middle, we constructed an extension
of the Floater–Hormann interpolation scheme for equispaced nodes with very
small condition numbers. Some of its additional properties were studied and
it was shown that the convergence rates for the approximation of derivatives
and integrals are the same as with the original family. Numerical tests showed
that the error is often smaller with the extended scheme. Perturbations in the
data do not significantly deteriorate the interpolation quality and the choice
of a good value of d becomes less important, since it is sufficient to take it
moderately large. The approach of the choice of d followed in from Chapter 4
did not really improve the accuracy of the approximation in some numerical
tests and was therefore left aside.

We hope that with the properties presented and the initial selection of ap-
plications, which we expect to extend in the future, we could bring convincing
arguments that the Floater–Hormann family of linear barycentric rational inter-
polants with equispaced nodes is a competitive scheme combining ease of use,
fast and stable evaluation by means of the barycentric formula, in addition to
well-conditioned interpolation and rather fast convergence. We finally mention
that a catalogue of methods for the approximation of functions sampled at eq-
uispaced nodes exists, and a comparison between them is being prepared by
Rodrigo Platte.
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äquidistanten Ordinaten. Zeit. Math. Phys. 46 (1901), 224–243.

[93] Rutishauser, H. Vorlesungen über Numerische Mathematik. Band 1:
Gleichungssysteme, Interpolation und Approximation. Birkhäuser, Basel,
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differentiation matrix, 98–99, 129, 150
direct rational integration (DRI), 118
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rate, see convergence
residue, 48
roots, 21
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