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ABSTRACT  We present the results of calculations of Raman optical activity spectra of sizable
systems from optical tensors of the fragments, the tensors calculated by an analytic approach at
the time-dependent Hartree—Fock level of theory. The analytic approach permits large basis sets
which, together with the limited geometrical extent of the fragments, obviates the need for the
use of London-type orbitals. The implementation of the analytical gradient approach is formulated
in the atomic orbital basis by using the elements of the density matrix as variational parameters. This
makes the approach directly applicable to linear scaling methods. We do not solve the response
equations for the geometrical distortions of the nuclei but determine instead the second-order
perturbed densities with respect to the electromagnetic field perturbations. The number of
perturbed density matrices that needs to be determined is thus independent of the number of nuclei,
making the approach applicable to fragments with many nuclei and with good quality basis sets.
Compared to numerical differentiation schemes, the analytical approach is about 10 times faster even
for moderately sized molecules.
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INTRODUCTION

Raman optical activity (ROA)'™ is a chiroptical technique
that can determine the absolute configuration of chiral
molecules also in cases where the chirality is only present
in the nuclear wave function due to isotopic substitution.”®
It can, moreover, provide information about the conformation
of the molecules and thus the secondary structure of biopoly-
mers in their native environment.”™

As is the case for vibrational circular dichroism (VCD),'*2 the
absolute configuration of a chiral molecule can either be
determined by the comparison of its experimental spectrum with
that of a structurally related molecule or by the comparison with
the results of an accurate theoretical calculation.®™>!* Until the
recent reformulation of the approach for determining vibrational
circular dichroism intensities by Coriani et al.,'> VCD intensities
would, in the traditional formulation of Stephens,'®” only be
calculated at a cost comparable with that of a force field calcula-
tion. This contrasts with the calculation of the quantities that
determines an ROA spectrum, as these quantities have so far
required substantial additional computational efforts. This has
been because ROA is determined by third-order molecular
quantities involving the geometric derivatives of the electric
dipole polarizability, the mixed electric dipole-electric quadru-
pole polarizability, and the mixed electric dipole-magnetic
dipole polarizability. Until recently, it was only possible to
determine these quantities by numerical geometrical differ-
entiation of the pertinent electronic polarizabilities.'*2* This
limited the size of systems which could be treated, unless a
molecule could be meaningfully subdivided into fragments.?>
Even where such a subdivision was possible, the quality of the
basis sets with which computations could be performed was
severely limited. Still, molecules of an impressive size are today
accessible even to numerical differentiation techniques.?”

Liégeois, Champagne, and Ruud recently presented the first
analytic calculations of the frequency-dependent geometric
derivatives of the three polarizabilities that determine ROA.

The scheme was based on an analytic procedure derived for
the calculation of the geometric derivatives of the different
frequency-dependent polarizabilities?® in the framework of
time-dependent Hartree—Fock theory in the molecular orbital
basis. Significant speedups compared with the numerical
differentiation approach were observed, by as much as a
factor of 10. A general scheme extended to the density
functional level of theory which also includes contributions
arising from the use of London atomic orbitals has been
described by Thorvaldsen and Ruud.? This scheme has been
implemented by Cheeseman and coworkers in the Gaussian
program and used in a number of recent applications.>**?
The inherent scaling of molecular orbital-based schemes
for calculating energies and molecular properties, either at
the Hartree-Fock or the density functional level of theory,
limits the applicability of a molecular orbital-based computa-
tional scheme to systems of small to medium size. To profit
from the advances made in linear scaling energy and re-
sponse theory,>™*® an analytic derivative scheme defined in
terms of the density matrix in the atomic orbital basis is
needed. In the present work, we present the theory for the
analytical calculation of the necessary geometric derivatives
of the polarizabilities that determine ROA in terms of the
density matrix in the atomic orbital basis. The work is based
on an open-ended scheme for calculating molecular properties
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of arbitrary order for a time- and perturbation-dependent
atomic basis set.?**%%° The approach is an extension of
our recent implementation of analytic frequency-dependent
polarizabilities®® and hyperpolarizabilities® in terms of the
density matrix in the atomic orbital basis, using the linear
scaling response solver implementation of Coriani and co-
workers for obtaining the necessary perturbed densities.*>

In contrast to Liégeois et al., we choose not to utilize the
so-called 2x +1 rule.”*> This rule allows the third-order en-
ergy corrections that determine ROA tensors to be com-
puted from the first-order perturbed wave functions. For a
third-order molecular property, all first-order perturbed
wave functions must then be available,®® which is not opti-
mal for geometrical perturbations as the number of geomet-
rically perturbed density matrices increases with increasing
size of the molecular system. For this reason, we compute the
second-order perturbed density matrices arising from the
(mixed) electric dipole, electric quadrupole, and magnetic
dipole perturbations.

The present implementation of analytical gradients is
limited to non-London atomic orbitals. For finite basis sets,
the calculated ROA is therefore gauge-origin dependent.?’
This is a problem for the large molecules for which analyt-
ical gradients are advantageous, as most of them represent
geometrically extended systems. Such systems can, how-
ever, almost always be subdivided into fragments in an
obvious way. We have reformulated in the V-tensor formal-
ism,°®*” and computationally implemented,*®* an earlier
approach®>?® for composing ROA tensors of large systems
from suitably chosen fragments. The observation of the
translational properties of the ROA tensors®®®! for individ-
ual fragments amounts to distributing the gauge origin over
the molecule, and the high quality of the basis sets ren-
dered possible by the use of analytical gradients for small
fragments obviates the need to have recourse to London
atomic basis functions.

QO The remainder of the article is organized as follows. In
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the next section, we first briefly review the formulae for
ROA scattering cross sections pertinent to our work. In
the third section, we give an account of the theory of our
implementation of analytical gradients, with emphasis on
the necessary extensions relative to our previous article
describing the implementation of polarizability gradients,!
together with the details of their calculation. The section
on Fragmentation of Molecular Systems presents our V-
tensors based approach for combining the ROA tensor
gradients of fragments. Computational details are discussed
in the fifth section, and the results of example calculations
in the Results and Discussion section, where we discuss
the computational savings and the relative precision which
can be obtained. The Conclusions section contains some
concluding remarks and an outlook on the general potential
of combining the analytical gradient method with the synthe-
sis of ROA tensors of large systems from fragments.

RAMAN OPTICAL ACTIVITY SCATTERING CROSS
SECTIONS

In contrast to a transmission experiment, light scattering
can be measured for different scattering angles ¢ and with
different polarization schemes. The theoretical measure for
Raman scattering into 4n is the scattering cross section o,
and for scattering into an infinitesimal solid angle, the

differential scattering cross section do(0). For ROA, either
the polarization of the exciting light can be modulated be-
tween right and left circular and the intensity of the scattered
light measured (incident circular polarization) or the intensity
of the two circularly polarized components of the scattered
light can be measured for non-circularly polarized exciting
light (scattered circular polarization). Outside resonance,
the theoretical expressions concur.

Of main practical interest is ROA backward scattering
(@=m). It is determined exclusively by anisotropic invariants
of the scattering tensor. Integral scattering can be of inter-
est due to the absence of quadrupole contributions.*® For
scattered circular polarization backward scattering by an
isotropic sample with naturally (z) polarized exciting light,
one has for the average value, and the difference of differ-
ential scattering cross sections "do, 1 and "do, g for vibra-
tion p, for left () and right (R) circularly polarized light,
respectively®®®2

1
"doy(0) = 3 ("dopr(0)+"dopL(0)), (1)
—.AndO'p(H) = —(”dap,L(H)—”dap,R(H)), (2)
"doy(x) = Ky (9003 + 146} ) d2, 3)
4K,
—A"doy(m) =L (1265, + 483, ) de )
where
- I rpo\2 3
Ky = 55 (52) @00}, 5)

For integral scattering cross sections, one has

4nk,
Mgy = ”3 ? (180a; + 40135), ©)
—A'gy = S”I:f’ (180aG’p + 40/%,,)' 7

The minus signs for Ac and Ac render the standard defini-
tion of molecular quantities as left minus right in optical activ-
ity compatible with the ROA convention of representing
scattering intensities as right minus left. w, and , are the
pulsations of the exciting and the scattered light, respectively,
¢ is the speed of light, and p is the permeability of vacuum.
The formulae are valid for zero Kelvin. For other tempera-
tures, they have to be modified to include appropriate Boltz-
mann factors.®

The invariants I, of the scattering tensor, where I, stands
for a3, ;,aGy, B¢, or 3, are given in the harmonic approx-
imation for a transition from the initial vibrational state I7) to
the final state |f) by

Iy = {flapi)*Lf-V-L§ ®

qp is the normal coordinate of vibration p, Li are the Carte-
sian-to-normal mode transformation matrix for the nuclear
displacements of the N nuclei ¢ in mode g, and Vis a matrix
of mono- and dinuclear tensors Vyp,:



http //doc.rero.ch

L, Vi Vi ... Vi Vin
Lf = Liep ) V= Vlll Vll2 s Vab VaN
Ly, Vvi Ve .. Vw 295
&)
The elements V,;, of Vare given by
1 [do doty,
V(a* :—( ””) <—> (10)
( )ab 9 dga 0 dgb 0
1 /do daG'’
V(aG' —( "“) ( ) (11
( )ab 9 dga 0 dgb 0
1 doy,, do do doy,
=52 (60), (), - (@), (@) ) o
(ﬁ >”h 2 dg, )o\dgy /g dg. )o\dg )

_l d"w) <dG;w) _ (d“uu) (dG(") } 13
’72{( dg, dgaodgb07()
dOC’w /) av
p(_ dg

where g, is the Cartesian displacement vector of nucleus a.
The Einstein convention for summation over repeated Greek
indices is used, and the products on the right-hand side are
dyads of the Cartesian derivatives of tensor components.
The subscript 0 indicates that the derivatives are calculated
at zero field strength and at the equilibrium geometry.

The electric dipole—electric dipole, the imaginary part
of the electric dipole-magnetic dipole, and the electric dipole—
electric quadrupole polarizabilities o,,, G,,, and A, ,,
respectively, are for exact wave functions defined by the
sum-over-states expressions

(14)

=23 (] i) Gl ). (1)
j#n J”
23—t (i) o)), (6)
J#n ”
Ay =230 S Re((n], )10 ). a7
j#n ”

where we have introduced the operator /i, for a component of
the electronic contribution to the electric dipole moment, 7z,
for the magnetic dipole moment, and ©,, for the traceless
electric quadrupole moment

=Y "
i
1
= 5 Z Syllﬁri,[)pi,(77 (19)
i
O = 2 Z 3itiy =7 ""> 0

In these equations, we have used atomic units. I#) denotes
the electronic ground state and ) the excited states, respec-
tively, and ¢, is the antisymmetric unit tensor of Levi-Civita.

ATOMIC ORBITAL-BASED SCHEME FOR ANALYTICAL
RAMAN OPTICAL ACTIVITY CALCULATIONS

To find suitable expressions for the calculation of the geomet-
ric derivatives of the frequency-dependent dipole polarizability,
the mixed electric dipole—electric quadrupole polarizability and
the electric dipole-magnetic dipole polarizability appearing in
eqs. 15-17, we take as our starting point the molecular gradient
of the quasi-energy defined for an atomic orbital basis, which
is time dependent and which depends explicitly on the
externally applied perturbation (in this case corresponding to
displacements of the nuclei)®*

d 0 -
F-do_ {—E D) - TrSgW} , e
dg og ®) t
where {...}; indicates time averaging and Tr matrix trace.
We have also introduced the density matrix D in the atomic

orbital basis, the generalized self-consistent field energy of
the system E(D), defined as

~ ] 1

ED) = he + Vnue +Tr<h+V—%T+§G(D))D 22)
where we have defined an antisymmetric time-differentiated
overlap matrix T

a
at’r

the nuclear repulsion energy #,,., and the operator describ-
ing the interaction between the nuclei and the external field
Vnue- h is the conventional one-electron operator containing
the kinetic energy and nuclear attraction contributions

1 Zx
/Y (7 B Vo N S P 24
K </(,M Zv ¥|RK_7,| Xl> ( )
V describes the interaction between the electrons and the ex-
ternal fields, and G(D) is the two-electron interaction, which
in the atomic orbital basis can be written as

T/w = </;4|/»> - <X;4|Xv>v /;4 = (23)

G (D) = ZDG/» (8urpo — Buopv) (25)
po
with the two-electron integrals being defined as
1
Gove = | [ 10000 -7z, () 6)

In the specific case of ROA, the field-molecule interaction
operator entering into our Hamiltonian is given by

V(t) = —[fexp(—iwot) + f*exp(iwot)]-fi

—[gexp(—iwot) + g exp(iwot)]-O (27)

—[—tbexp(—iwot) + tb*exp(iwot)]-m

The first bracketed term is the time-dependent external
electric field vector (at the origin), parameterized by the
complex-valued perturbation strength vector f (amplitude,
phase, and polarization). The second bracket is the electric
field gradient (homogeneous), parameterized by q (six com-
ponents). The last bracket is the magnetic field vector (homo-
geneous), parameterized by b. To avoid imaginary matrix
elements, a factor of (—7) has been extracted from b.
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In the expression for the quasi-energy gradient eq. 21, we
have also introduced the derivative S¥ of the overlap matrix

oS 0
gt P 9 4y 28
= o, ~ og, Wl (28)
and the energy-frequency-weighted density matrix
W — DFD + %DSD - %DSD, (29)

where we have introduced the generalized Fock matrix F
defined as the partial derivative of the energy defined in
eq. 22 with respect to the density matrix transposed

. 0 = 1
F= 8DTE(D) =h+V 2T + G(D).
As all these matrices are defined in the atomic orbital basis,
this provides a very general starting point for frequency-
dependent response functions, where contributions from both
the perturbation dependence and time dependence of the
atomic orbital basis are included. We note that the gradient
defined in eq. 21 can be considered as a generalization to
time-dependent systems and basis sets, of the expression for
the conventional geometrical gradient of a molecular system,
as introduced by Pulay.®
As shown in Ref.’!, we can obtain higher order, frequency-
dependent molecular properties by differentiating eq. 21,
noting that since the atomic orbitals are independent of the
perturbations f, ¢, and b (at least when London orbitals are not
used), derivatives of S involving these perturbations will vanish.
Differentiating eq. 21 with respect to the electric field amplitude
f (considering fand  as independent), we thus get

(30)

Q7 :%Qg: {7+ TrV¥ D + WD + GE(D)D/ — SEW' } |

€1V}

where we have used that since g are static geometry displace-
ments, the matrix T# is zero, and that only v,,,. and V depend
on f, and that TrG* (D' )D = TrG*(D)D’ . In @7", we have
omitted the contribution TrVED/", since V is zero in the ab-
sence of perturbing fields (.e., f=g¢=b=0). We will however
include this contribution when differentiating Q¢ further.

Differentiating the expression for the dipole gradient in eq.
31 a second time, with respect to either of £, g, or b, using
the fact that higher order derivatives of the symmetric
and antisymmetric overlap matrices involving electric dipole,
electric quadrupole, and magnetic dipole perturbations will
vanish (since London atomic orbitals are not used in these cal-
culations), as will also all contributions being differentiated
three times with respect to the external perturbations, we
obtain the final expressions for the geometry derivatives
of the three frequency-dependent polarizabilities. These polar-
izability gradients are then given by the expressions

Q" — {Te(VID/ + VI D + WD+ GF(D)D + GF(D)DT — SFW )},
(32)

Q" ={Tr(V¥D" + V¥ D’ + b¥D¥" + G*(D")D/ + G*(D)DY" — S*W?" )},

(33)

@ —{Tr(V'D/ + V&' D’ + W¥DY + G (DD + GF(D)DY — $FW) |
(34)

The first of these equations, eq. 32, has previously been de-
rived in the context of coherent anti-Stokes Raman scattering®’
and analytic calculations of pure vibrational contributions to
nonlinear optical properties,”” whereas the two polarizability
gradients in egs. 33 and 34 are new and enter in addition when
calculating ROA. The response function gradients in eqs. 10-14
relate to the quasi-energy derivatives as

/e e
do, _ _anf\f;’dc _ Qg,,bﬁ,dAPﬁ"
dga

uy _ _Qg’a‘hvf;'
g ga

(35)

We note that the only modifications required in passing
from calculating the electric polarizability gradients to the
calculation of the mixed electric dipole-magnetic dipole and
electric dipole—electric quadrupole polarizabilities are new
one-electron interaction operators that have previously been
derived and implemented in Ref.?, as well as the calculation
of additional first- and second-order perturbed density matri-
ces, D, D?, DY, and DY". Whereas the determination of a
Raman spectrum requires the calculation of nine perturbed
density matrices (three first order and six second-order
perturbed matrices), the calculation of ROA according to
eqgs. 32-34 requires the solution of 12 first-order perturbed
densities (three for the dipole moment operator, three for
the magnetic moment, and six for the quadrupole operator
using the symmetry of the operator), and 33 second-order
equations (six second order in the electric fields, nine mixed
electric dipole-magnetic dipole second-order perturbed den-
sities, and 18 mixed electric dipole—electric quadrupole per-
turbed densities), thus 45 response equations in total.

The first- and second-order perturbed density matrices can
be obtained from a set of linear equations that can be solved
iteratively.?® Both the first- and the second-order equations
are of the same form, allowing us to use the same solver for
determining both the first- and second-order perturbed densi-
ties. These equations have been derived previously? and will
not be repeated here. We note, however, that the structure of
these equations is such that we can in principle use the linear
scaling response solver of Coriani et al. for determining the
perturbed densities.*®

In our previous article on the analytic calculation of the ROA
invariants,?® we used the 2% +1 rule to avoid having to deter-
mine the second-order perturbed density matrices. The price
we had to pay for this was that we instead had to determine
the first-order perturbed density matrices with respect to the
nuclear displacements. However, as there are three displace-
ments for each atom in the molecule, the number of response
equations increases quickly with increasing size of the mole-
cule, and already for molecules with more than six atoms will
there be more response equations to be solved when using
the 2z +1 rule than the #+1 scheme used in eqs. 32-34. As
such, the present implementation should be computationally
more favorable for the study of ROA in larger molecules.

Another difference in the approach presented here, relative
to that published by Liégeois et al.,?® is that it is formulated
fully in the atomic orbital basis, whereas our previous imple-
mentation was derived in the molecular orbital basis. In this
manner, the approach presented here can be more directly
applied to the study of larger molecular systems, taking ad-
vantage of the progress in the developments of linear scaling
theory for the calculation of molecular properties. Indeed, the
formalism presented here is connected to the linear scaling
energy” and response theory code*® of Jorgensen, Coriani,



and coworkers. In this work, we will instead use the conven-
tional molecular orbital-based response solver of the Dalton
program, to allow for a more direct comparison of the timings
obtained using the analytic and numerical schemes. However,
this also means that additional speedups can be expected
when full advantage is taken of the speedups achievable with
a more efficient integral evaluation scheme® as well as linear
scaling technology for larger molecular systems.

FRAGMENTATION OF MOLECULAR SYSTEMS
Decomposition of Vibrational Intensities
The product Lg VLg that occurs in the expressions for

scattering cross sectlons represents a reduced 1nvanant57
and can be written as a sum of mono- and dinuclear terms®®

ZL VL Z]abﬁ =/

If the system under consideration is divided into the
fragments A, B, C, etc., then one can choose the numbering
of the atoms a in such a way that the tensors V,, form
blocks VXY

L5-V-L§ = (36)

VAA VAB VAX VAY

: VBA VBB VBX VBY

O pYA  pYB pYx  pry

| -

e where for block X in expanded form, one has

O G

O XY\ _ % ny Vé’(‘i/
U (V ) - Vca Vcb Vcc ’ (38)
~— .
~~

8 with J, being the sum of the invariants /;" of individual blocks
= =25 (39)

XY

Molecular V-tensors from Fragments

Our strategy is to replace the V tensors of the fragments A, B,
C, etc. of a larger, composite system by those of structurally
similar groups and in a case where the larger system represents
a cluster of distinct molecules by the independently calculated
molecules. In either case, neither the orientation nor the posi-
tion of the structurally similar entities of the large system will
coincide with those of the groups we are using for modeling
it. Thus, we have to rotate and translate the groups so that the
positions of their atoms match as closely as possible those of
the equivalent atoms of the composite system.

Rotation of molecular tensors. The alignment of fragments
based on quaternion rotation has been discussed in the con-
text of a comparison of nuclear motions in normal modes.®
The quaternions derived from least-square fitting the
positions of the nuclei can be converted into the appropriate
standard rotation matrices,?® a procedure which has been
implemented in PyVib2.%® If Mm, is the matrix for rotating a
group from the orientation in which it was originally com-
puted into that required for aligning it with the system to be

modeled, then a second-rank molecular tensor T, such as

the electric dipole—electric dipole polarizability tensor, is
obtained for the new orientation as

Tw = MyM:T,s. (40)

The gradients of the second-rank tensors occurring in
the expressions for scattering cross sections transform as
third-rank tensors and thus

0T c’)TpJ
ava o, Xar
We are not concerned with rotating the displacement

vectors L, of the nuclei as they are calculated for the modeled
system as a whole.

=M;:M,,M,, —= (41)

Translation of optical activity tensors. The tensors VAE are
origin dependent because the optical activity tensor G'* v and
the electric dipole—electric quadrupole tensor A, depend,
in the presence of a nonvanishing polarizability tensor %
on the origin chosen for their computation. o, itself is, for a
neutral system, origin independent.

We assume a global coordinate system with origin O in which
all tensors are originally computed. Habitually, the center of
charge or the center of mass of the computed entities is placed
into O, and we will assume the latter to be the case in our termi-
nology, but any point fixed with respect to the nuclei of a group A
will fulfill the same purpose. When the group is moved so that
the positions of its nuclei coincide with the equivalent nuclei of
fragment A of the system S to be modeled, then the center of
gravity of group A is moved to the point O with position vector
R% in the coordinate system O. Superposing the nuclei of group
B onto those of fragment B similarly moves the center of gravity
of B to OF with position vector R®. In the common coordinate
system O, the position vectors of all particles of the groups
A and B are thus increased by R* and R?, respectively.

The way in which the components of the electronic tensors

G”:‘ and A‘;‘ »» depend on the choice of the origin has been

discussed in Refs®*%!. We note that the signs in the formulae
given here refer to moving the groups while keeping the
origin fixed, rather than moving the origin with respect to
the groups. For the group tensors, we also drop, for the sake
of simplifying the notation and as no confusion is possible, the
explicit mention of their electronic nature.

For group A, one has

ANS A A _ oA A
() =Gl +aG), =G - Fa,Rix,, 42)
A A A
(Ap m) _Ap av + AAp av
=45+ RAocfi +5 R"‘a;‘a RIS o, (43)

where the superscript S is used to indicate that group A is
superposed onto the equivalent fragment of S.
The optical activity tensor ¢,,,(4% ) in the expression for

P,V
V(B2),, €d- 14, then becomes

S
8#/"7 (Alpq,av> CﬂP‘TAp av +5 sﬂﬂ(TRAa;lv+ SHP‘TRA“;‘J (44)
*SupaRA(xﬁfm

On the right-hand side, the sum SupoRfOCpa in the second of
the three translational terms equates to zero because it
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contains the double contraction of an antisymmetric and a
symmetric tensor. The expression therefore simplifies to

S
eupo (Aﬁﬁav) Fﬂprpr w3 FWWRA o, — 8#p0RA o (45)

pv pTov:

The termé,,,, R0 ,, represents a purely antisymmetric ten-

sor so that its double contraction with the symmetric polariz-

ability tensor «,,, vanishes. For the products of the electronic

tensors of two different groups A and B, the changes therefore
are upon shifting them

B B
(x:}v AG &WJGR/) (xﬁt ;ur? (46)
OCA 8#!"7 /) ov SM)('R 0613\ Ly (47)

For B=A, the expressions equate to 0 because oc ocA acA
is a symmetric tensor, and contracting it twice Wlth cv o ylelds
zero. This obviously must be so as otherwise the invariants %
and ﬁfl, eq. 8 and the computed scattering cross sections of
whole molecules, would be origin dependent.

The changes in the derivatives of the electronic tensors

occurring in V*Z are thus
dod\ (daG®
OC;u Ly _ o ?\pgRB ;m , (48)
@)\ & ) dgb

det, anAl,, 3 oc;j‘
— | €upes = —3¢& J o
dga . up dgb . 2 1P p (dgb)
(49)

In these and the following equations, it is assumed that
nucleus a is part of group A and nucleus b part of group B.

The term,,,cR45 ., eq. 45, makes no contribution here ei-
ther, as its derivatives represent a tensor purely antisymmet-
ric in the indices u and v. We notice that the expressions
represent dyads of vectors and that the sequence of the factors
matters.

For the tensors (Vg‘f)s with A and B superimposed upon
the equivalent fragments of S, one then has

(e)s) = v, o
(v(5) ) V(B eb
(V ) = V(aG/)A:, (52)
3 doh
() = v =it (52) (G)
a/g 0
(53)
S » o)\ (dob,
(V(B2)) = V(B - 3#1"R8<dg ) (d??)o'
(54)

Interchanging the symbols A and B, and a and b, yields the
formulae for (V,ﬁ{‘)s.

S
From eqs. 50-54, the elements of the matrices ( gfp) for

groups A and B, shifted by R* and R’ respectively, for
vibration p of the composite system follow as

( :f;:)s =Jaop + Moy (55)
where
AB
A]( )abp_Aj(ﬁ )abp_A](aG>abp:07 (56)
and
B (BE) sy = B (B)yp = AV(BE).y + (Li,LE,)

-~ 3@0 B dO{A docffg ) A +B
= = oRE ( &) () - (La,Lt,)

(57)

where the notation : is used to indicate a double contraction
over the dyads involved.

COMPUTATIONAL DETAILS

Historically, a molecule’s structure, its vibrations, and the opti-
cal parameters required for the calculation of vibrational intensi-
ties were determined by different approaches.®” With modern ab
initio methods, these quantities can be calculated at an identical
level of theory. While this imparts the hallmark of consistency to
the results, it is not the most efficient way to proceed. The ren-
dering of the structure and the force field both depend on the po-
tential energy surface in the vicinity of the nuclear equilibrium
position, but the gradients of the electronic tensors do not.

In our approach,® the structure and the force field of a mol-
ecule are obtained by a calculation optimized for these two
quantities irrespective of the electronic tensors. The results
are then used for the calculation of the gradients required
for Raman and ROA spectra with methods optimized for this
purpose. The Dalton program® permits this approach as it
allows an independent calculation of the electronic tensor gra-
dients. In this way, we also can separately identify changes in
computed spectra due either to the electronic tensors or the
vibrational motion of the nuclei.

For the structures and force fields, the r-pc-2 basis set®™% with
the B97-1 functional™ was used. The r-pc-2 set (where r stands
for “reduced”) is derived from Jensen’s pc-2 set’™ by omitting
the polarization functions with the highest orbital angular mo-
mentum quantum numbers (the d-functions for H, ffunctions
for C, N, O, and F, and the g-functions for Si, P, S, and Cl) but
by keeping the core’s triple-zeta description otherwise intact.
While significantly smaller than the full pc-2 set, the rarified set
still leads to structures and force fields of high quality. Where
electronic tensors were synthesized from fragments, the force
field was calculated for the whole molecule. These calculations
were performed with the Gaussian program suite.”

The Raman and ROA tensors were calculated with a local
version of the Dalton program® at the Time-Dependent Har-
tree-Fock (TDHF) level of theory for an exciting wavelength
of 532 nm. Spectra were drawn in PyVib2®® with Lorentzian
curves of 3cm ™! fullwidth at half maximum height for isotro-
pic and 10 cm~! for anisotropic contributions, convoluted with
a Gaussian instrument band shape of 7cm™! full-width at half
maximum, as discussed in Ref.’
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As basis sets for the electronic tensor calculations, we used the
augmented correlation-consistent polarized valence double-zeta
aug-cc-pVDZ set,”*™ the DPS set’® that is based on the 3-21G
basis set’” augmented by diffuse (D) polarization (P) functions
and a diffuse shell (S), and the rDPS set”® where augmentation
is applied to the hydrogen atoms only. The detailed composition
of the DPS set is listed in Table 1. We notice that rDPS and DPS
are not generally suitable for the calculation of the structure of
molecules because they are based on semi-diffuse rather than
the standard, more compact polarization functions, and neither
does the TDHF approach yield force fields of a quality sufficient
for ROA calculations.

Conventional non-London atomic orbitals were used, except
for the data required to compare our results with gauge
origin-independent London atomic orbital calculations. While
these latter calculations were done with numerical gradients, this
does not imply that our formalism for analytical gradients is not
applicable to London-type atomic orbitals. Rather, the required
one- and two-electron integrals are not, at present, implemented
in Dalton. In all calculations, the gauge origin was always chosen
to coincide with the center of mass of the calculated entity.

The synthesis of the electronic tensors was accomplished
with a local version of PyVib2,°® expanded to permit the orien-
tation and translation of the tensors of fragments, and their
combination into molecular tensors.

All calculations were performed in parallel using 48 proces-
sors with the parallelization scheme described in Ref.””. They
were performed at the local supercomputer installed at the
University of Tromse, which consists of 704 dual CPU
2.66 GHz Intel Xeon X5355 Quad Core processors. To provide
comparable timings between the numerical and analytical
schemes, performance enhancing features, such as in-core
storage of two-electron integrals,® were not used.

RESULTS AND DISCUSSION

QO Weinvestigate in this section the difference in the computa-

)

ht

tional times required for numerical and analytical gradients on
the one hand, and the quality of the ROA and Raman data and
the gain in time that can be obtained by using the small rDPS
and DPS basis sets specifically developed for the efficient
calculation of electronic tensor gradients’®”® on the other,
with structures and force fields calculated in the latter case
with r-pc-2. Also considered is the feasibility of further speed-
ing up calculations by synthesizing these gradients from
tensors computed for fragments as parts of smaller molecules.

The model compounds were the five chiral secondary
alcohols shown together with trimethylsilanol in Figure 1,
and their trimethylsilylethers. The use of trimethylsilylethers
reduces the conformational flexibility of a nonrigid molecule,
and these compounds thus serve as a convenient set of
reference molecules for which a detailed comparison against
experimental observations more easily can be made. As the
reference basis set for the electronic tensors, we choose aug-
cc-pVDZ, as it has been shown by Reiher, Liégeois, and Ruud
that this basis set gives very good results compared with much
larger basis sets.®! As previously mentioned, analytical gradi-
ents are, at present, not available in Dalton with London orbi-
tals. Results for London orbitals and aug-cc-pVDZ obtained with
numerical gradients are therefore included for the secondary
alcohols only, but not for their trimethylsilylethers for which
calculations would have required too much time. For the sake
of consistency, we have consequently used the results for

TABLE 1. Exponents of the DPS basis set for H, C, N, O, and F

Shell # CGTO o ¢
Hydrogen

S 1 5.447178 0.156285

0.824547 0.904691

2 0.183192 1.000000

3 0.036000 1.000000

p 1 0.183192 1.000000
Carbon

S 1 172.256000 0.061767

25.910900 0.358794

5.533350 0.700713

2 3.664980 —0.395897

0.770545 1.215840

3 0.195857 1.000000

4 0.043800 1.000000

p 1 3.664980 0.236460

0.770545 0.860619

2 0.195857 1.000000

3 0.043800 1.000000

d 1 0.195857 1.000000
Nitrogen

S 1 242.766000 0.059866

36.485100 0.352955

7.814490 0.706513

2 5.425220 —0.413301

1.149150 1.224420

3 0.283205 1.000000

4 0.063900 1.000000

p 1 5.425220 0.237972

1.149150 0.858953

2 0.283205 1.000000

3 0.063900 1.000000

d 1 0.283205 1.000000
Oxygen

S 1 322.037000 0.059239

48.430800 0.351500

10.420600 0.707658

2 7.402940 —0.404453

1.576200 1.221560

3 0.373684 1.000000

4 0.084500 1.000000

p 1 7.402940 0.244586

1.576200 0.853955

2 0.373684 1.000000

3 0.084500 1.000000

d 1 0.373684 1.000000
Fluorine

S 1 413.801000 0.058548

62.244600 0.349308

13.434000 0.709632

2 9.777590 —0.407327

2.086170 1.223140

3 0.482383 1.000000

4 0.107600 1.000000

p 1 9.777590 0.246680

2.086170 0.852321

2 0.482383 1.000000

3 0.107600 1.000000

d 1 0.482383 1.000000

non-London orbitals as the reference for both the trimethylsily-
lethers and the secondary alcohols. The comparison of results
for the two types of orbitals for the alcohols suggests that
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Fig. 1. Structure of the chiral secondary alcohols and of trimethylsilanol.

non-London orbitals are not a severe limitation for the mole-
cules we consider if the aug-cc-pVDZ basis set is used.

The theoretical error measure we suggest is meaningful for
comparing computed data, and we discuss to which extent it
reflects the subjective quality of the computed spectra. The
conformational equilibria of the model molecules computed
with r-pc-2, and their influence on the computed spectra, are
rather complex (Hasanova E., Hug W., Lovchik M., unpub-
lished results) and cannot be addressed here. Thus, for the
present comparison of theoretical data, the main conformer
only was chosen, and a comparison with an experimental
spectrum is made only in the case of the trimethylsilylether
of menthol, where a single conformer dominates.

Computational Times

o Tables 2 and 3 give, respectively, the relative wall-clock
4= times and the speedup achievable with analytical as com-

-
L

pared with numerical gradients, for TDHF calculations of
the electronic tensors with the rDPS, DPS, and aug-ccpVDZ
basis set for the five chiral secondary alcohols, and for the
rDPS and aug-cc-pVDZ basis sets also for the trimethylsily-
lethers of the chiral alcohols, and the achiral trimethylsilanol.

TABLE 2. Relative wall-clock times for TDHF calculations with
analytical gradients. The unit is the wall-clock time of 227s for
trimethylsilanol (TMS). For the alcohols, the number of atoms
is indicated in brackets. For their trimethylsilylethers, one has

to add those of TMS less 3
TMS
Alcohols ethers
aug-cc- aug-cc-
rDPS DPS pVDZ rDPS pVDZ
Trimethylsilanol 1.0 44
(15)
Isobutyl lactate 4.6 7.3 26.2 14.5 180.7
29
1-Phenyl-1- 5.6 9.2 33.1 16.9 235.8
butanol (25)
2-Octanol (27) 3.9 7.9 27.6 17.5 184.7
Borneol (29) 6.3 13.2 51.5 24.5 292.0
Menthol (31) 7.4 22.0 59.3 31.7 329.3

TABLE 3. Reduction of the computational times achieved by
using analytical instead of numerical gradients for the alcohols
and their trimetylsilylethers. Numerical gradients are simulta-
neously calculated for London and non-London basis functions

Alcohols TMS ethers
aug-cc-
rDPS DPS pVDZ rDPS
Isobutyl lactate 5.7 9.5 5.5 12.1
1-Phenyl-1-butanol 6.2 7.1 6.0 9.7
2-Octanol 8.7 7.5 6.1 8.8
Borneol 8.1 10.5 6.7 94
Menthol 12.9 5.5 6.8 9.3

The tensors of this latter molecule were used for synthesizing
those of the ethers. Values for the exponents of the DPS basis
set have not yet been determined for silicon, so that no DPS
data for the silicon-containing compounds are listed. The
wall-clock times for the calculation with numerical gradients
and the aug-cc-pVDZ basis set are likewise not available for
the trimethylsilylethers due to the excessive computational
requirements. Based on the comparison of the available
numbers for other basis sets, we assume that they would be
an order of magnitude larger than for the alcohols.

Trimethylsilanol with the rDPS basis set, with gradients
calculated analytically, yields the shortest computational time,
and all other values are given relative to this value. The rela-
tive times for the electronic tensors of the trimethylsilylethers,
when synthesized from the secondary alcohols and trimethyl-
silanol, are taken as the sum of the times required for the
separate calculations of the smaller molecules. For menthol,
the largest secondary alcohol, this yields a relative value of
about 64 in the case of analytical gradients and the aug-cc-
pVDZ basis set. This is less than one-fifth of the value of 330
for the direct calculation of the whole molecule with analytical
gradients and of the order of one-fiftieth of the estimated value
for the same calculation with numerical gradients.

Twice the speedup of five achieved by synthesizing the
tensors using the aug-ccpVDZ basis set can instead be
achieved by calculating the whole molecule with the rDPS
basis set and analytical gradients. If, in addition, the tensors
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are synthesized with the rDPS rather than aug-cc-pVDZ basis
set, the speedup increases to almost 40 times. Though there
are variations in the speedups for the ethers of the different
alcohols, these figures reflect the general trend.

The DPS basis set, while slower than the rDPS set, is of
interest because it yields a quality of the electronic tensor
gradients not far below that achievable with aug-cc-pVDZ.
For menthol, DPS is 2.7 times faster than aug-cc-pVDZ with
analytical gradients. Similar ratios are expected for the
trimethylsilylether of menthol once optimal values for the
exponents of the atoms Si, P, S, and Cl become available.

The speedup achieved by the use of analytical gradients, as
compared with the numerical ones, depends on the basis set
and molecule. From Table 3, one finds an average value of 8.3
for the rDPS set, 8.0 for DPS, but only 6.2 for aug-cc-pVDZ.
For the trimethylsilylethers, the average value of the speedup
reaches 9.9 for rDPS. While there are substantial variations
for individual molecules that cannot readily be attributed
either to their size or structure, there appears to be, on
average, an increase of the speedup with the size of the
molecules, though less so than what one would expect based
on the reduction of individual self-consistent field calculations
required for numerical gradients.

‘We notice that a further speedup can be achieved in the analyt-
ical computation of gradients by omitting the quadrupole part ﬁfl
as was done for numerical gradients.*>® 3 does not contribute
to integral scattering cross sections,® and it is for many bands of
little importance also in backscattering spectra. This reduces the
number of perturbed densities from 45 to 18, making the calcu-
lation of ROA scattering cross sections only marginally more
expensive than that of Raman scattering cross sections.

Quality of Electronic Tensor Gradients

As seen from eq. 8, the results of an ROA calculation
depend simultaneously on the electronic tensor gradients

and on the force field. To judge the quality of the electronic
tensor gradients obtained with a trial method, the force field
is thus kept constant while the approach for the electronic
tensors is varied. Differences in the computed spectra can
then be attributed to changes in the tensor gradients.

A measure for comparing experimental and theoretical
spectra is their similarity.®* The spectral range with which
experimental data are recorded automatically limits the
comparison to a wavelength region of practical interest. In
contrast, when computed spectra are compared, a few low-
frequency normal modes with high ROA intensities tend
to dominate spectral similarity. Not only is the pertinent
spectral region not of practical interest but the use of the
harmonic approximation is doubtful for this low-frequency
region. For the purpose of the present work, we therefore
found a quality measure based on reduced invariants,” eq.
36, which are devoid of frequency factors giving low-energy
modes an inordinately large weight, more useful than mea-
sures derived from intensities. We have defined it as

SRy
Z;V\'ib (]1§Ef) 2

(J) represents a normalized percentage deviation of the
reduced Raman and ROA invariants J, of a trial method (tr)
with respect to a reference method (ref) summed over all N,
vibrations p of a molecule. Average values were calculated
seperately for the five chiral alcohols in Figure 1 and for their
trimethylsilylethers.

Table 4 compares the deviations for different basis sets, as
well as London and non-London orbitals for the alcohols. The
invariant J(aG’) is clearly the most difficult to compute. It is
interesting to note that this term is much more sensitive to
the use of London orbitals than J(fg). In addition to the
deviations of individual invariants, those of their linear

(J) =100 (58)

TABLE 4. Normalized mean square deviations (in per cent) relative to the results obtained with the analytical gradients and non-
London orbitals using the aug-cc-pVDZ basis set for the secondary alcohols depicted in Figure 1, of the reduced invariants Jp, and of
their combinations as they occur in the Raman back-, and in ROA back-, foreward-, and integral (int) scattering cross sections.
L=London, NL=non-London orbitals. The numbers represent values averaged over those of the individual molecules

Label Raman ROA 180 ROA 0 ROA int J@G) T(83) T(8)
L rDPS 2.8 8.1 134 8.9 15.0 8.6 77
NL rDPS 2.8 12.9 31.0 18.1 32.1 15.5 77
L DPS 3.2 4.2 47 44 5.4 45 4.2
NL DPS 3.2 5.7 14.4 7.1 16.2 6.7 4.2
L aug-cc-pVDZ 0.0 13 3.2 17 3.6 16 0.1

TABLE 5. Normalized mean square deviations (in per cent) for the trimethylsilylethers of the secondary alcohols depicted in Fig. 1,

of the reduced invariants Jp, and of their combinations as they occur in the Raman back-, and in ROA back-, foreward-, and integral

(int) scattering cross sections. L=London, NL=non-London orbitals. The numbers represent values averaged over those of the indi-
vidual molecules

Label Raman ROA 180 ROA 0 ROA int J@G") J(B%) J(B2)
L rDPS 1.9 34 9.7 3.8 12.1 3.8 3.1
Synth L rDPS 9.5 285 69.2 30.2 73.7 29.7 342
Synth NL rDPS 9.5 29.0 76.7 315 79.6 30.6 34.2
Synth L aug-cc-pVDZ 8.8 28.9 67.2 30.9 71.0 304 332
Synth NL aug-cc-pVDZ 8.8 28.8 66.9 30.8 70.3 304 33.1
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combinations occurring in Raman and ROA intensity expres-
sions are also included for selected scattering geometries.
Deviations are largest, by far, for forward scattering where
the salient ROA effects tend to be dominated by aG’ 8%

The results of Table 4 make it obvious that rDPS, the
smallest of the basis sets, profits most from using London
orbitals. They are less important for DPS and even less so
for aug-cc-pVDZ. However, we note that care must be
exercised with J(aG'), and consequently, the benefit of using
London orbitals is more pronounced for computed ROA
forward than backward scattering spectra.

Table 5 lists results for the trimethylsilylethers of the five
alcohols. The numbers permit a comparison of the expected
quality of the results when either the fast rDPS basis set is
used or when the electronic tensors are synthesized from a
molecule’s fragments. Clearly, synthesizing the molecule’s
electronic tensors degrades the quality of computed data
more than the use of the small rDPS basis set. This is so even
though the fragments were chosen as well-defined separate
entities for which one does not expect excessive electronic
interaction, namely, the chiral secondary alcohol part of the
molecules and the achiral trimethylsilanol moiety.

As observed already for the alcohols, the changes are
largest for J(aG'). This is true for the small rDPS basis set
as well as when the tensors are synthesized from fragments.
On the other hand, London orbitals make little difference
when tensors are synthesized, even in the case of the small
rDPS basis set. This is not unexpected as calculating the
tensors from fragments indirectly distributes the gauge ori-
gin over the molecule.

The gain in computational efficiency achieved by synthesiz-
ing electronic tensors, though substantial, might at first sight
not justify the degradation of the quality of computed results.
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Fig. 2. Experimental and computed Raman backscattering spectra of the
trimethylsilylether of menthol. From top to bottom: experimental spectrum,
electronic tensor part of spectra computed with parameters as indicated with
structure and force field calculated with r-pc-2. A linear correction has been ap-
plied to the calculated frequencies so that a shift of 0cm™' results for 300cm™!
and of —32cm™! for 1600 cm~'. The experimental data were recorded as fol-
lows: exposure time 60 min, laser power at sample 400 mW, exciting wave-
length 532 nm, instrumental resolution 7 cm~'. The curve has been slightly
smoothed with the second-order symmetric five-point Savitzky—Golay filter.
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Fig. 3. Experimental and computed Raman optical activity (ROA) backscat-
tering spectra of the trimethylsilylether of menthol. From top to bottom: ex-
perimental spectrum, computed spectra with electronic tensors calculated as
indicated. See Figure 2 for details.

Speedups far larger than implied by the wall-clock times of
Table 2 can, however, be achieved for larger molecules. Like-
wise, re-utilizing fragments either for different conformers of
the same molecule, or for other molecules, leads to further
computational savings. One has, moreover, to distinguish
between the use of ROA for analytical and for spectroscopic
purposes. For merely determining the absolute configuration
of a molecule, in most cases, a high quality of the computed
data is not required. For the detailed interpretation of the
numereous bands in a vibrational ROA spectrum, it is desirable.

Figures 2 and 3 illustrate these aspects by comparing the
results of different calculations of the backscattering spec-
trum of the trimethylsilylether of menthol with the measured
one. From any of the computed ROA spectra, be it directly
calculated with the aug-cc-pVDZ basis set, the minimalistic
rDPS set, or synthesized from fragments with either of the
two sets, the absolute configuration could, were it not known,
easily be assigned beyond any doubt. Similarly, while
conformational equilibria complicate the calculation of the
ROA spectra for some of the secondary alcohols listed in
Figure 1, and also for some of their trimethylsilylethers, it
can safely be stated that when the absolute configuration
can be assigned by a direct calculation of the whole molecule
with aug-ccpVDZ, then this is also possible by a direct
calculation with the smaller rDPS set or by synthesizing the
electronic tensor part for the spectra from fragments either
with the aug-cc-pVDZ or the rDPS set.

CONCLUSIONS

A major obstacle to ROA’s use for determining absolute
configurations by the comparison of measured and computed
spectra has in the past been its inefficient calculation. The
bottleneck was the need to determine the gradients of
electronic tensors by numerical differentiation. The analytical
gradient scheme we propose provides an order of magnitude
increase in computational speed for the typical organic
molecules we use as examples. The formalism is based on a
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quasi-energy gradient and formulated in an atomic orbital
basis. The approach is therefore well suited for taking
advantage of the continuing improvements in linear scaling
response theory that is currently taking place in the develop-
ment of modern ab initio methods. The implementation
requires the solution of only 45 response equations, indepen-
dently of the size of the molecule considered.

The use of efficient basis sets for the electronic tensor part
provides another factor of two to three increase in speed if the
DPS set developed for this purpose is employed, and 10 or
more in the case of rDPS, as compared with the aug-cc-pVDZ
we use as reference. These numbers refer to calculations at
the TDHF level of theory and require a separate calculation
of a molecule’s structure and force field.

The present implementation of our formalism for analytical
gradients is limited to non-London basis functions. Gauge-
origin dependence of computed results presents a problem for
molecules substantially larger than those considered here when
a small basis set such as rDPS is used, although these problems
can be partially rectified using gauge transformation.'® Compos-
ing the tensors of larger molecules from those of fragments com-
puted in smaller molecules solves this by distributing the gauge
origin over these fragments. This moreover provides another
substantial increase in computational speed, of the order of a fac-
tor of four or more already for the modestly sized molecules that
we use as examples. Gains in speed by synthesizing electronic
tensors are bound to increase with the size of the molecules.

The quality of electronic tensors is diminished by synthesizing
them from fragments. Our quantitative error measure, based on
the root-mean square deviation of reduced ROA invariants, sug-
gests that the degradation can be substantial. In practical terms,
though, as we show for ROA backscattering spectra, the qualita-
tive appearance of the spectra undergoes little change, and the
synthesized spectra easily permit the unambiguous assignment
of a molecule’s absolute configuration. Our results thus support
recent studies into the accuracy of the tensor transfer techni-
ques®’® that have been published in response to the recent con-
cerns about the reliability of this appoach.®

The atomic orbital-based scheme for calculating the gradi-
ents of electronic tensors represents a major improvement
over the numerical scheme. In combination with highly effi-
cient basis sets, and the synthesis of these tensors for large
molecules from separately calculated fragments, high compu-
tational speeds can now be reached for the electronic part of
ROA calculations. Similar advances by mode tracking of
vibrations of large molecules,”’ and by synthesizing force
fields from fragments,? have recently been made for the
computation of the vibrational part. Indeed, we believe the
bottleneck in future ROA studies not to be the calculation of
ROA invariants but rather the need to explore the conforma-
tional space of larger, flexible molecules.
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