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SUMMARY

The TORC1 and PKA protein kinases are central
elements of signaling networks that regulate eukary-
otic cell proliferation in response to growth factors
and/or nutrients. In yeast, attenuation of signaling
by these kinases following nitrogen and/or carbon
limitation activates the protein kinase Rim15, which
orchestrates the initiation of a reversible cellular
quiescence program to ensure normal chronological
life span. The molecular elements linking Rim15 to
distal readouts including the expression of Msn2/4-
and Gis1-dependent genes involve the endosulfines
Igo1/2. Here, we show that Rim15, analogous to the
greatwall kinase in Xenopus, phosphorylates endo-
sulfines to directly inhibit the Cdc55-protein phos-
phatase 2A (PP2ACdc55). Inhibition of PP2ACdc55

preserves Gis1 in a phosphorylated state and conse-
quently promotes its recruitment to and activation of
transcription from promoters of specific nutrient-
regulated genes. These results close a gap in our
perception of and delineate a role for PP2ACdc55 in
TORC1-/PKA-mediated regulation of quiescence
and chronological life span.

INTRODUCTION

Initiation of the quiescence program in eukaryotic cells is a highly

coordinated process, which requires proper regulation of growth

factor-, hormone-, and nutrient-responsive signal transduction

pathways. In yeast, quiescence is primarily induced by limitation

for essential nutrients followingwhich cells cease growing, arrest

cell division in the G1 phase of the cell cycle, and acquire

a distinct array of physiological, biochemical, and morphological

traits. These traits collectively ensure normal chronological life

span (CLS) of cells during long periods of starvation and enable

them to transit back to the proliferating state upon refeeding.

The decision of yeast cells whether to initiate, or not, the quies-

cence program relies substantially on the information trans-

mitted by two nutrient signaling pathways. These are the Target

Of Rapamycin Complex 1 (TORC1) pathway, which is regulated
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by the abundance and quality of the available carbon and/or

nitrogen source, and the glucose-responsive protein kinase A

(PKA) pathway (De Virgilio, 2012; Gray et al., 2004). Attenuation

of signaling by these pathways following limitation of the

corresponding nutrients activates the protein kinase Rim15,

which induces numerous important aspects of the quiescence

program (e.g., the expression of specific nutrient-regulated

genes and the accumulation of trehalose and glycogen) and

critically tailors CLS (Fabrizio et al., 2001; Pedruzzi et al., 2003;

Wei et al., 2008). The molecular elements linking Rim15 to distal

readouts, however, are only partially characterized. Accordingly,

Rim15-dependent phosphorylation of the endosulfines Igo1/2 is

essential for mRNAs, which are transcriptionally controlled

by the stress response (STRE) and postdiauxic shift (PDS)

transcription factors Msn2/4 and Gis1, respectively, to be

sheltered from degradation via the 50-30 mRNA decay pathway

(Cameroni et al., 2004; Luo et al., 2011; Pedruzzi et al., 2000;

Talarek et al., 2010). How Rim15 coordinates transcription and

posttranscriptional stability of these mRNAs, however, is still

mysterious.

Here, we identify the Cdc55-protein phosphatase 2A

(PP2ACdc55) as an essential element that links Rim15-Igo1/2-

mediated nutrient signaling to downstream effectors, which are

key for proper entry into quiescence and CLS. Accordingly,

when phosphorylated by Rim15 (on Ser64), Igo1 directly binds

to and prevents PP2ACdc55 from dephosphorylating various

target proteins including Gis1. In the latter case, conservation

of a specific residue (i.e. Ser425) in a phosphorylated state

promotes recruitment of Gis1 to promoter regions of nutrient-

regulated genes. All together, our data suggest a simple model

in which Rim15, by activating the PP2ACdc55 inhibitor Igo1, regu-

lates the phosphorylation status and activity of both mRNA

decay and transcription factors (such as Gis1) to coordinate

entry into quiescence. Interestingly, recent studies in Xenopus

have shown that the Rim15 orthologous greatwall kinase (Gwl)

phosphorylates endosulfines (Ensa and Arpp19) to inhibit the

protein phosphatase PP2A-B55d and consequently promote

mitotic progression (Gharbi-Ayachi et al., 2010; Mochida et al.,

2010). Based on the remarkable conservation of PP2ACdc55

regulation, which may also extend into downstream effectors,

we speculate that Rim15 and Gwl may both be implicated in

additional aspects of cell cycle and quiescence/CLS control,

respectively.

mailto:claudio.devirgilio@unifr.ch
http://dx.doi.org/10.1016/j.celrep.2012.11.025
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.celrep.2012.11.025&domain=pdf


Figure 1. Loss of PP2ACdc55 Suppresses the

Defect of rim15D and igo1D igo2D Cells to

Properly Enter Quiescence

(A and B) Analysis ofHSP26p-yEmRFP expression

(A), which confers to cells a purple color, and of

glycogen accumulation (visualized by iodine vapor

staining) (B), in strains that were patched or

spotted on SD-medium-containing plates and

grown for 5 days at 30�C. The brown coloration in

(B) is proportional to the glycogen content of the

cells.

(C) Chronological life span measurements.

Survival data (colony forming units [CFUs] ml-1)

were expressed as relative values compared to the

values at day 0 (which corresponds to day 2 in

early stationary phase cultures). Values indicate

means of three independent experiments.

Symbols and color codes for the strains used are

indicated in (B). Notably, in vivo phosphorylation of

Ser64 in Igo1 requires the presence of Rim15 and is

induced in cells entering quiescence and main-

tained during their subsequent chronological

aging (Figure S1A).

(D) qRT-PCR analysis of RTN2 expression in ra-

pamycin-treated (2.5 hr) cells. The value for the

reference sample (rapamycin-treated wild-type

cells) was normalized to 1.0. Each bar represents

themean ± SD of three experiments. Genotypes of

strains are indicated (+, wild-type gene; D, gene

deletion[s]). See also Figure S1B.
RESULTS AND DISCUSSION

Loss of PP2ACdc55 Enables rim15D and igo1D igo2D

Cells to Properly Enter Quiescence
To further elucidate the molecular function of Rim15 and its

targets Igo1/2, we performed a genome-wide screen for muta-

tions that are able to suppress the defect of rim15D cells in

HSP26 expression during entry into quiescence (i.e. following

growth for 5 days on SD plates) as described earlier (Luo et al.,

2011). The best hit in this screen turned out to be pph21D, which

was not only able to suppress the defect in HSP26p-yEmRFP

expression in rim15D, but also the one in igo1D igo2D double-

mutant cells (Figure 1A). Notably, Pph21 and its partially redun-

dant paralog Pph22 function as catalytic protein phosphatase

subunits and associate with the scaffold protein Tpd3 and the

regulatory subunits Cdc55 or Rts1 to form the heterotrimeric

protein complexes PP2ACdc55 or PP2ARts1, respectively (Jiang,

2006). Since rts1D did not appear among the positive hits, and

since cdc55Dwas not scored in our suppressor screen because

it was missing in the knockout collection, we deemed it likely

that PP2ACdc55, rather than PP2ARts1, may play a negative role

in HSP26p-yEmRFP expression in rim15D and igo1D igo2D

strains. In line with this assumption, we observed that loss of

Cdc55 enabled rim15D as well as igo1D igo2D cells to express

HSP26p-yEmRFP (Figure 1A). Moreover, we also found that

loss of Pph21 or of Cdc55 partially or fully suppressed, respec-

tively, the defects in glycogen accumulation and proper setup

of CLS in nutrient-limited rim15D and igo1D igo2D cells (Figures

1B and 1C).

To corroborate our genetic data, we also quantitatively

assessed the expression of RTN2, which is strongly induced in
a Rim15- and Igo1/2-dependent manner following rapamycin-

mediated TORC1 inactivation (Talarek et al., 2010). The data

were clear: unlike loss of Rts1 or of Pph22, loss of Pph21 or of

Cdc55 partially or fully suppressed, respectively, the RTN2

expression defect in rapamycin-treated rim15D and igo1D

igo2D cells (Figure 1D; analysis of SOL4 expression yielded

similar results, Figure S1B). Notably, the combined loss of

Pph21 and Pph22 rendered cells very sick, but, like loss of

Cdc55, also fully suppressed the RTN2 expression defect in

rapamycin-treated rim15D and igo1D igo2D cells (S.B., unpub-

lished data). Thus, although Pph22 seemingly plays no role on

its own in controlling RTN2 expression (Figure 1D), it appears

to provide residual PP2ACdc55 activity in the absence of Pph21.

In sum, our genetic data indicate that PP2ACdc55 antagonizes

the proper setup of various aspects of the quiescence program

both following nutrient limitation and TORC1 inhibition and

suggest that Rim15 may negatively regulate PP2ACdc55 via

Igo1/2.

Phosphorylation by Rim15 Triggers Igo1 to Bind
and Inhibit PP2ACdc55

Based on both our genetic data and the recent discovery that

endosulfines directly inhibit PP2A-B55d in higher eukaryotes

(Gharbi-Ayachi et al., 2010; Mochida et al., 2010), we sub-

sequently performed two-hybrid and coimmunopreciptation

(coIP) analyses to verify our assumption that Igo1 may directly

interact with PP2ACdc55. The two-hybrid experiments revealed

that Igo1 specifically interacts with Cdc55, but not with Pph21

(Figure 2A). In addition, a Ser64 to Ala mutation within Igo1 or

loss of Rim15 both abolished the observed Igo1-Cdc55 interac-

tion, indicating that Rim15-mediated phosphorylation of Ser64
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Figure 2. Phosphorylated Igo1 Binds to and Inhibits PP2ACdc55

(A) Igo1 specifically interacts with Cdc55 in a split-ubiquitin membrane-based

yeast two-hybrid assay. The Igo1-Cdc55 interaction is abolished by loss of

Rim15 or introduction of a Ser64 to Ala mutation in Igo1. Interactions were

tested by monitoring growth on plates lacking adenine (�Ade), or b-galacto-

sidase activities (in Miller units; numbers on the right of the panels represent

the means of three independent experiments performed with exponentially

growing cells), of wild-type and rim15D cells expressing Igo1-Cub or Igo1S64A-

Cub and either Alg5-NubG (negative control), Alg5-NubI (binding any Cub-

fusion protein; positive control), NubG-Cdc55, or NubG-Pph21.

(B) Biochemical interaction between PP2ACdc55 and Igo1 phosphorylated at

Ser64 (Igo1-pSer64). Cdc55-HA3 (lanes 1–3 and 6), untagged Cdc55 (lane 4),
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within Igo1 is required for it to interact with Cdc55. Our coIP anal-

yses performed on rapamycin-treated cells largely confirmed

these results. Accordingly, Igo1-myc8 physically interacted

with HA3-tagged Cdc55 and Pph21 (Figure 2B, lanes 1 and 7),

but not with HA3-tagged Rpc53, which served as negative

control (Figure 2B, lane 5). Moreover, Igo1-myc8 was not able

to interact with HA3-tagged Cdc55 if expressed in rim15D cells

or if its Ser64 was mutated to Ala (the absence of Igo1 phosphor-

ylated at Ser64 [Igo1-pSer64] in these samples was confirmed via

Phos-tag phosphate affinity gel electrophoresis; Figure 2B, lanes

2 and 3). Finally, Igo1-myc8 physically interacted with HA3-

tagged Cdc55 even in the absence of Pph21, while the interac-

tion between Igo1-myc8 and HA3-tagged Pph21 required the

presence of Cdc55 (Figure S2). Igo1 therefore interacts with

Pph21 indirectly via Cdc55.

To test whether Igo1 affects the phosphatase activity of

PP2ACdc55, we affinity-purified the heterotrimeric PP2ACdc55

complex from yeast (via HA3-tagged Cdc55) and assayed its

activity using a synthetic phosphopeptide (Ser/Thr Phosphatase

Substrate I) as substrate. Recombinant Igo1 thiophosphorylated

in vitro by Rim15, but not Igo1S64A or unphosphorylated Igo1,

strongly inhibited the phosphatase activity of PP2ACdc55 in

a concentration-dependent manner (Figure 2C). Thus, analo-

gous to the situation in higher eukaryotes, the yeast endosulfine

Igo1 is converted into an inhibitor of PP2ACdc55 by phosphoryla-

tion of its Ser64 via the greatwall-orthologous Rim15 protein

kinase.

Label-free Quantitative Proteomics Screens
Our results so far indicated that inhibition of PP2ACdc55 by the

Rim15-Igo1/2 signaling branch is key for cells to gain access

to quiescence. To begin to decode themolecular events that crit-

ically affect the quiescence program, we tried to identify

PP2ACdc55 target proteins by using a label-free quantitative

phosphoproteomic approach (Bodenmiller and Aebersold,

2010). To this end, we compared the protein phosphorylation

patterns of wild-type, rim15D, igo1D igo2D, and pph21D strains

prior to and following a 1 hr rapamycin treatment. In total, the
HA3-Rpc3 (lane 5), and HA3-Pph21 (lane 7) were immunoprecipitated (using

anti-HA affinity matrix; clone 3F10; Roche) from extracts of rapamycin-treated

(1.5 hr) cells coexpressing Igo1-myc8 (lanes 1, 3–5, and 7), Igo1S64A-myc8 (lane

2), or untagged Igo1 (lane 6; negative control). Lysates and immunoprecipi-

tates (IPs) were subjected to Phos-tag phosphate-affinity gel electrophoresis

(Phos-tag) and/or SDS-PAGE and immunoblots were probed with anti-HA or

anti-myc antibodies as indicated. See also Figure S2.

(C) In vitro inhibition of PP2ACdc55 by phosphorylated Igo1 (Igo1-pSer64).

Phosphatase activity of purified PP2ACdc55 was analyzed in the presence and

absence (control) of recombinant Igo1 or Igo1S64A proteins, which have been

subjected to thiophosphorylation by Rim15 prior to use, and expressed as

percentage of the control. Nonphosphorylated Igo1 was included as additional

control. Phosphatase substrates were either Ser/Thr Phosphatase Substrate I

(white bars), which is commonly used to assay PP2A activity, or a synthetic

phosphopeptide whose sequence corresponds to the flanking regions of the

predicted PP2ACdc55 target residue pSer425 within Gis1 (gray bars). In assays

with theGis1-peptide (but not in thosewith the Ser/Thr Phosphatase Substrate

I), nonphosphorylated Igo1, like Igo1S64A, exhibited detectable PP2ACdc55-

inhibitory activity, which was 13-fold lower, however, when compared to the

effect of Igo1-pSer64. Each bar represents the mean ± SD of three indepen-

dent experiments.



Table 1. Proteins for which Rapamycin-Mediated Increase in

Phosphorylation Was Reduced in rim15D and igo1D igo2D and

Enhanced in pph21D Cells

Protein Peptide Sequencea Phosphosite

Blm10 S*AT*PTLQDQK S62, T64

Epo1 MVSANYS*R S293

Gis1 ISS*PLLSR S425

Hsp42 DKS*EAPKEEAGETNK S182

Hxk2 KGS*MADVPKELMQQIENFEK S15

Pgm3 ASVGVMITAS*HNPK S158

Sec16 S*NSNVPSLFADFPAPPK S1576

Smy2 SNT*PLLGGR T70

Tsl1 SATRS*PSAFNR/IAS*PIQHEHDSGSR S77/S147

Vts1 SKS*AEPHVNS*SPNLIPVQK S311, S318

Ymr196w IGGTHSGLT*PQSSISSDK T1013

Ypl247c SS*ISFGSSQR S12
aThe phosphorylated serine or threonine residues are marked with an

asterisk (S*/T*). For a detailed description of the selection criteria for

peptides represented in this list, please see the text. Proteins are sorted

by alphabetic order.
eight phosphorylation patterns contained 2,044 distinct phos-

phopeptides mapping to 830 different proteins (Table S1). In

wild-type cells, we found 500 phosphopeptides to be signifi-

cantly (i.e., >2-fold) upregulated following rapamycin treatment.

Among these, the upregulation of 162 and 98 phosphopeptides

was diminished more than 2-fold in rim15D and igo1D igo2D

cells, respectively. To identify the most likely PP2ACdc55 targets,

we then selected, among the 64 phosphopeptides that showed

diminished upregulation in both rapamycin-treated rim15D and

igo1D igo2D mutant cells, the ones that were at least 1.9-fold

upregulated in pph21D cells under the same conditions. Intrigu-

ingly, among the remaining 13 phosphopeptides (Table 1), two

mapped to proteins, i.e., Vts1 and Gis1, which have previously

been implicated in regulating gene expression of nutrient-

controlled genes. Vts1 is a member of the Smaug family of

proteins, which directly binds target mRNAs and regulates their

stability by interfering with the 50-30 mRNA decay pathway (Rendl

et al., 2008), and Gis1 is a transcription factor, which plays a key

role in proper setup of quiescence and CLS downstream of

Rim15 (Pedruzzi et al., 2000). Here, we focus our analyses on

Gis1, which—together with Msn2/4 that substitute to some

extent Gis1 function in gis1D cells (S.B., unpublished data)—is

required for rapamycin-induced RTN2 and SOL4 expression in

wild-type, rim15D cdc55D, or rim15D pph21D cells (Figures 1D

and S1B).

Gis1 Is a PP2ACdc55 Target
To validate the results of our phosphoproteome studies, we

examined the migration pattern of Gis1-HA3 by phosphate

affinity gel electrophoresis in different yeast strains. When

analyzed in extracts of exponentially growing wild-type,

rim15D and igo1D igo2D cells, Gis1-HA3 migrated in at least

three distinct bands. Following rapamycin treatment, these

bands collapsed into one slow-migrating form in wild-type, but
not in rim15D and igo1D igo2D cells (Figure 3A). The latter defect

in rim15D and igo1D igo2D cells could be cured by loss of Pph21

or Cdc55. Interestingly, in exponentially growing cdc55D cells,

Gis1-HA3 was detectable only in its slow-migrating form

independently of the presence or absence of Rim15 or Igo1/2

(Figure 3A). This was not the case in exponentially growing

pph21D cells, which likely exhibit residual PP2ACdc55 activity

due to the presence of Pph22. Thus, in exponentially growing

cells, PP2ACdc55 specifically targets presumably two (or more)

phosphorylated residues in Gis1, which account for the protein

bands observed in wild-type samples. Together, these results

indicate that in rapamycin-treated cells, Rim15-activated

Igo1/2 specifically antagonize PP2ACdc55-mediated dephos-

phorylation of Gis1. In line with this model we further found

that PP2ACdc55 was able to dephosphorylate in vitro a synthetic

phosphopeptide corresponding in sequence to the flanking

regions of the predicted Pph21 target residue pSer425 within

Gis1 (Table 1), and that Igo1-pSer64 strongly inhibited this

activity in a concentration-dependent manner (Figure 2C). More-

over, in coIP experiments using extracts of exponentially

growing cells, Gis1-myc13 bound Cdc55-HA3 or HA3-Pph21,

but not HA3-Nap1 (control), whereas mutation of Ser425 to Ala

in Gis1 or treatment of cells with rapamycin strongly reduced

the observed interactions (Figure 3B).

Albeit Ser425 is unlikely to be the only PP2ACdc55-regulated

phosphoresidue in Gis1, we addressed the possibility that phos-

phorylation of Gis1-Ser425 may be functionally relevant in vivo.

To this end, we used a PDS-lacZ reporter, which depends

entirely on the presence of Gis1 for its expression following

glucose-limitation (Pedruzzi et al., 2000) (Figure 3C). In these

assays, Gis1S425A-overexpressing cells exhibited significantly

reduced PDS-lacZ expression when compared to Gis1-overex-

pressing control cells (Figure 3C). Similarly, plasmid-encoded,

overexpressed Gis1S425A was less efficient than Gis1 in restoring

to msn2/4D gis1D triple mutants their ability to express RTN2

following rapamycin treatment (Figure 3D). Loss of Pph21 or of

Cdc55 did not diminish the relative RTN2 expression defect in

Gis1S425A- versus Gis1-overexpressing cells, as expected, but

it generally resulted in higher basal levels of rapamycin-induced

RTN2 expression. Thus, in addition to corroborating our

assumption that Ser425 is a functionally relevant PP2ACdc55

target residue within Gis1, these data indicate that PP2ACdc55

regulates Gis1 function also via a Ser425-independent mecha-

nism. To further address the mechanism by which the Ser425

residue controls Gis1 function, we also studied (via Chromatin

IP [ChIP] assays) whether Ser425 may be critical for Gis1 recruit-

ment to the RTN2 promoter. In line with our RTN2 expression

data (Figure 3D), we observed that binding of Gis1 to the RTN2

promoter increased following rapamycin treatment and that

this increase was significantly reduced when Ser425 within Gis1

was mutated to Ala (Figure 3E). Moreover, loss of Rim15 or of

Igo1/2 also diminished the rapamycin-induced recruitment of

Gis1 to the RTN2 promoter, which could be largely prevented

by introduction of a cdc55D mutation in these strains. Since

loss of Rim15 or Igo1/2 affects RTN2 promoter binding of Gis1

more strongly than the Ser425 to Ala mutation in Gis1 (Figure 3E),

these data also indicate that PP2ACdc55 regulates Gis1 promoter

recruitment in part independently of Ser425.
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Figure 3. PP2ACdc55 Regulates Phosphorylation and Consequently Promoter Recruitment of Gis1

(A) Phos-tag phosphate-affinity gel electrophoresis analysis of the phosphorylation pattern of Gis1-HA3 in exponentially growing (EXP) and rapamycin-

treated (RAP; 10 or 60 min) wild-type and indicated mutant strains (+, wild-type gene; D, gene deletion[s]). p-Gis1-HA3 denotes hyperphosphorylated forms of

Gis1-HA3.

(B) Biochemical interaction between PP2ACdc55 and Gis1. Cdc55-HA3 (lanes 2, 4, 5, 8, and 9), untagged Cdc55 (lane 1), HA3-Nap1 (lane 3; unrelated control

protein), and HA3-Pph21 (lanes 6, 7, 10, and 11) were immunoprecipitated (as in Figure 2B) from extracts of exponentially growing (EXP) or rapamycin-treated

(RAP; 90 min) cells coexpressing, or not (lane 2), Gis1-myc13 (lanes 1, 3, 4, 6, 8, and 10) or Gis1S425A-myc13 (lanes 5, 7, 9, and 11).

(C) PDS-LacZ expression (in Miller units) in glucose-limited (i.e.. postdiauxic) wild-type (GIS1; +) or gis1D (GIS1;D) cells carrying an empty vector (�), or a plasmid

driving overexpression of wild-type Gis1-HA3 (pGIS1-HA3; +) or Gis1S425A-HA3 (pGIS1S425A-HA3; S425A).

(D) qRT-PCR analysis ofRTN2 expression following rapamycin treatment (2.5 hr) in wild-type and indicatedmutant cells carrying an empty vector (�), or a plasmid

driving overexpression (from the ADH1 promoter) of wild-type Gis1-HA3 (pGIS1-HA3; +) or Gis1S425A-HA3 (pGIS1S425A-HA3; S425A). The value for the reference

sample (rapamycin-treated wild-type cells) was normalized to 1.0. For details, see legend of Figure 1D. Protein levels of Gis1-HA3 andGis1S425A-HA3were verified

by immunoblotting (Figure S3).

(E) ChIP analysis of Gis1-HA3 and Gis1S425A-HA3 recruitment to the RTN2 promoter (pRTN2; normalized with respect to the unrelated genomic region of STE3).

Gis1-HA3 (pGIS1-HA3; +) and Gis1S425A-HA3 (pGIS1S425A-HA3; S425A) were overexpressed from plasmids. ChIPs were performed in samples drawn either from

exponentially growing (RAP; �) or rapamycin-treated (RAP; +; 2.5 hr) wild-type or indicated mutant strains. The value for the reference sample (exponentially

growing wild-type cells overexpressing Gis1-HA3) was normalized to 1.0. In Figures 2C–2E, each bar represents the mean ± SD of three experiments.
In conclusion, all of our data are consistent with a model in

which Rim15 controls transcription of a specific set of

nutrient-controlled genes by regulating the phosphorylation

status, and hence promoter recruitment of Gis1 indirectly via

the Igo1-PP2ACdc55 effector branch. Extending our previous

conclusions (Talarek et al., 2010), our current study therefore

suggests that Rim15 coordinates both aspects of gene expres-

sion, i.e., transcriptional activation and protection of the

respective transcripts from 50-30 mRNA decay pathway-medi-

ated degradation, by activating Igo1/2 and consequent inhibi-

tion of PP2ACdc55. Future studies should therefore address

the possibility that Rim15 itself may be recruited to specific

promoter regions to coordinate local activation of transcription

and ensure cotranscriptional loading of activated Igo1 onto

newly forming messenger ribonucleoprotein (mRNP) com-
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plexes, which may be key to control the phosphorylation status

and activity of 50-30 mRNA decay pathway proteins within these

complexes. Notably, in this context, Vts1 (Table 1) binds an

RNA motif, which occurs specifically in a set of genes that

are induced in cells entering quiescence (Riordan et al.,

2011). In addition, a large fraction of the genes whose expres-

sion is most strongly affected by loss of Vts1 (including RTN2

and SOL4) appears to also be regulated by Rim15-Igo1/2

(Oberstrass et al., 2006; Talarek et al., 2010). It will therefore

be interesting to also explore a mechanistically different model

in which temporally coordinated, but parallel regulation by the

Igo1/2-PP2ACdc55 module of both Gis1 and Vts1 may allow

cells to coordinate transcription and posttranscriptional mRNA

stability of Gis1-dependent genes containing a Vts1 RNA-

binding motif.



Together with previous studies (for a recent review, see

Longo et al., 2012), our current data show that the Rim15-

Igo1/2-PP2ACdc55 module represents an element of a TORC1-

controlled effector branch, which plays a major role in shaping

both the cellular quiescence program and CLS in yeast. Given

the universal role of TORC1 in CLS regulation (Fontana et al.,

2010), as well as the remarkable conservation of the Rim15-

Igo1/2-PP2ACdc55 module, it will be interesting to examine

whether the Gwl-Ensa/Arpp19-PP2A-B55d signaling branch

may also regulate CLS in higher eukaryotes via similar mecha-

nisms as described here in yeast. Conversely, given the impor-

tant role of Gwl-Ensa/Arpp19-PP2A-B55d in regulating mitosis

in higher eukaryotes (Mochida and Hunt, 2012), future studies

should also address the possibility that Rim15-Igo1/2-PP2ACdc55

may contribute to the control of cell cycle events in yeast.

EXPERIMENTAL PROCEDURES

Strains, Growth Conditions, and Plasmids

S. cerevisiae strains (Table S2) were grown at 30�C in standard rich medium

(YPD) with 2% glucose or in synthetic defined (SD) medium (0.17% yeast

nitrogen base, 0.5% ammonium sulfate, and 2% glucose) complemented

with the appropriate nutrients for plasmid maintenance. Rapamycin was

used at a concentration of 200 ng ml�1. The plasmids used in this study are

listed in Table S3.

Quantitative Real-Time PCR

Total RNA was extracted using the hot acidic phenol method. DNA was

removed with the DNA-free Kit (Applied Biosystems) and first-strand cDNA

was synthesized with the PrimeScript RT Reagent Kit (TaKaRa). Quantitative

RT-PCR (qRT-PCR) was performed on a Rotor-Gene 6000 machine (Corbett

Life Science), with the 5 3 EvaGreen QPCR Mix II (no Rox; Bio&SELL). Oligo-

nucleotides used for qRT-PCR are listed in Table S4. RTN2 and SOL4 mRNA

levels were normalized with respect to TBP1 mRNA.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) was performed mainly as published

(Aparicio et al., 2005) using cells that were fixed for 15 min at 30�C with 1%

formaldehyde. The lysates were sonicated for six cycles (15 s on, 1 s off)

with aMisonix 3000 sonicator. Gis1-HA3 or Gis1S425A-HA3were IPed overnight

at 4�C using anti-HA antibodies (ab9110; abcam) and protein-G agarose and

DNA was analyzed by qPCR (see Table S4 for oligonucleotides). Signals for

the RTN2 promoter were normalized with respect to the unrelated genomic

region of STE3.

Phosphatase Assays

The PP2ACdc55 complexwas isolated from exponentially growing cdc55D cells

carrying the p416-ADH1p-CDC55-HA3 plasmid. PP2ACdc55 was IPed from

140 mg total extract in lysis buffer (50 mM HEPES-KOH [pH 7.6], 1 M KCl,

1 mM MgCl2, 1 mM EGTA, 5% glycerol, 0.45% Tween-20, 2 mM PMSF, and

one tablet of Complete Protease Inhibitor Cocktail [Roche Diagnostics

GmbH] per 50 ml) using anti-HA antibodies (12CA5) and protein-G agarose.

The integrity of the PP2ACdc55 complexwas assessed via western blot analysis

using anti-HA, anti-Tpd3, and anti-Pph21 antibodies. Igo1-His6 and Igo1S64A-

His6 were isolated from bacteria with Ni-NTA resin (QIAGEN) and phosphory-

lated when indicated by GST-Rim15-HA3 using 1 mM adenosine 50-[g-thio]
triphosphate (Reinders et al., 1998). The in vitro phosphatase assay (60 min

at 30�C) was performed in 50 ml PP2A buffer (20 mM Tris [pH 7.5], 5 mM

MgCl2, 0.02% b-mercaptoethanol, and 1 mM EGTA) with 1/60th of

the PP2ACdc55 purification, 100 mM Ser/Thr Phosphatase Substrate I

(DLDVPIPGRFDRRVpSVAAE; R&D Systems) or 200 mM Gis1-pSer425

substrate (TISRISpSPLLSRMMDLSNIVEPTLDDP; Thermo Scientific), and

either 0 (control), 25 ng (13), or 250 ng (103) Igo1 (or Igo1S64A) that was, or

was not, subjected to in vitro phosphorylation by Rim15 prior to use. To assess
PP2A activity, the released phosphate was measured using BIOMOL GREEN

(ENZO Life Sciences).

CoIP and Phos-tag Phosphate-Affinity Gel Electrophoresis

Cells were fixed (Figures 2B and S2), or not (Figure 3B), for 20 min with 1%

formaldehyde. After quenching with 0.3 M glycine, whole cell extracts were

prepared and incubated with an anti-HA affinity matrix (clone 3F10; Roche).

Phosphorylation of Gis1-HA3 and Igo1-myc8 was assessed by loading tri-

chloroacetic acid (TCA) whole-cell extracts or lysates on 7.5% SDS-PAGE

gels containing 25 mM Phos-tag (Wako).

Phosphoproteomics Sample Preparation and Analysis by Label-free

Quantification

All the budding yeast samples for the phosphoproteomics analysis were pro-

cessed as described (Bodenmiller and Aebersold, 2010). Briefly, cultures (all in

triplicates) were incubated on ice for 10 min in the presence of 6.25% ice cold

TCA before pelleting. For each replicate, 3 mg proteins were digested by

trypsin (1:125 w/w) and cleaned by reverse-phase chromatography. Phospho-

peptide isolation was performed by titanium dioxide resin (1.25 mg resin for

each sample). Isolated phosphopeptides were analyzed by a LTQ FT Ultra

mass spectrometer (Thermo Scientific, Germany), interfaced with a nanoelec-

trospray ion source. Chromatographic separation of peptides was performed

on a Proxeon Easy-nLC II system (Odense, Denmark) using a 10.5 cm3 75 mm

column packed with 3 mm Magic C18 material. Peptides were separated at

a flow rate of 300 nl min-1 with a gradient increasing from 5 to 40% acetonitrile.

The five most intense ions detected in each MS1 scan were selected for frag-

mentation. Themass spectrometry data were searched against an SGD decoy

database for yeast proteins using Sequest (Lundgren et al., 2009). OpenMS

version 1.7 (Sturm et al., 2008) was used both to detect MS1 features and to

align them between the different experimental conditions. By using a decoy

database (Käll et al., 2008), a Peptide Prophet’s probability threshold was

computed in order to achieve a false discovery rate below 1%, and was

used to filter OpenMS results. Phosphopeptides features with identical

sequence and phosphorylation state, but different charge states, weremerged

together.
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