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Abstract – Recommender systems are promising ways to filter the abundant information in
modern society. Their algorithms help individuals to explore decent items, but it is unclear how
they distribute popularity among items. In this paper, we simulate successive recommendations
and measure their influence on the dispersion of item popularity by Gini coefficient. Our result
indicates that local diffusion and collaborative filtering reinforce the popularity of hot items,
widening the popularity dispersion. On the other hand, the heat conduction algorithm increases
the popularity of the niche items and generates smaller dispersion of item popularity. Simulations
are compared to mean-field predictions. Our results suggest that recommender systems have
reinforcing influence on global diversification. Finally, the study of the hybrid method of mass
diffusion and heat conduction reveals that the influence of recommender systems is actually
controllable.

Introduction. – Due to the rapid expansion of the
internet, we are overloaded by an increasing amount
of information from the World Wide Web [1]. For
instance, one has to choose among millions of candidate
commodities to shop online. Comprehensive exploration
is infeasible [2]. Various recommendation approaches have
thus been proposed to help filtering the relevant infor-
mation [3,4]. The recommendation algorithms include
popularity-based (PR) method, collaborative filtering
(CF) method [5,6], mass diffusion (MD) method [7], heat
conduction (HC) method [8], the hybrid method of mass
diffusion and heat conduction [9] and so on. In general,
they use the activity record and available personal profiles
of users to uncover their potential preferences.
Though recommendation algorithms are helpful in

filtering information, they may significantly influence the
distribution of items’ popularity (i.e. the degree distribu-
tion of items). This is caused by guiding people’s choices,
which influence subsequent recommendations and hence
the choices of others. The influence is amplified with
successive recommendations. For example, if a recom-
mendation algorithm always recommends popular items,
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gradually only the most popular items survive, causing
the market to be further dominated by these items. On
the other hand, if a recommendation algorithm tends
to recommend less popular items, item popularity will
become homogeneous. In these cases, recommendations
impose a reinforcing influence on the dispersion of items’
popularity, i.e. the diversity, which affects subsequent
choices.
Actually, understanding the reinforcing influence of

recommender system is of great significance. From the
theoretical point of view, it presents a physics perspec-
tive and utilizes microscopic interactions to explain macro-
scopic behaviors of recommender systems [10,11], unlike
most existing works which are devoted to improve recom-
mendation accuracy [6]. It is also worth noting that
similar studies on evolution of movie popularity [12,13]
have resulted in consistent predictions compared with the
observed data. In a practical sense, one can control the
diversity of commodities in online retailers with the help
of recommender systems. In particular, when one consid-
ers the reinforcing influence on global diversity as an
undesired side-effect of recommending systems, theoreti-
cal understanding may provide a solution to minimize the
effect.
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Fig. 1: (Color online) The change of Gini coefficient with time
in the APS citation data and the baby name data.

In this paper, we use the Gini coefficient to measure the
diversity of the system which is actually the dispersion
in item popularity [14]. We note that a small dispersion
implies similar popularity among items, and hence diverse
recommendations for users. If the dispersion is large,
some items dominate in popularity and users have limited
choices. Our result indicates that MD and CF reinforce
the popularity of already popular items, as similar to
PR. On the other hand, HC increases the popularity of
the niche items and generates smaller dispersion in item
popularity. Our results suggest that recommender systems
indeed have reinforcing influence on global diversification.

Dispersion of item popularity. – To quantify global
diversity, we use Gini coefficient G [14] which measures
the dispersion of item popularity, as in the case of
individual wealth. The Gini coefficient has also been
used to measure dispersion in sociology, science and
engineering. Mathematically, it is given by

G= 1− 2
∫ 1
0

C(x) dx, (1)

where C(x) is the normalized cumulative popularity when
items are ranked in ascending order of popularity, with
x being the normalized rank. Specifically, G= 0 corre-
sponds to uniform popularity among items, while G= 1
corresponds to maximal dispersion.
When the dispersion of popularity changes with time,

the changes can be well captured by the Gini coeffi-
cient [15]. As an example, we show such changes on data
of scientific citations and baby names1. The results are
reported in fig. 1, from which we can see the G increases
in APS citation system while it decreases for baby names.
One possible reason is the improving information accessi-
bility: good papers have wider spread among the research
communities and are cited more, which leads to a larger G;
on the other hand, parents know more candidate names
for babies to avoid overlap, resulting in a smaller G. In
the next section, we will study the influence of the recom-
mender systems on the dispersion of item popularity.

1The scientific citation data is based on the citation relation in
the APS (American Physics Society) journals from 1893 to 2009 [16],
and the baby name data is based on the first names taken from US
Social Security Administration, and contain the top 1000 boy and
girl names from 1880 to 2009 [17].

Fig. 2: (Color online) An illustrative example of the evolution of
the bipartite network. The red node corresponds to the active
user, and the red link corresponds to the choice made by the
user according to recommendation results.

Table 1: Abbreviations for each recommendation method.

Method Acronym

Mass Diffusion MD
Heat Conduction HC
User-based Collaborative Filtering UCF
Item-based Collaborative Filtering ICF
Popularity-based Recommendation PR
Random Recommendation RR

The reinforcing influence of recommender
systems. – We investigate in this section the influence
of recommender systems on the global diversity. Here
we consider four simple and fundamental recommen-
dation algorithms, including mass diffusion (MD), heat
conduction (HC), user-based collaborative filtering (UCF)
and item-based collaborative filtering (ICF). In addi-
tion, we consider two benchmark algorithms including
popularity-based recommendation (PR) and random
recommendation (RR), corresponding to the recommen-
dations of respectively most popular and random items.
Abbreviations for each recommendation method are given
in table 1.
Online commercial systems can be well described by

bipartite networks as shown in fig. 2, where circles repre-
sent users and squares represent items. If a user collects
an item, a link is drawn between them. Specifically, we
consider a system of N users and M items represented by
a bipartite network with adjacency matrix A, where the
element aiα = 1, if a user i has collected an object α, and
aiα = 0, otherwise (throughout this paper we use Greek
and Latin letters, respectively, for object- and user-related
indices).
For a target user i, the MD algorithm starts by assigning

one unit of resource to each object collected by i, and
redistributes the resource through the user-item network.
We denote the vector f i as the initial resources on items,
where the α-th component f iα is the resource possessed by
object α. Recommendations for the user i are obtained by
setting the elements in f i to be f iα = aiα, in accordance
with the objects the user has already collected. The
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redistribution is represented by f̃ i =W f i, where

Wαβ =
1

kβ

N∑
j=1

ajαajβ

kj
, (2)

is the diffusion matrix, with kβ =
∑N
l=1 alβ and kj =∑M

γ=1 ajγ denoting the degree of object β and user j
respectively [7]. The resulting recommendation list of

uncollected objects is then sorted according to f̃ iα in
descending order. Physically, the diffusion is equivalent
to a three-step random walk starting with ki units of
resources on the target user i. The recommendation score
of an item is taken to be its amount of gathered resources
after the diffusion.
The HC algorithm works similar to the MD algorithm,

but instead follows a conductive process represented by

Wαβ =
1

kα

N∑
j=1

ajαajβ

kj
. (3)

Physically, the recommendation scores can be interpreted
as the temperature of an item, which is the average
temperature of its nearest neighborhood, i.e. its connected
users. The higher the temperature of an item, the higher
its recommendation score [8].
Unlike the above physical processes, the CF algorithms

provide recommendations based on user or item similari-
ties. It is divided into two main categories: the user-based
CF and the item-based CF [6]. In UCF, the recommenda-
tion score of an item is evaluated by the similarity between
the target user and the users who collected the item. Actu-
ally, the measure of similarities of two nodes in a network
is subject to definition. Here we define the similarity as
the number of common neighbors [18] in the bipartite
networks. The final recommendation score for each item
can be written as

f̃ iα =
N∑
j=1

sijajα, (4)

where sij is the similarity between user i and j. While in
ICF, the recommendation score of an item is evaluated
based on its similarity with the collected items of the
target user. Similarly, the final recommendation score for
each item can be written as

f̃ iα =

M∑
β=1

sαβaiβ , (5)

where sαβ is the similarity between item α and β.
To study the effect of the above mentioned algorithms

on the dispersion of item popularity, we consider a scenario
of recommender systems as follows. At each step, a random
user is selected as the active user, and the recommendation
scores of all items are then evaluated for him/her. For
simplicity, we assume that the active user would accept
the recommendations by selecting the uncollected item
with the highest score, i.e. we add a link between the

Table 2: Description of the data.

Network Users Items Links Sparsity

Movielens 943 1682 82520 5.20 · 10−2
Netflix 10000 6000 701947 1.17 · 10−2
Delicious 10000 232657 1233997 5.30 · 10−4
Amazon 20000 66525 258911 1.95 · 10−4
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Fig. 3: (Color online) The evolution of the Gini coefficient for
item popularity when different recommendation methods are
implemented in real systems. Discussions on hybrid method
will be given in eq. (10) and the corresponding descriptions.

active user and this item in the bipartite network. An
illustrative example can be seen in fig. 2. We have also
considered a similar scenario where users choose the top-
20 recommended items with probability proportional to
their scores and consistent results are obtained.
In one macro-step of our simulation, we randomly

choose 10% of users to be active. After each macro-
step, we evaluate the dispersion of the item popularity
by Gini coefficient. Note that we do not consider the
growth of the system since introducing new users or items
may involve the cold start problem for them [19]. At
the beginning of the simulation, we use real data as the
initial bipartite networks. The datasets we examined are
the subsets of data obtained from four online systems:
Movielens, Netflix, delicious and Amazon2 (see table 2).
We show in fig. 3 the evolution of Gini coefficient in

simulations as a function of macro-step. As one can see,
the Gini coefficient increases with MD, UCF and ICF
algorithms. This is because of their reinforcing influence
on the system, which leads to a wider dispersion of item
popularity after successive recommendations. A further

2Movielens: sampled from 19 Sep 1997 to 22 Apr 1998. Netflix:
sampled from Netflix prize data. Delicious: downloaded from Deli-
cious.com. Amazon: sampled from 28 Jul 2005 to 27 Sep 2005. We
consider a link exists when rating is greater than 2 in Movielens and
Netflix.
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Fig. 4: (Color online) The increment in item popularity
with MD, UCF, ICF and PR implemented in real systems.
Insets: The increment in item popularity with HC and RR
implemented (horizontal axis in log-scale).

evidence can be seen in fig. 4, which shows that popular
items become more popular, while the rest of the items
remain undiscovered. This corresponds to an undesired
influence, as choices for users become more limited with
these recommendation algorithms.
We can further understand the reinforcing influences of

the MD, UCF and ICF recommender systems by compar-
ing their Gini coefficients with that of the unpersonalized
PR algorithm. The results in figs. 3 and 4 imply that these
four algorithms only recommend popular items, leading
to similar changes in the distribution of item popular-
ity. Some differences are observed between PR and the
rests in fig. 4(c) and (d). It is because MD, UCF and ICF
only recommend the relevant items according to former
choices of users. For each user, the number of relevant
items is small, especially in sparse datasets like Delicious
and Amazon. This personalization in MD, UCF and ICF
inevitably guide the popularity to some not so hot but
relevant items, which is different from PR, though the
resultant G is not significantly smaller than that of PR.
On the other hand, the HC algorithm behaves quite

differently from the other algorithms. As we can see in
fig. 3(a), (b) and (d), it decreases G. This implies that HC
does not reinforce the popularity of hot items as MD, UCF
and ICF. While in fig. 3(c), G increases slightly. This may
due to the high sparsity of delicious dataset, such that the
three-step conduction process in HC can only reach some
items with large degree, and inevitably add links to them
many times. On the other hand, HC is different from the
uniform addition of links in RR, as it inclines to add links
to items with small degree as seen from the insert of fig. 4.
We emphasize that similar results are observed with

entropy or second moment of item degree distribution

to be the measures of diversity, which indicates the
robustness of our findings here.

The mean-field approximation. – To better under-
stand the influences of recommendation systems, we derive
analytically the distribution of item scores after the
recommendation processes. The major difficulty in the
analysis comes from the particular network topology of
each dataset, which embeds the non-trivial correlations
between users and items [20,21]. Here we focus on the
recommendation influences, and assume a simple topol-
ogy where users and items are randomly connected [22].
This corresponds to a crude mean-field approximation, but
such assumption facilitates the analysis and the illustra-
tion of physical behaviors underlying the recommendation
algorithms.
To begin our analysis, we derive the probability piα for a

user i to connect to an item α in a random graph, with pre-
defined user and item degrees identical to that of the real
network. Suppose we start with ki cavities on user i and
kα cavities on item α, which are, respectively, the degree
of i and α. We then randomly connect the cavities of users
to the cavities of items to establish links. If one cavity is
picked randomly among the items, the probability that
α being picked is kα∑

M
β=1 kβ

. It implies that piα = 1− (1−
kα∑
M
β=1 kβ

)ki , where (1− kα∑
M
β=1 kβ

)ki is the probability that i

is not connected to α. As
∑M
β=1 kβ� kα, expansion to the

first order of kα leads to piα ≈ 1− (1− ki kα∑
M
β=1 kβ

) = kikα
c
,

where c=
∑M
β=1 kβ is the total number of links in the

bipartite network.
We then derive the mean-field expression of recom-

mendation scores in the MD recommender system. As
mentioned above, MD is based on the three-step diffu-
sion. The resource vector for items in the first step and
the last step are denoted, respectively, by f and f̃ . In
the second step, the resources are in the users’ side and
the corresponding vector is denoted as e. By considering
the last step of the diffusion process, the score of α from

user i is given by f̃ iα = (1− piα)
∑N
j=1

eijpjα

kj
. Substitution

of pjα =
kjkα
c
leads to

f̃ iα =

(
1− kikα

c

) N∑
j=1

(
eij

kj

kjkα

c

)
=

(
1− kikα

c

)
kikα

c
, (6)

as
∑
eij =

∑
f iα = ki.

Next we derive the scores for HC by again considering
the last step of the conduction process. However, the
total “resources” does not conserve in heat conduction
but instead the temperature of user j is given by eij =
ki
M

∑M
γ=1

pjγ
kj
= ki
M
, where ki

M
corresponds to the random

choices of initial collected item for i. Therefore,

f̃ iα =

(
1− kikα

c

) N∑
j=1

(
ki

Mkα

kjkα

c

)
=

(
1− kikα

c

)
ki

M
,

(7)
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Fig. 5: (Color online) The simulation result and the theoretical
result of the total recommendation score vs. the original item
degree in different recommendation engines. The results are
based on Delicious dataset.

In UCF, scores of an item are evaluated by the simi-
larity between the target user and the users who have
collected it. The user similarity is given by the number of
common neighbors. Therefore, f̃ iα = (1− piα)

∑N
j sijpjα,

where sij ≈ kikj
M
in the mean-field approximation. The

score for object α is then approximated by

f̃ iα =

(
1− kikα

c

) N∑
j=1

(
kikj

M

kjkα

c

)
=

(
1− kikα

c

)
kikαb

cM
,

(8)

where b=
∑N
j=1 k

2
j is a constant for a given network.

As similar to UCF, the item similarity in ICF can be
approximated by sαβ ≈ kαkβ

N
in the mean-field approxima-

tion. The score for object α is then approximated by

f̃ iα =

(
1− kikα

c

) M∑
β=1

(
kikβ

c

kαkβ

N

)
=

(
1− kikα

c

)
kikαd

cN
,

(9)

where d=
∑M
β=1 k

2
β is a constant for a given network.

In order to compare the simulated results and the mean-
field predictions, we evaluate the corresponding total
scores Fα =

∑N
i f̃

i
α that an item receives from all the users.

As shown in fig. 5, the mean-field approximation effective
captures the trend of the recommendation scores. The
difference of the magnitude between the simulation and
mean-field result comes from the non-trivial correlation
between users and items in real networks.
Further insights are drawn by noting c� kikα in most

systems, which implies f̃ iα ∝ kikα in eqs. (6), (8) and
(9). Since we assume that users always accept the item
with highest recommendation scores, the recommendation
scores in MD, UCF and ICF are thus similar to that of
PR which recommends the most popular items. This again
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Fig. 6: (Color online) The Gini coefficient as a function of
λ in the hybrid recommendation algorithm implemented on
real systems. The vertical and horizontal dashed lines are,
respectively, the values of λ∗ with optimal recommendation
accuracy and the Gini coefficients before recommendation
algorithms are implemented.

shows the reinforcing influence of these recommendation
algorithms. On the other hand, eq. (7) suggests f̃ iα ∝ ki in
HC, which is independent of item as in the case of random
recommendations.
Though the approximated scores of HC agree well with

RR, their behaviors are different in terms of choices of
items. According to f̃ iα = (1− piα)

∑N
j=1

kipjα
kjkα
, users select

the reachable items with lowest degree after three-step
conduction, compared to the random choice. Therefore,
HC and RR show different influence on the dispersion of
item popularity, as we can see in fig. 3.

Steady Gini coefficient by hybrid recommenda-
tions. – As we have seen from the previous sections, MD
reinforces the popularity of hot items and limits available
choices, while HC recommends items with low popular-
ity and increases global diversity. It is thus interesting to
examine the influence on diversity if these two algorithms
with opposite influences are combined. We thus adopt the
hybrid algorithm of MD and HC proposed in [9], with the

new recommendation score h̃α given by

h̃α = λf̃
MD
α +(1−λ) f̃HCα . (10)

The parameter λ adjusts the relative weight between the
two algorithms. When λ increases from 0 to 1, the hybrid
algorithm changes gradually from HC to MD. We remark
that though eq. (10) corresponds to a linear combination of
scores, the hybrid algorithm is a non-linear combination of
HC and MD as users select only items with highest scores.
The influence of the hybrid algorithm on the Gini

coefficient is shown in fig. 6 as a function of λ. The
lines with different symbols correspond to G measured
after increasing macro-step. As we can see from fig. 6,
G increases with λ, corresponding to a transition from
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HC to MD recommender systems. It is interesting to
note that G shows a significant increase in a range of
λ on the Netflix and Movielens datasets, and becomes
saturated afterwards. The saturated G corresponds to
dominance of the MD algorithm such that only popular
items are recommended, despite the presence of HC.
Similar behaviors are observed in fig. 6(c) and (d) in the
Delicious and Amazon datasets, in which the saturated G
corresponds to the dominance of the HC algorithm such
that niche items are more likely to be recommended.
Another interesting behavior is noted in fig. 6 when

we compare G after different macro-steps of recommenda-
tions. As we can see, the lines with different symbols inter-
sect at a particular value of λ, suggesting a steady G after
the reinforcement of recommendations. The correspond-
ing value of λ thus corresponds to the balance between
the HC and MD algorithms, leading to steady dispersion
in item popularity. This is desirable when one considers
the reinforcing influence on global diversity as an unde-
sired side-effect of recommender systems. These values
of λ and the corresponding G are compared respectively
to λ∗ with highest recommendation accuracy [6] and to
the Gini coefficient before recommendation algorithms are
implemented. Specifically, λ∗ is obtained by minimizing
the ranking score index as in ref. [9]. We can see that the
hybrid method with λ∗ increases G in fig. 3. These results
show that high recommendation accuracy does not always
guarantee global diversity, leading to a paradox in recom-
mendations.

Conclusion. – Recommendation is an effective way
to solve the problem of excess information. However, it
is unclear how it allocates popularity among items. In
this paper, we simulate successive recommendations and
measure their influence on the dispersion of item popular-
ity by the Gini coefficient. The results indicate that local
diffusion and collaborative filtering reinforce the popular-
ity of hot items, widening the popularity dispersion. On
the other hand, the heat conduction algorithm increases
the popularity of the niche items and generates a smaller
dispersion of item popularity. Simulations are compared
to mean-field approximation. Our results indicate that
recommender systems have a reinforcing influence on the
diversity of choices of commodities.
The present work raises a number of questions where

investigations could further deepen our understanding of
recommender systems. For instance, to incorporate in
mean-field approximation the correlations between users
and items is a meaningful yet non-trivial extension, as the
present analysis is based only on uncorrelated networks.
Moreover, though the present scenario captures a clear
picture of recommendation influence, a more realistic case
is to consider recommendations on evolving networks. One
possibility is through rewiring and growing models [12,23],
where further exploration is required.
Taken together, our work not only provides a deeper

understanding of some recommendation methods, but also

highlights the importance of the global diversity and may
shed light on developing a new recommendation method
which can directly control the global diversity.
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