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For Alice. 
Follow the white rabbit. 

 
 
 
 

 
 

 
 
 
 
 

“The Caterpillar took the hookah out of its mouth and yawned once or 
twice, and shook itself. Then it got down off the mushroom, and crawled 

away into the grass, merely remarking as it went, “One side will make 
you grow taller, and the other side will make you grow shorter.” 

“One side of what?  The other side of what? “ thought Alice to herself. 
“Of the mushroom," said the Caterpillar, just as if she had asked it 

aloud; and in another moment it was out of sight.“ 
 
 
 
 

Lewis Carrol (1916, p. 29) 
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AAbbssttrraacctt  

“Inductive fuzzy classification” (IFC) is the process of assigning 
individuals to fuzzy sets for which membership functions are based on 
inductive inferences. In this thesis, different methods for membership 
function induction and multivariate aggregation are analyzed. For 
univariate membership function induction, the current thesis proposes 
the normalized comparisons (ratios and differences) of likelihoods. For 
example, a normalized likelihood ratio can represent a membership 
degree to an inductive fuzzy class. If the domain of the membership 
function is numeric, continuous membership functions can be derived 
using piecewise affine interpolation. If a target attribute is continuous, 
it can be mapped into the “Zadehan” domain of numeric truth-values 
between 0 and 1, and membership degrees can be computed by a 
normalized ratio of likelihoods of fuzzy events. 

A methodology for multivariate IFC for prediction has been 
developed a part of this thesis: First, data is prepared into a matrix 
format. Second, the relevant attributes are selected. Third, for each 
relevant attribute, a membership function to the target class is induced. 
Fourth, transforming the attributes into membership degrees in the 
inductive fuzzy target class fuzzifies these attributes. Fifth, for every 
data record, the membership degrees of the single attribute values are 
aggregated into a membership degree in the target class. Finally, the 
prediction accuracy of the inductive membership degrees in comparison 
to the target variable is evaluated. 

The proposed membership function induction method can be 
applied to analytics for selection, visualization, and prediction. First, 
transformation of attributes into inductive membership degrees in fuzzy 
target classes provides a way to test the strength of target associations 
of categorical and numerical variables using the same measure. Thus, 
relevant attributes with a high target correlation can be selected. 
Second, the resulting membership functions can be visualized as a 
graph. This provides an intuitive depiction of target associations for 
different values of relevant attributes and allows human decision 
makers to recognize interesting parts of attribute domains regarding 
the target. Third, transformation of attribute values into membership 
degrees in inductive fuzzy classes can improve prediction of statistical 
models because nonlinear associations can be represented in 
membership functions.  

In marketing analytics, these methods can be applied in several 
domains. Customer analytics on existing data using attribute selection 
and visualization of inductive membership functions provide insights 
into different customer classes. Product analytics can be improved by 
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evaluating likelihood of product usage in the data for different customer 
characteristics with inductive membership functions. Transforming 
customer attributes into inductive membership degrees, which are 
based on predictive models, can optimize target selection for individual 
marketing and enhance the response rate of campaigns. This can be 
embedded in integrated analytics for individual marketing. 

A case study is presented, in which IFC was applied in online 
marketing of a Swiss financial service provider. Fuzzy classification was 
compared to crisp classification and to random selection. The case study 
showed that, for individual marketing, a scoring approach can lead to 
better response rates than a segmentation approach because of 
compensation of threshold effects. 

A prototype was implemented that supports all steps of the 
prediction methodology. It is based on a script interpreter that 
translates inductive fuzzy classification language (IFCL) statements 
into corresponding SQL commands and executes them on a database 
server. This software supports all steps of the proposed methodology, 
including data preparation, membership function induction, attribute 
selection, multivariate aggregation, data classification and prediction, 
and evaluation of predictive models.  

The software IFCL was applied in an experiment in order to 
evaluate the properties of the proposed methods for membership 
function induction. These algorithms were applied to 60 sets of real 
data, of which 30 had a binary target variable and 30 had a gradual 
target variable, and they were compared to existing methods. Different 
parameters were tested in order to induce an optimal configuration of 
IFC. Experiments showed a significant improvement in average 
predictive performance of logistic regression for binary targets and 
regression trees for gradual targets when, prior to model computation, 
the attributes were inductively fuzzified using normalized likelihood 
ratios or normalized likelihood differences respectively. 
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ZZuussaammmmeennffaassssuunngg  

Induktive unscharfe  Klassifikation (inductive fuzzy classification, 
IFC) ist der Prozess der Zuordnung von Individuen zu unscharfen 
Mengen, deren Zugehörigkeitsfunktionen auf induktiven 
Schlussfolgerungen basieren. In der vorliegenden These werden 
verschiedene Methoden für die Induktion von Zugehörigkeitsfunktionen 
und deren multivariaten Aggregation analysiert. Es wird 
vorgeschlagen, für die Induktion von univariaten 
Zugehörigkeitsfunktionen Vergleiche (Verhältnisse und Differenzen)  
von Wahrscheinlichkeiten (Likelihoods) zu normalisieren. Zum Beispiel 
kann das normalisierte Wahrscheinlichkeitsverhältnis (normalized 
Likelihood Ratio, NLR) einen Zugehörigkeitsgrad zu einer induktiven 
unscharfen Klasse repräsentieren. Wenn der Wertebereich der 
Zugehörigkeitsfunktion nummerisch ist, können stetige 
Zugehörigkeitsfunktionen über eine stückweise affine Interpolation 
hergeleitet werden. Wenn die Zielvariable stetig ist, kann sie in den 
„Zadeh’schen“ Wertebereich der nummerischen Wahrheitswerte 
zwischen 0 und 1 abgebildet werden; und die Zugehörigkeitsgrade 
können als normalisierte Verhältnisse von empirischen bedingten 
Wahrscheinlichkeiten unscharfer Ereignisse (Likelihoods of fuzzy 
events) berechnet werden. 

Eine Methode für multivariate induktive unscharfe Klassifikation 
wurde in dieser These entwickelt. Als erstes werden die Daten in einem 
Matrix-Format aufbereitet. Als zweites werden die relevanten Attribute 
ausgewählt. Drittens wird für jedes relevante Attribut eine 
Zugehörigkeitsfunktion zur Zielklasse mittels normalisierten 
Likelihood-Vergleichen induziert. Viertens werden die Attributwerte in 
Zugehörigkeitsgrade zur induktiven unscharfen Zielklasse 
transformiert. Fünftens werden die Zugehörigkeitsgrade der einzelnen 
Attributwerte jedes Datensatzes in einen Zugehörigkeitsgrad in der 
Zielklasse aggregiert. Schliesslich wird die Vorhersageleistung der 
induktiven Zugehörigkeitsgrade im Vergleich mit der effektiven 
Zielvariable evaluiert. 

Die vorgeschlagenen Methoden können in der Analytik für 
Selektion, Visualisierung und Prognose angewendet werden. Erstens 
bietet die Transformation von Attributen in Zugehörigkeitswerte zu 
induktiven unscharfen Mengen ein Mittel, um die Stärke der 
Zielassoziation von nummerischen und kategorischen Variablen mit der 
gleichen Metrik zu testen. So können relevante Attribute mit einer 
hohen Korrelation mit dem Ziel selektiert werden. Zweitens können die 
resultierenden Zugehörigkeitsfunktionen als Graphen visualisiert 
werden. Das bietet eine intuitive Darstellung der Zielassoziation von 
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verschiedenen Werten von relevanten Attributen, und ermöglicht es 
menschlichen Entscheidungsträgern, die interessanten Teilbereiche der 
Attributdomänen bezüglich des Ziels zu erkennen. Drittens kann die 
Transformation der Attributwerte in Zugehörigkeitswerte zu 
induktiven unscharfen Klassen die Prognose von statistischen Modellen 
verbessern, weil nicht-lineare Zusammenhänge in den 
Zugehörigkeitsfunktionen abgebildet werden können. 

In der Marketing-Analytik können diese Methoden in 
verschiedenen Bereichen angewendet werden. Kundenanalytik 
aufgrund von bestehenden Daten mittels Attributselektion und 
Visualisierung von induktiven Zugehörigkeitsfunktionen liefert 
Erkenntnisse über verschiedene Kundenklassen. Produktanalytik kann 
verbessert werden, indem die Wahrscheinlichkeit der Produktnutzung 
in den Daten für verschiedene Kundenmerkmale mit induktiven 
Zugehörigkeitsfunktionen evaluiert wird. Zielgruppenselektion im 
individualisierten Marketing kann optimiert werden, indem 
Kundenattribute in induktive Zugehörigkeitsgrade transformiert 
werden, um die Rücklaufrate von Kampagnen zu erhöhen, welche auf 
prädiktiven Modellen basieren. Dies kann für individualisiertes 
Marketing in die integrierte Analytik eingebettet werden. 

Eine Fallstudie wird vorgestellt, in der die induktive unscharfe 
Klassifikation bei einem Schweizer Finanzdienstleister im online 
Marketing angewendet wurde. Die unscharfe Klassifikation wurde mit 
der scharfen Klassifikation und einer Zufallsauswahl verglichen. Dies 
zeigte, dass im individualisierten Marketing ein Scoring-Ansatz zu 
besseren Rücklaufquoten führen kann als ein Segmentierungsansatz, 
weil Schwellenwerteffekte kompensiert werden können. 

Ein Prototyp wurde implementiert, welcher alle Schritte der 
multivariaten IFC-Methode unterstützt. Er basiert auf einem Skript-
Interpreter, welcher Aussagen der Sprache für die induktive unscharfe 
Klassifikation (Inductive Fuzzy Classification Language, IFCL) in 
entsprechende SQL-Kommandos übersetzt und auf einem 
Datenbankserver ausführt. Diese Software unterstützt sämtliche 
Schritte der vorgeschlagenen Methode, einschliesslich 
Datenvorbereitung, Induktion von Zugehörigkeitsfunktionen, 
Attributselektion, multivariate Aggregation, Datenklassifikation, 
Prognose, und die Evaluation von Vorhersagemodellen. 

Die Software wurde in einem Experiment angewendet, um die 
Eigenschaften der vorgeschlagenen Methoden der Induktion von 
Zugehörigkeitsfunktionen zu testen. Diese Algorithmen wurden bei 
sechzig Dateien mit realen Daten angewendet, davon bei dreissig mit 
binärer Zielvariable und dreissig mit einer graduellen Zielvariable. Sie 
wurden mit existierenden Methoden verglichen. Verschiedene 
Parameter wurden getestet, um eine optimale Konfiguration der 
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induktiven unscharfen Klassifikation zu induzieren. Die Experimente 
zeigten, dass die durchschnittliche Prognoseleistung der logistischen 
Regression für binäre Zielvariablen und der Regressionsbäume für 
graduelle Zielvariablen signifikant verbessert werden kann, wenn vor 
der Berechnung der Prognosemodelle die Attribute mit normalisierten 
Likelihood-Verhältnissen respektive mit normalisierten Likelihood-
Differenzen in Zugehörigkeitsgrade zu induktiven unscharfen Mengen 
transformiert werden. 
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11 AA  GGrraadduuaall  CCoonncceepptt  ooff  TTrruutthh  

“Would you describe a single grain of wheat as a heap? No. Would 
you describe two grains of wheat as a heap? No. … You must admit the 
presence of a heap sooner or later, so where do you draw the line?” 
(Hyde, 2008) 
 

How many grains does it take to constitute a heap? This question 
is known as the sorites paradox (Hyde, 2008). It exemplifies that our 
semantic universe is essentially vague, and with any luck, this 
vagueness is ordinal and gradual. This applies to all kinds of 
statements. Especially in science, different propositions or hypotheses 
can only be compared to each other with regard to their relative 
accuracy or predictive power. Fuzziness is a term that describes 
vagueness in the form of boundary imprecision. Fuzzy concepts are 
those that are not clearly delineated, such as the concept of a “heap of 
grain.” 

The classical notion of truth claims metaphysical dualism, and 
thus divides thought into exactly two categories: true and false. A 
gradual concept of truth leads our consciousness toward a metaphysical 
monism: all possible statements belong to the same class; but there is a 
gradation of degree. The continuum of propositions, ranging from 
completely false to completely true, contains all the information that is 
in-between. 

Fuzzy set theory provides a tool for mathematically precise 
definitions of fuzzy concepts, if those concepts can be ordered: assigning 
gradual membership degrees to their elements. This gradual concept of 
truth is the basis for fuzzy logic or approximate reasoning, as proposed 
by Zadeh (1975a) and Bellmann and Zadeh (1977). Fuzzy logic, based on 
the concept of fuzzy sets introduced by Zadeh (1965), allows 
propositions with a gradual truth-value and, thus, supports 
approximate reasoning, gradual and soft consolidation. 

Fuzzy propositions define fuzzy classes, which allow gradual, 
fuzzy class boundaries. In data analysis, or “the search for structure in 
data” (Zimmermann H. J., 1997), fuzzy classification is a method for 
gradation in data consolidation, as presented by Meier, Schindler, and 
Werro (2008) and Del Amo, Montero, and Cutello (1999). The 
application of fuzzy classification to marketing analytics (Spais & 
Veloutsou, 2005) has the advantage of precisiation (sic; Zadeh, 2008) of 
fuzzy concepts in the context of decision support for direct customer 
contact, as proposed by Werro (2008). This precisiation can be achieved 
by inducing membership functions to fuzzy target classes (Setnes, 
Kaymak, & van Nauta Lemke, 1998). 
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Inductive, or probabilistic, inference and fuzzy, or gradual, logic 
have been seen as incompatible, for example, by Elkan (1993). Whereas 
probabilistic induction can amplify experience, membership functions 
can precisiate vagueness. Combined, measured probabilities can be 
applied to precisely define the semantics of vague or fuzzy concepts by 
membership function induction. This thesis, eventually, demonstrates 
how probabilistic and fuzzy logics can be synthesized to constitute a 
method of inductive gradual reasoning for classification. 

11..11 RReesseeaarrcchh  QQuueessttiioonnss  
Werro (2008) and Meier et al. (2008) proposed the application of 

Fuzzy classification to customer relationship management (CRM). A 
suggestion for further research by Werro (2008), namely the integration 
of data mining techniques into fuzzy classification software, has 
inspired the present thesis. As illustrated in Figure 1, the motivation of 
the current research was to develop and evaluate inductive methods for 
the automated derivation of membership functions for fuzzy 
classification and to propose possible applications to marketing 
analytics. 

The first motivation for research on “inductive fuzzy classification” 
(IFC) was the development of methods for automated derivations of 
understandable and interpretable membership functions to fuzzy 
classes. The aim was to develop and evaluate algorithms and methods 
to induce functions that indicate inductively inferred target class 
memberships. 

The second motivation was to improve marketing analytics with 
IFC. Kaufmann and Meier (2009) have presented a methodology and a 
case study for the application of IFC to predictive product affinity 
scoring for target selection. This thesis extends the application of this 
methodology to marketing in the field of integrated customer and 
product analytics in order to provide means to deal with fuzziness in 
marketing decisions and to enhance accountability by application of 
analytics to precisiate fuzzy marketing concepts, as proposed by Spais 
and Veloutsou (2005). 

The third motivation was to develop a prototype implementation 
of software for computing IFCs, showing the feasibility of the proposed 
algorithms as a proof of concept and allowing an evaluation of the 
proposed methodology. 

Seven research questions were developed at the beginning of the 
current research (Kaufmann, 2008). These questions guided the 
development of the thesis from the beginning. The answers are 
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presented in the subsequent document and summarized in the 
conclusions of the thesis. 
1. What is the theoretical basis of IFC and what is its relation to 

inductive logic?  
2. How can membership functions be derived inductively from data?  
3. How can a business enterprise apply IFC in practice?  
4. How can the proposed methods be implemented in a computer 

program?  
5. How is IFC optimally applied for prediction?   
6. Which aggregation methods are optimal for the multivariate 

combination of fuzzy classes for prediction?  
7. Can it be statistically supported that the proposed method of IFC 

improves predictive performance? 
 

 
Figure 1: The motivation of the current research was to develop and evaluate inductive 
methods for the automated derivation of membership functions for fuzzy classification 

and to propose possible applications to marketing analytics. 

 
Following a constructive approach to business informatics and 

information systems research (Oesterle, et al., 2010), this thesis 
presents a design of new methods for IFC and proposes applications of 
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these new methods to analytics in marketing. Thus, the methodology for 
developing the thesis includes the following: The theoretical background 
is analyzed prior to presentation of the constructive design, a case study 
exemplifies the designed approach, software prototyping shows 
technical feasibility and enables experimental evaluation, and empirical 
data collection in combination with statistical inference is applied to 
draw conclusions about the proposed method. 

11..22 TThheessiiss  SSttrruuccttuurree  
As shown in Figure 2, this thesis has three thematic categories 

that are reflected in the structure. First, the theoretical foundations of 
IFC are examined. This theory is based on a synthesis of fuzzy (gradual) 
and inductive (probabilistic) logics. Second, business applications of this 
approach are analyzed. A possible application is studied for analytic 
quantitative decision support in marketing. Third, technological aspects 
of the proposed method are examined by software prototypes for 
evaluation of the proposed constructs.  

The second chapter, which addresses theory, analyzes the 
theoretical foundations of IFC by approaching it from the viewpoints of 
logic, fuzziness, and induction. It presents proposals of likelihood-based 
methods for membership function induction. In Section 2.1, the basic 
concepts of logic and classification are analyzed. In Section 2.2, 
cognitive and conceptual fuzziness are discussed and approaches for 
resolution of conceptual fuzziness, fuzzy logic, and fuzzy classification 
are outlined. In Section 2.3, inductive classification, and induction 
automation are examined. In Section 2.4, the application of induction to 
fuzzy classification is explained, and a methodology for membership 
function induction using normalized ratios and differences of empirical 
conditional probabilities and likelihoods is proposed. 

The third chapter, which deals with designing applications of IFC, 
presents a study of analytics and examines the application of 
membership function induction to this discipline in marketing. In 
Section 3.1, the general methodology of logical data analysis, called 
analytics, is analyzed, and applications of IFC to three sub-disciplines, 
selection, visualization, and prediction, are proposed. In Section 3.2, 
applications of IFC to analytic marketing decision support, or 
marketing analytics (MA), are listed. A case study is presented, in 
which the proposed methods are applied to individual online marketing. 

The fourth chapter, which presents designs of technology for IFC, 
explains prototype implementations of the proposed IFC methodology 
and shows evaluation results. In Section 4.1, three prototype 
implementations of IFC are presented. The prototype of an inductive 
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fuzzy classification language (IFCL) is described. This description 
encompasses the architecture of the software and its functionality. Two 
additional prototypes that were developed in collaboration with master’s 
students guided by the author, iFCQL (Mayer, 2010) and IFC-Filter 
(Graf, 2010), are briefly discussed. In Section 4.2, a systematic 
experimental application of the IFCL prototype is described and the 
empirical results of testing the predictive performance of different 
parameters of the proposed methodology are statistically analyzed. 
  

 
 

Figure 2: Thesis structure. This thesis has three thematic categories that are reflected 
in the structure: theory, application, and technology. 

 
The fifth chapter, which concludes the thesis, summarizes the 

scientific contributions of the current research, discusses the results, 
and proposes further research topics for IFC. Literature references are 
indicated in the sixth chapter. Research details can be found in Chapter 
A, the appendix at the end of the thesis. 
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22 FFuuzzzziinneessss  &&  IInndduuccttiioonn  

This chapter examines the foundations of IFC by analyzing the 
concepts of deduction, fuzziness, and induction. The first subsection 
explains the classical concepts of sharp and deductive logic and 
classification; in this section, it is presupposed that all terms are clearly 
defined. The second section explains what happens when those 
definitions have fuzzy boundaries and provides the tools, fuzzy logic and 
fuzzy classification, to reason about this. However, there are many 
terms that do not only lack a sharp boundary of term definition but also 
lack a priori definitions. Therefore, the third subsection discusses how 
such definitions can be inferred through inductive logic and how such 
inferred propositional functions define inductive fuzzy classes. Finally, 
this chapter proposes a method to derive precise definitions of vague 
concepts—membership functions—from data. It develops a methodology 
for membership function induction using normalized likelihood 
comparisons, which can be applied to fuzzy classification of individuals. 

22..11 DDeedduuccttiioonn  
This subsection discusses deductive logic and classification, 

analyzes the classical as well as the mathematical (Boolean) approaches 
to propositional logic, and shows their application to classification. 
Deduction provides a set of tools for reasoning about propositions with a 
priori truth-values—or inferences of such values. Thus, in the first 
subsection, the concepts of classical two-valued logic and algebraic 
Boolean logic are summarized. The second subsection explains how 
propositional functions imply classes and, thus, provide the mechanism 
for classification. 

LLooggiicc  22..11..11
In the words of John Stuart Mill (1843), logic is “the science of 

reasoning, as well as an art, founded on that science” (p. 18). He points 
out that the most central entity of logic is the statement, called a 
proposition:  

The answer to every question which it is possible to 
frame, is contained in a proposition, or assertion. Whatever 
can be an object of belief, or even of disbelief, must, when put 
into words, assume the form of a proposition. All truth and 
all error lie in propositions. What, by a convenient 
misapplication of an abstract term, we call a truth, is simply 
a true proposition. (p. 27) 
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The central role of propositions indicates the importance of 
linguistics in philosophy. Propositions are evaluated for their truth, and 
thus, assigned a truth-value because knowledge and insight is based on 
true statements. 

Consider the universe of discourse in logic: The set of possible 
statements or propositions, 𝒫𝒫. Logicians believe that there are different 
levels of truth, usually two (true or false); in the general case, there is a 
set, 𝒯𝒯, of possible truth-values that can be assigned to propositions. 
Thus, the proposition 𝑝𝑝 ∈ 𝒫𝒫 is a meaningful piece of information to 
which a truth-value, 𝜏𝜏(𝑝𝑝) ∈ 𝒯𝒯, can be assigned. The corresponding 
mapping of  𝜏𝜏:  𝒫𝒫 ⟶ 𝒯𝒯 from propositions 𝒫𝒫 to truth-values 𝒯𝒯 is called a 
truth function.  

In general logic, operators can be applied to propositions. A unary 
operator, 𝑂𝑂 :   𝒫𝒫 ⟶ 𝒯𝒯, maps a single proposition into a set of 
transformed truth-values. Accordingly, a binary operator,   𝑂𝑂 :   𝒫𝒫 ×𝒫𝒫 ⟶
𝒯𝒯, assigns a truth-value to a combination of two propositions, and an n-
ary operator, 𝑂𝑂 :   𝒫𝒫 ×⋯×𝒫𝒫 ⟶ 𝒯𝒯, is a mapping of a combination of n 
propositions to a new truth-value. 

The logic of two-valued propositions is the science and art of 
reasoning about statements that can be either true or false. In the case 
of two-valued logic, or classical logic (𝐶𝐶𝐶𝐶), the set of possible truth 
values, 𝒯𝒯 := {true,  false}, contains only two elements, which partitions 
the class of imaginable propositions 𝒫𝒫 into exactly two subclasses: the 
class of false propositions and the class of true ones. 

With two truth-values, there is only one possible unary operator 
other than identity: A proposition, 𝑝𝑝 ∈ 𝒫𝒫, can be negated (not  𝑝𝑝), which 
inverts the truth-value of the original proposition. Accordingly, for a 
combination of two propositions, 𝑝𝑝 and  𝑞𝑞, each with two truth-values, 
there are 16 (2 ) possible binary operators. The most common binary 
logical operators are disjunction, conjunction, implication, and 
equivalence: A conjunction of two propositions, 𝑝𝑝  and  𝑞𝑞, is true if both 
propositions are true. A disjunction of two propositions, 𝑝𝑝  or  𝑞𝑞, is true if 
one of the propositions is true. An implication of 𝑞𝑞 by 𝑝𝑝 is true if, 
whenever 𝑝𝑝 is true, 𝑞𝑞 is true as well. An equivalence of two propositions 
is true if 𝑝𝑝 implies 𝑞𝑞 and 𝑞𝑞 implies  𝑝𝑝.  

Classical logic is often formalized in the form of a propositional 
calculus. The syntax of classical propositional calculus is described by 
the concept of variables, unary and binary operators, formulae, and 
truth functions. Every proposition is represented by a variable (e.g., 𝑝𝑝); 
every proposition and every negation of a proposition is a term; every 
combination of terms by logical operators is a formula; terms and 
formulae are themselves propositions; negation of the proposition 𝑝𝑝 is 
represented by      ¬𝑝𝑝; conjunction of the two propositions 𝑝𝑝 and 𝑞𝑞 is 
represented by  𝑝𝑝 ∧ 𝑞𝑞; disjunction of the two propositions 𝑝𝑝 and 𝑞𝑞 is 
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represented by  𝑝𝑝 ∨ 𝑞𝑞; implication of the proposition 𝑞𝑞 by the proposition 
𝑝𝑝 is represented by   𝑝𝑝 ⇒ 𝑞𝑞; equivalence between the two propositions 𝑝𝑝 
and 𝑞𝑞 is represented by 𝑝𝑝 ≡ 𝑞𝑞; and there is a truth function, 𝜏𝜏 :  𝒫𝒫 ⟶
𝒯𝒯   , mapping from the set of propositions 𝒫𝒫 into the set of truth values 
𝒯𝒯. The semantics of propositional calculus are defined by the values of 
the truth function, as formalized in Formula 1 through Formula 5. 

 
 

𝜏𝜏 ¬  𝑝𝑝 ∶=   if 𝜏𝜏 𝑝𝑝 = true false
else   true. 

 
Formula 1 

 

𝜏𝜏 𝑝𝑝 ∧ 𝑞𝑞 ∶=   if  (𝜏𝜏 𝑝𝑝 = 𝜏𝜏 𝑞𝑞 = true) true
else   false. 

 
Formula 2 

 

𝜏𝜏 𝑝𝑝 ∨ 𝑞𝑞 ∶=   if  (𝜏𝜏 𝑝𝑝 = 𝜏𝜏 𝑞𝑞 = false) false
else   true. 

 
Formula 3 

 
𝜏𝜏 𝑝𝑝 ⇒ 𝑞𝑞 ∶= 𝜏𝜏 ¬  𝑝𝑝 ∨ 𝑞𝑞  

 Formula 4 

 
𝜏𝜏 𝑝𝑝 ≡ 𝑞𝑞 ∶= 𝜏𝜏 (𝑝𝑝 ⇒ 𝑞𝑞 ∧ 𝑞𝑞 ⇒ 𝑝𝑝) 

 Formula 5 

 
George Boole (1847) realized that logic can be calculated using the 

numbers 0 and 1 as truth values. His conclusion was that logic is 
mathematical in nature:  

I am then compelled to assert, that according to this 
view of the nature of Philosophy, Logic forms no part of it. 
On the principle of a true classification, we ought no longer 
to associate Logic and Metaphysics, but Logic and 
Mathematics. (p. 13) 

In Boole’s mathematical definition of logic, the numbers 1 and 0 
represents the truth-values and logical connectives are derived from 
arithmetic operations: subtraction from 1 as negation and 
multiplication as conjunction. All other operators can be derived from 
these two operators through application of the laws of logical 
equivalence. Thus, in Boolean logic (𝐵𝐵𝐵𝐵), the corresponding 
propositional calculus is called Boolean algebra, stressing the 
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conceptual switch from metaphysics to mathematics. Its syntax is 
defined in the same way as that of   𝐶𝐶𝐶𝐶, except that the Boolean truth 
function, 𝜏𝜏 :  𝒫𝒫 ⟶ 𝒯𝒯 , maps from the set of propositions into the set of 
Boolean truth values,   𝒯𝒯 ∶= 0,1 , that is, the set of the two numbers 0 
and 1. 

The Boolean truth function 𝜏𝜏  defines the semantics of Boolean 
algebra. It is calculated using multiplication as conjunction and 
subtraction from 1 as negation, as formalized in Formula 6 through 
Formula 8. Implication and equivalence can be derived from negation 
and disjunction in the same way as in classical propositional calculus.  

 
 

𝜏𝜏 ¬  𝑝𝑝 ∶= 1 − 𝜏𝜏 𝑝𝑝  Formula 6 

 

𝜏𝜏 𝑝𝑝 ∧ 𝑞𝑞 ∶= 𝜏𝜏 𝑝𝑝 ∙ 𝜏𝜏 𝑞𝑞  Formula 7 

 
𝜏𝜏 𝑝𝑝 ∨ 𝑞𝑞 ∶=   ¬   ¬p ∧   ¬  q     

= 1 − 1 − 𝜏𝜏 𝑝𝑝 ∙ 1 − 𝜏𝜏 𝑞𝑞  Formula 8 

  

CCllaassssiiffiiccaattiioonn  22..11..22
Class logic, as defined by Glubrecht, Oberschelp, and Todt (1983), 

is a logical system that supports statements applying a classification 
operator. Classes of objects can be defined according to logical 
propositional functions. According to Oberschelp (1994), a class, 
𝐶𝐶 =   𝑖𝑖   ∈ 𝑈𝑈  |  𝛱𝛱(𝑖𝑖)   , is defined as a collection of individuals, 𝑖𝑖, from a 
universe of discourse, 𝑈𝑈, satisfying a propositional function,   𝛱𝛱, called 
the classification predicate. The domain of the classification operator, 
       . |  . ∶ ℙ ⟶ 𝑈𝑈∗, is the class of propositional functions   ℙ and its range is 
the powerclass of the universe of discourse   𝑈𝑈∗, which is the class of 
possible subclasses of    𝑈𝑈. In other words, the class operator assigns 
subsets of the universe of discourse to propositional functions. A 
universe of discourse is the set of all possible individuals considered, 
and an individual is a real object of reference. In the words of Bertrand 
Russell (1919), a propositional function is “an expression containing one 
or more undetermined constituents, such that, when values are 
assigned to these constituents, the expression becomes a proposition” (p. 
155).  
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In contrast, classification is the process of grouping individuals 
who satisfy the same predicate into a class. A (Boolean) classification 
corresponds to a membership function, 𝜇𝜇 ∶ 𝑈𝑈   ⟶ {0,1}, which indicates 
with a Boolean truth-value whether an individual is a member of a 
class, given the individual’s classification predicate. As shown by 
Formula 9, the membership 𝜇𝜇 of individual 𝑖𝑖 in class 𝐶𝐶 =   𝑖𝑖 ∈ 𝑈𝑈  |  𝛱𝛱(𝑖𝑖)    
is defined by the truth-value 𝜏𝜏 of the classification predicate  𝛱𝛱(𝑖𝑖). In 
Boolean logic, the truth-values are assumed to be certain. Therefore, 
classification is sharp because the truth values  are either exactly 0 or 
exactly 1.  

 
𝜇𝜇 𝑖𝑖 ≔ 𝜏𝜏 𝛱𝛱 𝑖𝑖 ∈ 0,1    

 
Formula 9 

Usually, the classification predicate that defines classes refers to 
attributes of individuals. For example, the class “tall people” is defined 
by the predicate “tall,” which refers to the attribute “height.” An 
attribute, 𝑋𝑋, is a function that characterizes individuals by mapping 
from the universe of discourse 𝑈𝑈 to the set of possible characteristics 𝜒𝜒 
(Formula 10). 

 
𝑋𝑋 ∶ 𝑈𝑈 ⟶ 𝜒𝜒 

 
Formula 10 

There are different types of values encoding characteristics. 
Categorical attributes have a discrete range of symbolic values. 
Numerical attributes have a range of numbers, which can be natural or 
real. Boolean attributes have Boolean truth-values {0,1} as a range. 
Ordinal attributes have a range of categories that can be ordered. 

On one hand, the distinction between univariate and multivariate 
classification, the variety, depends on the number of attributes 
considered for the classification predicate. The dimensionality of the 
classification, on the other hand, depends on the number of dimensions, 
or linearly independent attributes, of the classification predicate 
domain. 

In a univariate classification (𝑈𝑈𝑈𝑈), the classification predicate 
𝛱𝛱  refers to one attribute, 𝑋𝑋, which is true for an individual, 𝑖𝑖, if the 
feature 𝑋𝑋(𝑖𝑖) equals a certain characteristic, 𝑐𝑐 ∈ 𝜒𝜒. 

 

𝜇𝜇 𝑖𝑖    ∶= 𝜏𝜏 𝑋𝑋 𝑖𝑖 = 𝑐𝑐  Formula 11 

 
In a multivariate classification (𝑀𝑀𝑀𝑀𝑀𝑀), the classification predicate 

refers to multiple element attributes. The classification predicate is true 
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for an individual, 𝑖𝑖, if an aggregation, 𝑎𝑎, of several characteristic 
constraints has a given value, 𝑐𝑐 ∈ 𝜒𝜒. 

 

𝜇𝜇 𝑖𝑖    ∶= 𝜏𝜏 𝑎𝑎 𝑋𝑋 𝑖𝑖   , ⋯ , 𝑋𝑋 𝑖𝑖 = 𝑐𝑐  Formula 12 

 
A multidimensional classification (𝑀𝑀𝑀𝑀𝑀𝑀) is a special case of a 

multivariate classification that refers to 𝑛𝑛-tuples of attributes, such that 
the resulting class is functionally dependent on the combination of all n 
attributes. 

 

𝜇𝜇 𝑖𝑖    ∶= 𝜏𝜏
𝑋𝑋 𝑖𝑖
⋮

𝑋𝑋 (𝑖𝑖)
=   

𝐶𝐶
⋮
𝐶𝐶

 Formula 13 

 
This distinction between multivariate and multidimensional 

classification is necessary for the construction of classification functions. 
Multivariate classifications can be derived as functional aggregates of 
one-dimensional membership functions, in which the influence of one 
attribute to the resulting aggregate does not depend on the other 
attributes. In contrast, in multidimensional classification, the 
combination of all attributes determines the membership value, and 
thus, one attribute has different influences on the membership degree 
for different combinations with other attribute values. Therefore, 
multidimensional classifications need multidimensional membership 
functions that are defined on 𝑛𝑛-tuples of possible characteristics.  
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22..22 FFuuzzzziinneessss  
“There are many misconceptions about fuzzy logic. Fuzzy logic is not 
fuzzy. Basically, fuzzy logic is a precise logic of imprecision and 
approximate reasoning.” (Zadeh, 2008, p. 2751) 
 

Fuzziness, or vagueness (Sorensen, 2008), is an uncertainty 
regarding concept boundaries. In contrast to ambiguous terms, which 
have several meanings, vague terms have one meaning, but the extent 
of it is not sharply distinguishable. For example, the word tall can be 
ambiguous, because a tall cat is usually smaller than a small horse. 
Nevertheless, the disambiguated predicate “tall for a cat” is vague, 
because its linguistic concept does not imply a sharp border between tall 
and small cats. 

Our brains seem to love boundaries. Perhaps, making sharp 
distinctions quickly was a key cognitive ability in evolution. Our brains 
are so good at recognizing limits, that they construct limits where there 
are none. This is what many optical illusions are based on: for example, 
Kaniza’s (1976) Illusory Square (Figure 3). 

 

 
Figure 3: There is no square. Adapted from “Subjective Contours” by G. Kaniza, 1976, 

Copyright 1976 by Scientific American, Inc. 

 
An ancient symbol of sharp distinction between classes is the yin 

and yang symbol (Figure 4). It symbolizes a dualistic worldview—the 
cosmos divided into light and dark, day and night, and so on.  
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Figure 4: Black or white: conventional yin and yang symbol with a sharp distinction 

between opposites, representing metaphysical dualism.  

Adapted from http://www.texample.net/tikz/examples/yin-and-yang/ (accessed 02.2012) 
with permission (creative commons license CC BY 2.5). 

 
 

 
Figure 5: Shades of grey: fuzzy yin and yang symbol with a gradation between 

opposites, representing metaphysical monism. 

 
 
 

http://www.texample.net/tikz/examples/yin-and-yang/
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Nevertheless, in reality, the transition between light and dark is 
gradual during the 24 hours of a day. This idea of gradation of our 
perceptions can be visualized by a fuzzy yin and yang symbol (Figure 5). 
Sorensen (2008) explains that many-valued logics have been proposed to 
solve the philosophical implications of vagueness. One many-valued 
approach to logic is fuzzy logic, which allows infinite truth-values in the 
interval between 0 and 1.  

In the next section, introducing membership functions, fuzzy sets, 
and fuzzy propositions are discussed; these are the bases for fuzzy logic, 
which in fact, is a precise logic for fuzziness. Additionally, it is shown 
how fuzzy classifications are derived from fuzzy propositional functions. 

FFuuzzzzyy  LLooggiicc  22..22..11
Lotfi Zadeh (2008) said, “Fuzzy logic is not fuzzy” (p. 2751). 

Indeed, it is a precise mathematical concept for reasoning about fuzzy 
(vague) concepts. If the domain of those concepts is ordinal, membership 
can be distinguished by its degree. In classical set theory, an individual, 
𝑖𝑖, of a universe of discourse, 𝑈𝑈, is either completely a member of a set or 
not at all. As previously explained, according to Boolean logic, the 
membership function 𝜇𝜇 : 𝑈𝑈 ⟶ {0,1}, for a crisp set 𝑆𝑆, maps from 
individuals to sharp truth-values. As illustrated in Figure 6, a sharp set 
(the big dark circle) has a clear boundary, and individuals (the small 
bright circles) are either a member of it or not. However, one individual 
is not entirely covered by the big dark circle, but is also not outside of it. 
In contrast, a set is called fuzzy by Zadeh (1965) if individuals can have 
a gradual degree of membership to it. In a fuzzy set, as shown by Figure 
7, the limits of the set are blurred. The degree of membership of the 
elements in the set is gradual, illustrated by the fuzzy gray edge of the 
dark circle. The membership function, 𝜇𝜇 : 𝑈𝑈 → [0,1], for a fuzzy set, 𝐹𝐹, 
indicates the degree to which individual 𝑖𝑖 is a member of 𝐹𝐹 in the 
interval between 0 and 1. In Figure 6, the degree of membership of the 
small circles 𝑖𝑖 is defined by a normalization 𝑛𝑛 of their distance 𝑑𝑑 from 
the center 𝑐𝑐 of the big dark circle 𝑏𝑏,   𝜇𝜇 𝑖𝑖 = 𝑛𝑛 𝑑𝑑 𝑖𝑖, 𝑐𝑐 .In the same way 
as in classical set theory, set operators can construct complements of 
sets and combine two sets by union and intersection. Those operators 
are defined by the fuzzy membership function. In the original proposal 
of Zadeh (1965), the set operators are defined by subtraction from 1, 
minimum and maximum. The complement, 𝐹𝐹, of a fuzzy set, 𝐹𝐹, is 
derived by subtracting its membership function from 1; the union of two 
sets, 𝐹𝐹 ∪ 𝐺𝐺, is derived from the maximum of the membership degrees; 
and the intersection of two sets, 𝐹𝐹 ∩ 𝐺𝐺, is derived from the minimum of 
the membership degrees. 
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Figure 6: A visualization of a classical set with sharp boundaries. 

 
 

 
 

Figure 7: A visualization of a fuzzy set. 
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Accordingly, fuzzy subsets and fuzzy power sets can be 
constructed. Consider the two fuzzy sets 𝐴𝐴 and  𝐵𝐵 on the universe of 
discourse 𝑈𝑈. In general, 𝐴𝐴 is a fuzzy subset of  𝐵𝐵 if the membership 
degrees of all its elements are smaller or equal to the membership 
degrees of elements in 𝐵𝐵 (Formula 14). Thus, a fuzzy power set, 𝐵𝐵∗, of a 
(potentially fuzzy) set B is the class of all its fuzzy subsets (Formula 15). 
 

𝐴𝐴 ⊆ 𝐵𝐵 ∶= ∀𝑥𝑥 ∈ 𝑈𝑈:  𝜇𝜇 𝑥𝑥 ≤ 𝜇𝜇 𝑥𝑥  Formula 14 

𝐵𝐵∗   ≔ 𝐴𝐴 ⊆ 𝑈𝑈     𝐴𝐴 ⊆ 𝐵𝐵  Formula 15 

 
With the tool of fuzzy set theory in hand, the sorites paradox cited 

in the introduction (Chapter 1) can be tackled in a much more satisfying 
manner. A heap of wheat grains can be defined as a fuzzy subset, 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ⊆ ℕ, of natural numbers ℕ of wheat grains. A heap is defined in 
the English language as “a great number or large quantity” (merriam-
webster.com, 2012b). For instance, one could agree that 1,000 grains of 
wheat is a large quantity, and between 1 and 1,000, the “heapness” of a 
grain collection grows logarithmically. Thus, the membership function 
of the number of grains 𝑛𝑛 ∈ ℕ in the fuzzy set 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 can be defined 
according to Formula 16. The resulting membership function is plotted 
in Figure 8.  

𝜇𝜇Heap 𝑛𝑛 ≔
0 if  𝑛𝑛 = 0

1  if  𝑛𝑛 > 1000
0.1448  ln 𝑛𝑛   else.

 Formula 16 

 
 

 
Figure 8: Fuzzy set theory applied to the sorites paradox. 
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Based on the concept of fuzzy sets, Zadeh (1975a) derived fuzzy 
propositions (𝐹𝐹𝐹𝐹) for approximate reasoning: A fuzzy proposition has 
the form “𝑥𝑥  𝑖𝑖𝑖𝑖  𝐿𝐿,” where 𝑥𝑥 is an individual of a universe of discourse 𝑈𝑈 
and 𝐿𝐿 is a linguistic term, defined as a fuzzy set on 𝑈𝑈. As stated by 
Formula 17, the truth-value 𝜏𝜏  of a fuzzy proposition is defined by the 
degree of membership 𝜇𝜇  of 𝑥𝑥 in the linguistic term 𝐿𝐿. 

 

𝜏𝜏 𝑥𝑥  𝑖𝑖𝑖𝑖  𝐿𝐿 ∶= 𝜇𝜇 (𝑥𝑥) Formula 17 

 
If 𝐴𝐴 is an attribute of    𝑥𝑥, a fuzzy proposition can also refer to the 

corresponding attribute value, such as  𝑥𝑥  𝑖𝑖𝑖𝑖  𝐿𝐿 ∶= 𝐴𝐴 𝑥𝑥   𝑖𝑖𝑖𝑖  𝐿𝐿  . The fuzzy set 𝐿𝐿 
on 𝑈𝑈 is equivalent to the fuzzy set 𝐿𝐿 on the domain of the attribute, or 
dom(𝐴𝐴). In fact, the set can be defined on arbitrarily deep-nested 
attribute hierarchies concerning the individual. As an example, let us 
look at the fuzzy proposition, “Mary is blond.” In this sentence, the 
linguistic term “blond” is a fuzzy set on the set of people, which is 
equivalent to a fuzzy set blond on the color of people’s hair (Formula 
18). 

	
  

𝜏𝜏 "Mary is blond" = 𝜇𝜇 Mary
≡ 𝜇𝜇 color hair Mary 	
  

Formula 18 

 
Fuzzy propositions (𝐹𝐹𝐹𝐹) can be combined to construct fuzzy 

formulae using the usual logic operators not (¬), and (∧), and or (∨), for 
which the semantics are defined by the fuzzy truth function 𝜏𝜏 :  ℱ ⟶
[0,1], mapping from the class of fuzzy propositions ℱ into the set of 
Zadehan truth values in the interval between 1 and 0. Let “𝑥𝑥  is  𝑃𝑃” and 
“𝑥𝑥  is  𝑄𝑄” be two fuzzy propositions on the same individual. Then their 
combination to fuzzy formulae is defined as follows (Formula 19 
through Formula 21): negation by the inverse of the corresponding fuzzy 
set, conjunction by intersection of the corresponding fuzzy sets, and 
disjunction by union of the corresponding fuzzy sets. 
 

  𝜏𝜏 ¬ 𝑥𝑥  is  𝑃𝑃 ∶= 𝜇𝜇 𝑥𝑥 ;   Formula 19 

𝜏𝜏 𝑥𝑥  is  𝑃𝑃   ∧   𝑥𝑥  is  𝑄𝑄 ∶= 𝜇𝜇 ∩ (𝑥𝑥); Formula 20 

𝜏𝜏 𝑥𝑥  is  𝑃𝑃   ∨   𝑥𝑥  is  𝑄𝑄 ∶= 𝜇𝜇 ∪ (𝑥𝑥)	
   Formula 21 
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Zadeh’s fuzzy propositions are derived from statements of the form 
“𝑋𝑋  is  𝑌𝑌.” They are based on the representation operator 𝑖𝑖𝑖𝑖 ∶ 𝑈𝑈×𝑈𝑈∗ ⟶ ℱ 
mapping from the universe 𝑈𝑈 of discourse and its fuzzy powerset 𝑈𝑈∗ to 
the class of fuzzy propositions    ℱ. Consequently, fuzzy propositions in 
the sense of Zadeh are limited to statements about degrees of 
membership in a fuzzy set. 

Generally, logic with fuzzy propositions—or more precisely, a 
propositional logic with Zadehan truth values in the interval between 0 
and 1, a “Zadehan Logic” (𝑍𝑍𝑍𝑍)—can be viewed as a generalization of 
Boole’s mathematical analysis of logic to a gradual concept of truth. In 
that sense, 𝑍𝑍𝑍𝑍 is a simple generalization of Boolean logic (𝐵𝐵𝐵𝐵), in which 
the truth value of any proposition is not only represented by numbers, 
but also can be anywhere in the interval between 0 and 1. 

According to the Stanford Encyclopedia of Philosophy (Hajek, 
2006), fuzzy logic, in the narrow sense, is a “symbolic logic with a 
comparative notion of truth developed fully in the spirit of classical 
logic” (“Fuzzy Logic,” paragraph 3). If 𝑍𝑍𝑍𝑍 is viewed as a generalization of 
𝐵𝐵𝐵𝐵, fuzzy propositions of the form “𝑋𝑋  𝑖𝑖𝑖𝑖  𝑌𝑌” are a special case, and 
propositions and propositional functions of any form can have gradual 
values of truth. Accordingly, 𝑍𝑍𝑍𝑍 is defined by the truth function 
𝜏𝜏 : 𝒫𝒫 ⟶ 𝒯𝒯  mapping from the class of propositions 𝒫𝒫 to the set of 
Zadehan truth-values   𝒯𝒯 ≔ [0,1]. Consequently, fuzzy set membership 
is a special case of fuzzy proposition, and the degree of membership of 
individual 𝑥𝑥 in another individual 𝑦𝑦 can be defined as the value of truth 
of the fuzzy proposition 𝑥𝑥 ∈ 𝑦𝑦 (Formula 22). 

	
  

𝜇𝜇 𝑥𝑥 ∶= 𝜏𝜏 (𝑥𝑥 ∈ 𝑦𝑦)	
   Formula 22 

 
The Zadehan truth function 𝜏𝜏  defines the semantics of 𝑍𝑍𝑍𝑍. As in 

Boolean algebra, its operators can be defined by subtraction from 1 as 
negation, and multiplication as conjunction, as formalized in Formula 
23 and Formula 24. Disjunction, implication, and equivalence can be 
derived from negation and conjunction in the same way as in Boolean 
logic. 

 

𝜏𝜏 ¬  𝑝𝑝 ∶= 1 − 𝜏𝜏 𝑝𝑝  Formula 23 

 

𝜏𝜏 𝑝𝑝 ∧ 𝑞𝑞 ∶= 𝜏𝜏 𝑝𝑝 ∙ 𝜏𝜏 𝑞𝑞  Formula 24 
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In that light, any proposition with an uncertain truth-value 
smaller than 1 or greater than 0 is a fuzzy proposition. Additionally, 
every function with the range [0,1] can be thought of as a truth function 
for a propositional function. For example, statistical likelihood 𝐿𝐿(𝑦𝑦|𝑥𝑥) 
can be seen as a truth function for the propositional function, “y is likely 
if x,” as a function of x. This idea is the basis for IFC proposed in the 
next section. The usefulness of this generalization is shown in the 
chapter on applications, in which fuzzy propositions such as “customers 
with characteristic X are likely to buy product Y” are assigned truth-
values that are computed using quantitative prediction modeling. 

FFuuzzzzyy  CCllaassssiiffiiccaattiioonn  22..22..22
A fuzzy class, 𝐶𝐶  : =    ∼   𝑖𝑖   ∈ 𝑈𝑈  |  𝛱𝛱(𝑖𝑖)   , is defined as a fuzzy set 𝐶𝐶 of 

individuals 𝑖𝑖, whose membership degree is defined by the Zadehan 
truth-value of the proposition 𝛱𝛱 𝑖𝑖 . The classification predicate, 𝛱𝛱, is a 
propositional function interpreted in 𝑍𝑍𝑍𝑍.  The domain of the fuzzy class 
operator, ∼   . |  . ∶ ℙ ⟶ 𝑈𝑈∗, is the class of propositional functions,  ℙ, and 
the range is the fuzzy power set,   𝑈𝑈∗ (the set of fuzzy subsets) of the 
universe of discourse, 𝑈𝑈. In other words, the fuzzy class operator assigns 
fuzzy subsets of the universe of discourse to propositional functions. 

Fuzzy classification is the process of assigning individuals a 
membership degree to a fuzzy set, based on their degrees of truth of the 
classification predicate. It has been discussed, for example, by 
Zimmermann (1997), Del Amo et al. (1999), and Meier et al. (2008). A 
fuzzy classification is achieved by a membership function, 𝜇𝜇 : 𝑈𝑈 ⟶ [0,1], 
that indicates the degree to which an individual is a member of a fuzzy 
class, 𝐶𝐶, given the corresponding fuzzy propositional function, 𝛱𝛱. This 
membership degree is defined by the Zadehan truth-value of the 
corresponding proposition, 𝛱𝛱 𝑖𝑖 , as formalized in Formula 25. 

	
  

𝜇𝜇 𝑖𝑖 ≔ 𝜏𝜏 𝛱𝛱 𝑖𝑖 	
   Formula 25 

 
In the same way as in crisp classification, the fuzzy classification 

predicate refers to attributes of individuals. Additionally, Zadehan logic 
introduces two new types of characteristics. Zadehan attributes have a 
range of truth values represented by 𝒯𝒯 ≔ [0,1]. Linguistic attributes 
have a range of linguistic terms (fuzzy sets) together with the Zadehan 
truth-value of membership in those terms (Zadeh, 1975b). 

In a univariate fuzzy classification (𝑈𝑈𝑈𝑈), the fuzzy classification 
predicate 𝛱𝛱    refers to one attribute, 𝑋𝑋, and it corresponds to the 
membership degree of the attribute characteristic 𝑋𝑋(𝑖𝑖) in a given fuzzy 
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restriction (Zadeh, 1975a), 𝑅𝑅 ∈ 𝜒𝜒∗, which is a fuzzy subset of possible 
characteristics 𝜒𝜒 (Formula 26). 
	
  

𝜇𝜇 𝑖𝑖 ≔ 𝜏𝜏 𝑋𝑋 𝑖𝑖   𝑖𝑖𝑖𝑖  𝑅𝑅 	
   Formula 26 

	
  
In a multivariate fuzzy classification (𝑀𝑀𝑀𝑀𝑀𝑀), 𝛱𝛱 refers to multiple 

attributes. The truth function of the classification predicate for an 
individual, 𝑖𝑖, equals to an aggregation, 𝑎𝑎, of several fuzzy restrictions of 
multiple attribute characteristics, 𝑋𝑋 𝑖𝑖 , 𝑗𝑗 = 1… 𝑛𝑛  (Formula 27). 

	
  

𝜇𝜇 𝑖𝑖 ≔ 𝑎𝑎 𝜏𝜏 𝑋𝑋 i   𝑖𝑖𝑖𝑖  𝑅𝑅 , … , 𝑋𝑋 i   𝑖𝑖𝑖𝑖  𝑅𝑅 	
   Formula 27 

	
  
In a multidimensional fuzzy classification (𝑀𝑀𝑀𝑀𝑀𝑀), 𝛱𝛱   refers to 𝑛𝑛-

tuples of functionally independent attributes. The membership degree 
of individuals in a multidimensional class is based on an 𝑛𝑛-dimensional 
fuzzy restriction, 𝑅𝑅  (Formula 28), which is a multidimensional fuzzy 
set on the Cartesian product of the attribute ranges with a 
multidimensional membership function of 𝜇𝜇 : 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑋𝑋   ×…  ×
  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑋𝑋 ⟶ [0,1]. 

	
  

𝜇𝜇 𝑖𝑖 ≔ 𝜏𝜏
𝑋𝑋 𝑖𝑖
⋮

𝑋𝑋 𝑖𝑖
is  𝑅𝑅 	
   Formula 28 

 
   



 
 
 

42 

   



 
 
 

43 

22..33 IInndduuccttiioonn  
Given a set of certainly true statements, deduction works fine. The 

problem is that the only certainty philosophy can offer is Descartes’s “I 
think therefore I am” proposition; however, postmodern philosophers 
are not so sure about the I anymore (Precht, 2007, p. 62 ff). Therefore, 
one should be given a tool to reason under uncertainty, and this tool is 
induction. In this chapter, inductive logic is analyzed, the application of 
induction to fuzzy classification is discussed, and a methodology for 
membership function induction using normalized ratios and differences 
of empirical conditional probabilities and likelihoods is proposed. 

IInndduuccttiivvee  LLooggiicc  22..33..11
Traditionally, induction is defined as drawing general conclusions 

from particular observations. Contemporary philosophy has shifted to a 
different view because, not only are there inductions that lead to 
particular conclusions, but also there are deductions that lead to 
general conclusions. According to Vickers (2009) in the Stanford 
Encyclopedia of Philosophy (SEP), it is agreed that induction is a form 
of inference that is “contingent” and “ampliative” (“The contemporary 
notion of induction”, paragraph 3), in contrast to deductive inference, 
which is necessary and explicative. Induction is contingent, because 
inductively inferred propositions are not necessarily true in all cases. 
And it is ampliative because, in Vickers words, “induction can amplify 
and generalize our experience, broaden and deepen our empirical 
knowledge” (“The contemporary notion of induction”, paragraph 3). In 
another essay in the SEP, inductive logic is defined as “a system of 
evidential support that extends deductive logic to less-than-certain 
inferences” (Hawthorne, 2008, “Inductive Logic,” paragraph 1). 
Hawthorne admits that there is a degree of fuzziness in induction: In an 
inductive inference, “the premises should provide some degree of 
support for the conclusion” (“Inductive Logic,” para. 1). The degree of 
support for an inductive inference can thus be viewed as a fuzzy 
restriction of possible inferences, in the sense of Zadeh (1975a). Vickers 
(2009) explains that the problem of induction is two-fold: The epistemic 
problem is to define a method to distinguish appropriate from 
inappropriate inductive inference. The metaphysical problem is to 
explain in what substance the difference between reliable and 
unreliable induction actually exists. 

Epistemologically, the question of induction is to find a suitable 
method to infer propositions under uncertainty. State of the art 
methods rely on empirical probabilities or likelihoods. There are many 
interpretations of probability (Hájek, 2009). For the context of this 
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thesis, one may agree that a mathematical probability, 
𝑃𝑃 𝐴𝐴 ,  numerically represents how probable it is that a specific 
proposition 𝐴𝐴 is true:   𝑃𝑃 𝐴𝐴 ≡ 𝜏𝜏 "𝐴𝐴 is probable" ; and that the 
disjunction of all possible propositions, the probability space Ω, is 
certain, i.e., 𝑃𝑃 Ω = 1.  

In practice, probabilities can be estimated by relative frequencies, 
or sampled empirical probabilities 𝑝𝑝 in a sample of 𝑛𝑛 observations, 
defined by the ratio between the number of observations, 𝑖𝑖, in which the 
proposition 𝐴𝐴  is true, and the total number of observations (Formula 
29). 

 

𝑃𝑃(𝐴𝐴) ≈ 𝑝𝑝 𝐴𝐴 ∶=   
𝜏𝜏(𝐴𝐴 )
𝑛𝑛

	
   Formula 29 

 
A conditional probability (Weisstein, 2010a) is the probability for 

an outcome 𝑥𝑥, given that 𝑦𝑦 is the case, as formalized in Formula 30.  
 

𝑃𝑃(𝑥𝑥  |  𝑦𝑦) =   
𝑃𝑃(𝑥𝑥 ∧ 𝑦𝑦)
𝑃𝑃(𝑦𝑦)

	
   Formula 30 

 
Empirical sampled conditional probabilities can be applied to 

compute likelihoods. According to James Joyce, “in an unfortunate, but 
now unavoidable, choice of terminology, statisticians refer to the inverse 
probability PH(E) as the ‘likelihood’ of H on E” (Joyce, 2003, 
“Conditional Probabilities and Bayes' Theorem,” paragraph 5). The 
likelihood of the hypothesis 𝐻𝐻 is an estimate of how probable the 
evidence or known data 𝐸𝐸 is, given that the hypothesis is true. Such a 
probability is called a “posterior probability” (Hawthorne, 2008, 
“inductive Logic,” paragraph 5), that is, a probability after 
measurement, shown by Formula 31. 

 

𝐿𝐿 𝐻𝐻   𝐸𝐸 ∶= 𝑝𝑝 𝐸𝐸  |  𝐻𝐻 	
   Formula 31 

 
In the sense of Hawthorne (2008), the general law of likelihood 

states that, for a pair of incompatible hypotheses 𝐻𝐻  and 𝐻𝐻 , the 
evidence 𝐸𝐸 supports 𝐻𝐻  over 𝐻𝐻 , if and only if 𝑝𝑝 𝐸𝐸  |  𝐻𝐻 >   𝑝𝑝 𝐸𝐸  |  𝐻𝐻 . The 
likelihood ratio (𝐿𝐿𝐿𝐿) measures the strength of evidence for 𝐻𝐻  over 𝐻𝐻  
(Formula 32). Thus, the “likelihoodist” (sic; Hawthorne, 2008, 
“Likelihood Ratios, Likelihoodism, and the Law of Likelihood,” 
paragraph 5) solution to the epistemological problem of induction is the 
likelihood ratio as measure of support for inductive inference. 
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𝐿𝐿𝐿𝐿 𝐻𝐻 > 𝐻𝐻   |  𝐸𝐸 ∶=
𝐿𝐿 𝐻𝐻    𝐸𝐸
𝐿𝐿 𝐻𝐻    𝐸𝐸

  	
   Formula 32 

 
According to Hawthorne, the prior probability of a hypothesis, 

𝑝𝑝 𝐻𝐻 , that is, an estimated probability prior to measurement of 
evidence 𝐸𝐸, plays an important role for inductive reasoning. 
Accordingly, Bayes’ theorem can be interpreted and rewritten using 
measured posterior likelihood and prior probability in order to apply it 
to the evaluation of scientific hypotheses. According to Hawthorne 
(2008), the posterior probability of hypothesis 𝐻𝐻 conditional to evidence 
𝐸𝐸 is equal to the product of the posterior likelihood of 𝐻𝐻 given 𝐸𝐸 and the 
prior probability of 𝐻𝐻, divided by the (measured) probability of 𝐸𝐸 
(Formula 33). 

 

𝑝𝑝 𝐻𝐻 𝐸𝐸 =
𝐿𝐿(𝐻𝐻|𝐸𝐸) ∙ 𝑝𝑝 𝐻𝐻

𝑝𝑝(𝐸𝐸)
  	
   Formula 33 

 
What if there is fuzziness in the data, in the features of 

observations, or in the theories? How is likelihood measured when the 
hypothesis or the evidence is fuzzy? If this fuzziness is ordinal, that is, if 
the extent of membership in the fuzzy terms can be ordered, a 
membership function can be defined, and an empirical probability of 
fuzzy events can be calculated. Analogous to Dubois and Prade (1980), a 
fuzzy event 𝐴𝐴 in a universe of discourse 𝑈𝑈 is a fuzzy set on 𝑈𝑈 with a 
membership function 𝜇𝜇 : 𝑈𝑈 ⟶ [0,1]. For categorical elements of 𝑈𝑈, the 
estimated probability after n observations is defined as the average 
degree of membership of observations 𝑖𝑖 in  𝐴𝐴, as formalized in Formula 
34. 

 

𝑃𝑃 𝐴𝐴 ≈ 𝑝𝑝 𝐴𝐴 =
𝜇𝜇 (𝑖𝑖)
𝑛𝑛

	
   Formula 34 

 
By application of Formula 34 to Formula 31, the likelihood of 

ordinal fuzzy hypothesis 𝐻𝐻,  given ordinal fuzzy evidence 𝐸𝐸, can be 
defined as a conditional probability of fuzzy events, as shown in 
Formula 35.  
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𝐿𝐿 𝐻𝐻 𝐸𝐸) = 𝑝𝑝(𝐸𝐸|𝐻𝐻) =
𝜇𝜇 ∩ (𝑖𝑖)
𝜇𝜇 (𝑖𝑖)

	
   Formula 35 

 
The question of the metaphysical problem of induction is: what is 

the substance of induction? In what kind of material does the difference 
between reliable and unreliable inductive inference exist? The 
importance of this question cannot be underestimated, since reliable 
induction enables prediction. A possible answer could be that the 
substance of an induction is the amount of information contained in the 
inference. This answer presupposes that information is a realist 
category, as suggested by Chmielecki (1998). According to Shannon’s 
information theory (Shannon, 1948), the information contained in 
evidence 𝑥𝑥 about hypothesis 𝑦𝑦 is equal to the difference between the 
uncertainty (entropy), 𝐻𝐻(𝑦𝑦), about the hypothesis 𝑦𝑦 and the resulting 
uncertainty, 𝐻𝐻 (𝑦𝑦), after observation of the evidence  𝑥𝑥,  𝐼𝐼 𝑥𝑥, 𝑦𝑦 =
  𝐻𝐻 𝑦𝑦 − 𝐻𝐻 𝑦𝑦 = Σ Σ 𝑝𝑝(𝑥𝑥 ∧ 𝑦𝑦)log 𝑝𝑝 𝑥𝑥 ∧ 𝑦𝑦 / 𝑝𝑝 𝑥𝑥 𝑝𝑝 𝑦𝑦 . Shannon’s quantity 
of information is defined in terms of joint probabilities. However, by 
application of Shannon’s theory, the metaphysical problem of induction 
is transferred to a metaphysical problem of probabilities because, 
according to Shannon, the basic substance of information is the 
probability of two signals occurring simultaneously compared to the 
probability of occurring individually. (One could link this solution to the 
concept of quantum physical particle probability waves [Greene, 2011], 
but this would go beyond the scope of this thesis and would be highly 
speculative; therefore, this link is not explored here. Suffice it to state 
that probability apparently is a fundamental construct of matter and 
waves as well as of information and induction.)  

IInndduuccttiivvee  CCllaassssiiffiiccaattiioonn  22..33..22
Inductive classification is the process of assigning individuals to a 

set based on a classification predicate derived by an inductive inference. 
Inductive classification can be automated as a form of supervised 
machine learning (Witten & Frank, 2005): a class of processes 
(algorithms or heuristics) that learn from examples to decide whether 
an individual, 𝑖𝑖, belongs to a given class, 𝑦𝑦, based on its attributes. 
Generally, supervised machine learning processes induce a model from 
a dataset, which generalizes associations in the data in order to provide 
support for inductive inference. This model can be used for predicting 
the class membership of new data elements. Induced classification 
models, called classifiers, are first trained using a training set with 
known class membership. Then, they are applied to a test or prediction 
set in order to derive class membership predictions. Examples of 
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classification learning algorithms that result in classifications are 
decision trees, classification rules, and association rules. In those cases, 
the model consists of logical formulae of attribute values, which predict 
a crisp class value. 

Data are signs (signals) that represent knowledge such as 
numbers, characters, or bits. The basis for automated data analysis is a 
systematic collection of data on individuals. The most frequently used 
data structure for analytics is the matrix, in which every individual, 𝑖𝑖 (a 
customer, a transaction, a website, etc.), is represented by a row, and 
every attribute, 𝑋𝑋 , is represented by a column. Every characteristic, 
𝑋𝑋 (𝑖𝑖), of individual 𝑖𝑖 for attribute 𝑋𝑋  is represented by one scalar value 
within the matrix. 

A training dataset 𝑑𝑑 is an 𝑚𝑚× 𝑛𝑛 + 1  matrix with 𝑚𝑚 rows, 𝑛𝑛 
columns for 𝑋𝑋 ,… , 𝑋𝑋  and a column 𝑌𝑌 indicating the actual class 
membership. The columns 𝑋𝑋 , 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 are called analytic variables, 
and 𝑌𝑌 is called the target variable, which indicates membership in a 
target class 𝑦𝑦. In case of a binary classification, for each row index 𝑖𝑖, the 
label 𝑌𝑌(𝑖𝑖)  is equal to 1 if and only if individual 𝑖𝑖  is in class  𝑦𝑦 (Formula 
36). 
	
  

𝑌𝑌(𝑖𝑖) ∶=   1 if  𝑖𝑖   ∈ 𝑦𝑦
  0 else. 	
   Formula 36 

	
  
A machine learning process for inductive sharp classification 

generates a model 𝑀𝑀 (𝑖𝑖), mapping from the Cartesian product of the 
analytic variable ranges into the set {0,1}, indicating inductive support 
for the hypothesis that 𝑖𝑖 ∈ 𝑦𝑦. As discussed in the section on induction, 
the model should provide support for inductive inferences about an 
individual’s class membership: Given 𝑀𝑀 (𝑖𝑖) = 1, the likelihood of 𝑖𝑖   ∈ 𝑦𝑦  
should be greater than the likelihood of   𝑖𝑖   ∉ 𝑦𝑦. 

The inductive model 𝑀𝑀  can be applied for prediction to a new 
dataset with unknown class indicator, which is either a test set for 
performance evaluation or a prediction set, where the model is applied 
to forecast class membership of new data. The test set or prediction set 
𝑑𝑑′ has the same structure as the training set 𝑑𝑑, except that the class 
membership is unknown, and thus, the target variable 𝑌𝑌 is empty. The 
classifier 𝑀𝑀 , derived from the training set, can be used for predicting 
the class memberships of representations of individuals  𝑖𝑖   ∈ 𝑑𝑑. The 
model output prediction 𝑀𝑀 (𝑖𝑖) yields an inductive classification defined 
by     𝑖𝑖     𝑀𝑀 𝑖𝑖 = 1}. 

In order to evaluate the quality of prediction of a crisp classifier 
model, several measures can be computed. In this section, likelihood 
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ratio and Pearson correlation are mentioned. The greater the ratio 
between likelihood for target class membership, given a positive 
prediction, and the likelihood for target class membership, given a 
negative prediction, the better the inductive support of the model. Thus, 
the predictive model can be evaluated by the likelihood ratio of target 
class membership given the model output (Formula 37).	
  

	
  

𝐿𝐿𝐿𝐿 𝑌𝑌 𝑖𝑖 = 1  |  𝑀𝑀 𝑖𝑖 = 1 ∶=
𝑝𝑝 𝑀𝑀 𝑖𝑖 = 1  |  𝑌𝑌 𝑖𝑖 = 1
𝑝𝑝 𝑀𝑀 𝑖𝑖 = 1  |  𝑌𝑌 𝑖𝑖 = 0

  	
   Formula 37 

	
  
Working with binary or Boolean target indicators and model 

indicators allows the evaluation of predictive quality by a measure of 
correlation of the two variables 𝑀𝑀  and 𝑌𝑌  (Formula 38). The correlation 
between two numerical variables can be measured by the Pearson 
correlation coefficient as the ratio between the covariance of the two 
variables and the square root of the product of individual variances 
(Weisstein, 2010b). 

	
  

corr 𝑀𝑀 , 𝑌𝑌 =
𝐸𝐸 𝑀𝑀 − avg 𝑀𝑀 𝑌𝑌 − avg 𝑌𝑌

stddev 𝑀𝑀 ∙ stddev(𝑌𝑌)
	
  

	
  

Formula 38 

The advantage of the correlation coefficient is its availability in 
database systems. Every standard SQL (structured query language) 
database has an implementation of correlation as an aggregate 
function. Thus, using the correlation coefficient, evaluating the 
predictive performance of a model in a database is fast and simple. 
However, it is important to stress that evaluating predictions with a 
measure of correlation is only meaningful if the target variable as well 
as the predictive variable are Boolean, Zadehan, or numeric in nature. 
It will not work for ordinal or categorical target classes, except if they 
are transformed into a set of Boolean variables. 

For example, in database marketing, the process of target group 
selection uses classifiers to select customers who are likely to buy a 
certain product. In order to do this, a classifier model can be computed 
in the following way: Given set of customers 𝐶𝐶, we know whether they 
have bought product 𝐴𝐴 or not. Let 𝑐𝑐 be an individual customer, and 𝐶𝐶  
be the set of customers who bought product  𝐴𝐴. Then, the value 𝑌𝑌(𝑐𝑐)    of 
target variable 𝑌𝑌 for customer 𝑐𝑐 is defined in Formula 39.  
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𝑌𝑌(𝑐𝑐)   =   1 if  𝑐𝑐   ∈ 𝐶𝐶
  0 else. 	
   Formula 39 

	
  
The analytic variables for customers are selected from every known 
customer attribute, such as age, location, transaction behavior, recency, 
frequency, and monetary value of purchase. The aim of the classifier 
induction process is to learn a model, 𝑀𝑀 , that provides a degree of 
support for the inductive inference that a customer is interested in the 
target product 𝐴𝐴. This prediction, 𝑀𝑀 (c) ∈ {0,1}, should provide a better 
likelihood to identify potential buyers of product 𝐴𝐴, and it should 
optimally correlate with the actual product usage of existing and future 
customers. 
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22..44 IInndduuccttiivvee  FFuuzzzzyy  CCllaassssiiffiiccaattiioonn  
The understanding of IFC in the proposed research approach is an 

inductive gradation of the degree of membership of individuals in 
classes In many interpretations, the induction step consists of learning 
fuzzy rules (e.g., Dianhui, Dillon, & Chang, 2001; Hu, Chen, & Tzeng, 
2003; Roubos, Setnes, & Abonyi, 2003; Wang & Mendel, 1992). In this 
thesis, IFC is understood more generally as inducing membership 
functions to fuzzy classes and assigning individuals to those classes. In 
general, a membership function can be any function mapping into the 
interval between 1 and 0. Consequently, IFC is defined as the process of 
assigning individuals to fuzzy sets for which membership functions are 
generated from data so that the membership degrees are based on an 
inductive inference.  

An inductive fuzzy class, 𝑦𝑦′, is defined by a predictive scoring 
model, 𝑀𝑀 :𝑈𝑈 → [0,1], for membership in a class, 𝑦𝑦. This model 
represents an inductive membership function for 𝑦𝑦′, which maps from 
the universe of discourse 𝑈𝑈 into the interval between 0 and 1 (Formula 
40). 
 

𝜇𝜇 : 𝑈𝑈 → [0,1] ∶= 𝑀𝑀 	
   Formula 40 

 
Consider the following fuzzy classification predicate 𝑃𝑃 𝑖𝑖, 𝑦𝑦 : =

  “𝑖𝑖  is  likely  a  member  of  𝑦𝑦. ” This is a fuzzy proposition (Zadeh, 1975a) as a 
function of 𝑖𝑖 and 𝑦𝑦, which indicates that there is inductive support for 
the conclusion that individual 𝑖𝑖 belongs to class 𝑦𝑦. The truth function, 
𝜏𝜏 , of this fuzzy propositional function can be defined by the 
membership function of an inductive fuzzy class, 𝑦𝑦′. Thus, 𝑃𝑃(𝑖𝑖, 𝑦𝑦) is a 
fuzzy restriction on 𝑈𝑈 defined by 𝜇𝜇  (Formula 41). 
 

𝜏𝜏 “𝑖𝑖  𝑖𝑖𝑖𝑖  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑎𝑎  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑜𝑜𝑜𝑜  𝑦𝑦” ≔ 𝑀𝑀 (𝑖𝑖)	
   Formula 41 

 
In practice, any function  that assigns values between 0 and 1 to 

data records can be used as a fuzzy restriction. The aim of IFC is to 
calculate a membership function to a fuzzy set of likely members in the 
target class. Hence, any type of classifier with a normalized numeric 
output can be viewed as an inductive membership function to the target 
class, or as a truth function for the fuzzy proposition 𝑃𝑃 𝑖𝑖, 𝑦𝑦 . State of the 
art methods for IFC in that sense include linear regression, logistic 
regression, naïve Bayesian classification, neural networks, fuzzy 
classification trees, and fuzzy rules. These are classification methods 
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yielding numerical predictions that can be normalized in order to serve 
as a membership function to the inductive fuzzy class 𝑦𝑦  (Formula 42). 

 

𝑦𝑦 ≔ 𝑖𝑖 ∈ 𝑈𝑈     𝑖𝑖  𝑖𝑖𝑖𝑖  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑎𝑎  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑜𝑜𝑜𝑜  𝑦𝑦   	
   Formula 42 

UUnniivvaarriiaattee  MMeemmbbeerrsshhiipp  FFuunnccttiioonn  IInndduuccttiioonn  22..44..11
This section describes methods to derive membership functions for 

one variable based on inductive methods. First, unsupervised methods 
are described, which do not require learning from a target class 
indicator. Second, supervised methods for predictive membership 
functions are proposed. 

Numerical attributes can be fuzzified in an unsupervised way, 
that is, without a target variable, by calculating a membership function 
to a fuzzy class x is a large number, denoted by the symbol ↑: the fuzzy 
set of attribute values that are large relative to the available data. This 
membership function,   𝜇𝜇↑: dom 𝐶𝐶 ⟶ 0,1 ,  maps from the attribute 
domain of the target variable into the set of Zadehan truth values. This 
unsupervised fuzzification serves two purposes. First, it can be used to 
automatically derive linguistic interpretations of numerical data, such 
as “large” or “small.” Second, it can be used to transform numerical 
attributes into Zadehan target variables in order to calculate likelihoods 
of fuzzy events. There are two approaches proposed here to compute a 
membership function to this class: percentile ranks and linear 
normalization based on minimum and maximum. 

For a numeric or ordinal variable 𝑋𝑋 with a value 𝑥𝑥  𝜖𝜖  dom(𝑋𝑋), the 
percentile rank (PR) is equal to the sampled probability that the value 
of the variable 𝑋𝑋 is smaller than 𝑥𝑥. This sampled probability is 
calculated by the percentage of values in dom(𝑋𝑋) that are smaller than 
or equal to 𝑥𝑥. This sampled probability can be transformed into a degree 
of membership in a fuzzy set. Inductively, the sampled probability is 
taken as an indicator for the support of the inductive inference that a 
certain value, 𝑋𝑋 , is large in comparison to the distribution of the other 
attribute values. The membership degree of 𝑥𝑥 in the fuzzy class 
“relatively large number”, symbolized by ↑, is then defined as specified 
in Formula 43. 
 

𝜇𝜇↑ 𝑥𝑥 ∶=   𝑝𝑝 𝑋𝑋 < 𝑥𝑥 Formula 43 

	
  
For example, customers can be classified by their profitability. The 

percentile rank of profitability can be viewed as a membership function 
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of customers in the fuzzy set ↑ of customers with a high profitability. 
Figure 9 shows an example of an IFC-PR of customer profitability for a 
financial service provider.  

 

 
 

Figure 9: Unsupervised IFC by percentile rank. 

Adapted from “An Inductive Approach to Fuzzy Marketing Analytics,” by M. Kaufmann, 
2009, In M. H. Hamza (Ed.), Proceedings of the 13th IASTED International Conference 

on Artificial Intelligence and Soft Computing: Copyright 2009 by Publisher. 

 
A simpler variant of unsupervised fuzzification for generating a 
membership function for a relatively large number (↑) is linear 
normalization (IFC-LN). For a numerical attribute 𝐶𝐶, it is defined as the 
relative distance to the minimal attribute value, as specified in Formula 
44. 

 

𝜇𝜇↑ 𝐶𝐶 𝑖𝑖 ∶=   
𝐶𝐶 𝑖𝑖 − min 𝐶𝐶

max 𝐶𝐶 − min 𝐶𝐶
 Formula 44 

 
For the membership function induction (MFI) methods in the 

following sections, the target variable for supervised induction must be 
a Zadehan variable, 𝑌𝑌: 𝑈𝑈 ⟶ 0,1 ,  mapping from the universe of 
discourse (the set of possible individuals) into the interval of Zadehan 
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truth values between 0 and 1. Thus,  𝑌𝑌(𝑖𝑖) indicates the degree of 
membership of individual 𝑖𝑖 in the target class  𝑦𝑦. In the special case of a 
Boolean target class, 𝑌𝑌(𝑖𝑖) is equal to 1 if 𝑖𝑖 ∈ 𝑦𝑦, and it is equal to 0 if  𝑖𝑖 ∉
𝑦𝑦. In the analytic training data, a target class indicator 𝑌𝑌 can be 
deduced from data attributes in the following way: 
o If an attribute, 𝐴𝐴, is Zadehan with a range between 0 and 1, it can 

be defined directly as the target variable. In fact, if the variable is 
Boolean, this implies that it is also Zadehan, because it is a special 
case (Formula 45). 
 

Zadehan 𝐴𝐴 ⟹ 𝜇𝜇 𝑖𝑖 ∶= 𝐴𝐴(𝑖𝑖) Formula 45 

 
o If an attribute,  𝐵𝐵, is categorical with a range of    𝑛𝑛 categories, it can 

be transformed into 𝑛𝑛 Boolean variables 𝜇𝜇   (  k = 1, 2, … , n  ), where 
𝜇𝜇 (𝑖𝑖) indicates whether record 𝑖𝑖 belongs to class  𝑘𝑘, as specified by 
Formula 46. 

  

categorical 𝐵𝐵 ⟹ 𝜇𝜇 (𝑖𝑖) ∶= 1 if  𝐵𝐵(𝑖𝑖) = 𝑘𝑘  
0 else.

 Formula 46 

 
o If an attribute, 𝐶𝐶, is numeric, this thesis proposes application of an 

unsupervised fuzzification, as previously specified, in order to derive 
a Zadehan target variable, as formalized in Formula 47. This is 
called an inductive target fuzzification (ITF). 

 

numerical 𝐶𝐶 ⟹ 𝜇𝜇 𝑖𝑖 ∶= 𝜇𝜇↑ 𝐶𝐶 𝑖𝑖  Formula 47 

 
The second approach for univariate membership function 

induction is supervised induction based on a target variable. In order to 
derive membership functions to inductive fuzzy classes for one variable 
based on the distribution of a second variable, it is proposed to 
normalize comparisons (ratios and differences) of likelihoods for 
membership function induction. For example, a normalized likelihood 
ratio can represent a membership degree to an inductive fuzzy class.  
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The basic idea of inductive fuzzy classification based on 
normalized likelihood ratios (IFC-NLR) is to transform inductive 
support of target class membership into a membership function with 
the following properties: The higher the likelihood of  𝑖𝑖 ∈ 𝑦𝑦 in relation to 
𝑖𝑖 ∉ 𝑦𝑦, the greater the degree membership of 𝑖𝑖 in 𝑦𝑦 . For an attribute 𝑋𝑋, 
the NLR function calculates a membership degree of a value 𝑥𝑥  𝜖𝜖  dom(𝑋𝑋) 
in the predictive class 𝑦𝑦 , based on the likelihood of target class 
membership. The resulting membership function is defined as a relation 
between all values in the domain of the attribute 𝑋𝑋 and their NLRs. 

As discussed in Section 2.3.1, following the principle of likelihood 
(Hawthorne, 2008), the ratio between the two likelihoods is an indicator 
for the degree of support for the inductive conclusion that 𝑖𝑖 ∈ 𝑦𝑦, given 
the evidence that 𝑋𝑋(𝑖𝑖) = 𝑥𝑥. In order to transform the likelihood ratio into 
a fuzzy set membership function, it can be normalized in the interval 
between 0 and 1. Luckily, for every ratio, R = A/B, there exists a 
normalization, N = A/(A+B), having the following properties: 
o N is close to 0 if R is close to 0. 
o N is equal to 0.5 if and only if R is equal to 1. 
o N is close to 1 if R is a large number. 

This kind of normalization is applied to the aforementioned 
likelihood ratio in order to derive the NLR function. Accordingly, the 
membership µ of an attribute value x in the target class prediction y’ is 
defined by the corresponding NLR, as formalized in Formula 48.  
 

)|()|(
)|(

)|(:)(' xyLxyL
xyLxyNLRxy ¬+

==µ  Formula 48 

 
In fact, one can demonstrate that the NLR function is equal to the 

posterior probability of y, conditional to x, if both hypotheses y  and y¬  
are assumed to be of equal prior probability (Formula 52), by 
application of the second form of Bayes’ theorem (Joyce, 2003), as 
presented in Formula 50. The trick is to express the probability of the 
evidence p(x) in terms of a sum of products of prior probabilities, p0, and 
measured likelihoods, L, of the hypothesis and its alternative by 
application of Formula 33. 
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Theorem. 

)()()|()|( 00 ypypxypxyNLR ¬=⇔=   Formula 49 

Proof. 

p(y | x) = p0 (y)L(y | x)
p(x)

        (c.f. Formula 36)

=
p0 (y)L(y | x)

p0 (y)L(y | x)+ p0 (¬y)L(¬y | x)
 

[if p(x) = p(y)p(x | y)+ p(¬y)p(x |¬y)
and p(y) := p0 (y) and p(x | y) := L(y | x)]

=
L(y | x)

L(y | x)+ L(¬y | x)
[if p0 (y) :=: p0 (¬y)]

=:NLR(y | x), q.e.d.

 Formula 50 

 
 
Alternatively, two likelihoods can be compared by a normalized 

difference, as shown in Formula 51. In that case, the membership 
function is defined by a normalized likelihood difference (NLD), and its 
application for classification is called inductive fuzzy classification by 
normalized likelihood difference (IFC-NLD). In general, IFC methods 
based on normalized likelihood comparison can be categorized by the 
abbreviation IFC-NLC. 

 

2
1)|()|(

)|(:)('
+¬−

==
xyLxyLxyNLDxyµ  Formula 51 

 
If a target attribute is continuous, it can be mapped into the 

Zadehan domain of numeric truth-values between 0 and 1, and 
membership degrees can be computed by a normalized ratio of 
likelihoods of fuzzy events. If the target class is fuzzy, for example 
because the target variable is gradual, the likelihoods are calculated by 
fuzzy conditional relative frequencies based on fuzzy set cardinality 
(Dubois & Prade, 1980). Therefore, the formula for calculating the 
likelihoods is generalized in order to be suitable for both sharp and 
fuzzy characteristics. Thus, in the general case of variables with fuzzy 
truth-values, the likelihoods are calculated as defined in Formula 52. 
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Formula 52 

 
Accordingly, the calculation of membership degrees using the NLR 

function (Formula 52) works for both categorical and fuzzy target 
classes and for categorical and fuzzy analytic variables. For numerical 
attributes, the attribute values can be discretized using quantiles, and a 
piecewise linear function can be approximated to average values in the 
quantiles and the corresponding NLR. A membership function for 
individuals based on their attribute values can be derived by 
aggregation, as explained in Section 2.4.2. 

Following the different comparison methods for conditional 
probabilities described by Joyce (2003), different methods for the 
induction of membership degrees using conditional probabilities are 
proposed in Table 1. They have been chosen in order to analytically test 
different Bayesian approaches listed by Joyce (2003) for their predictive 
capabilities. Additionally, three experimental measures were 
considered: logical equivalence, normalized correlation, and a measure 
based on minimum and maximum. In those formulae, 𝑥𝑥 and 𝑦𝑦 are 
assumed to be Zadehan with a domain of [0,1] or Boolean as a special 
case. These formulae are evaluated as parameters in the meta-induction 
experiment described in Section 4.2. 
 

Table 1 
Proposed Formulae for Induction of Membership Degrees 

 
Method Formula 

Likelihood of y given x (L) 𝐿𝐿 𝑦𝑦 𝑥𝑥 = 𝑝𝑝(𝑥𝑥|𝑦𝑦) 

Normalized likelihood ratio (NLR) 
𝑁𝑁𝑁𝑁𝑁𝑁 𝑦𝑦 𝑥𝑥 =

𝑝𝑝 𝑥𝑥 𝑦𝑦
𝑝𝑝 𝑥𝑥 𝑦𝑦 + 𝑝𝑝 𝑥𝑥 ¬𝑦𝑦

 

Normalized likelihood ratio 
unconditional (NLRU) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑦𝑦 𝑥𝑥 =

𝑝𝑝 𝑥𝑥 𝑦𝑦
𝑝𝑝 𝑥𝑥 𝑦𝑦 + 𝑝𝑝(𝑥𝑥)

 

Normalized likelihood difference 
(NLD) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑦𝑦 𝑥𝑥 =

𝑝𝑝 𝑥𝑥 𝑦𝑦 − 𝑝𝑝 𝑥𝑥 ¬𝑦𝑦 + 1
2

 

Normalized likelihood difference 
unconditional (NLDU) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑦𝑦 𝑥𝑥 =

𝑝𝑝 𝑥𝑥 𝑦𝑦 − 𝑝𝑝(𝑥𝑥) + 1
2
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Conditional probability of y given x 
(CP) 𝑝𝑝(y|𝑥𝑥) 

Normalized probability ratio 
(NPR) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑦𝑦 𝑥𝑥 =

𝑝𝑝 𝑦𝑦 𝑥𝑥
𝑝𝑝 𝑦𝑦 𝑥𝑥 + 𝑝𝑝 𝑦𝑦 ¬𝑥𝑥

 

Normalized probability ratio 
unconditional (NPRU) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑦𝑦 𝑥𝑥 =

𝑝𝑝 𝑦𝑦 𝑥𝑥
𝑝𝑝 𝑦𝑦 𝑥𝑥 + 𝑝𝑝(𝑦𝑦)

 

Normalized probability difference 
(NPD) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑦𝑦 𝑥𝑥 =

𝑝𝑝 𝑦𝑦 𝑥𝑥 − 𝑝𝑝 𝑦𝑦 ¬𝑥𝑥 + 1
2

 

Normalized probability difference 
unconditional (NPDU) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑦𝑦 𝑥𝑥 =

𝑝𝑝 𝑦𝑦 𝑥𝑥 − 𝑝𝑝(𝑦𝑦) + 1
2

 

Equlivalence - if and only if (IFF) avg 1 − x ∙ 1 − y ∙ 1 − y ∙ 1 − x  

Minimum – maximum (MM) 𝑝𝑝 𝑦𝑦 𝑥𝑥 + min ∈ ( ) 𝑝𝑝 𝑦𝑦 𝑧𝑧
min ∈ ( ) 𝑝𝑝 𝑦𝑦 𝑧𝑧 + max ∈ ( ) 𝑝𝑝 𝑦𝑦 𝑧𝑧

 

Normalized correlation (NC) corr(x, 𝑦𝑦) + 1
2

 

 
A method for discretization of a numerical range is the calculation 

of quantiles or n-tiles for the range of the analytical variable. A quantile 
discretization using n-tiles partitions the variable range into n intervals 
having the same number of individuals. The quantile 𝑄𝑄 𝑖𝑖  for an 
attribute value 𝑍𝑍(𝑖𝑖), of a numeric attribute 𝑍𝑍 and an individual 𝑖𝑖, is 
calculated using Formula 53, where 𝑛𝑛 is the number of quantiles, 𝑚𝑚 is 
the total number of individuals or data records,  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑖𝑖) is the position 
of the individual in the list of individuals sorted by their values of 
attribute  𝑍𝑍, and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑟𝑟) is the closest integer that is smaller than the 
real value  𝑟𝑟.   

	
  

𝑄𝑄 𝑖𝑖 ∶= 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑛𝑛
𝑚𝑚

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 − 1 Formula 53 

	
  
The rank of individual 𝑖𝑖 relative to attribute 𝑍𝑍, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 , in a 

dataset 𝑆𝑆 is the number of other individuals, ℎ, that have higher values 
in attribute 𝑍𝑍, calculated using Formula 54. 
	
  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑖𝑖) ∶= ℎ   ∈ 𝑆𝑆     ∀𝑖𝑖 ∈ 𝑆𝑆:  𝑍𝑍(ℎ) > 𝑍𝑍(𝑖𝑖) Formula 54 
 

In order to approximate a linear function, the method of two-
dimensional piecewise linear function approximation (PLFA) is 
proposed. For a list of points in ℝ , ordered by the first coordinate, 
𝑥𝑥 , 𝑦𝑦 , 𝑥𝑥 , 𝑦𝑦 , … , 𝑥𝑥 , 𝑦𝑦 , for every point 𝑥𝑥 , 𝑦𝑦  except the last one 
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(𝑖𝑖 = 1,2, … , 𝑛𝑛 − 1), a linear function, 𝑓𝑓 𝑥𝑥 = 𝑎𝑎 𝑥𝑥 + 𝑏𝑏 , can be interpolated 
to its neighbor point, where 𝑎𝑎  is the slope (Formula 55) and 𝑏𝑏   is the 
intercept (Formula 56) of the straight line.  
 

𝑎𝑎 ∶=
𝑦𝑦 − 𝑦𝑦
𝑥𝑥 − 𝑥𝑥

 Formula 55 

𝑏𝑏 ∶= 𝑦𝑦 −𝑎𝑎 𝑥𝑥  Formula 56 

For the calculation of membership degrees for quantiles, the input 
is a list of points with one point for every quantile k. The first 
coordinate is the average of the attribute values in k. The second 
coordinate is the inductive degree of membership 'yµ  in target class y, 
given Z(i)  is in quantile k, for example derived using the NLR function. 

)(: ' ky yk µ=   

})(|)({: kiQiZavgx Z
nk ==  

Formula 57 

 
Finally, a continuous, piecewise affine membership function can 

be calculated, truncated below 0 and above 1, and is composed of 
straight lines for every quantile 2;1,,1 ≥−= nnk …  of the numeric 
variable Z (Formula 58). 
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The number of quantiles can be optimized, so that the correlation 

of the membership function with the target variable is optimal, as 
illustrated in Figure 10. 
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Figure 10: Computation of membership functions for numerical variables.  

 

MMuullttiivvaarriiaattee  MMeemmbbeerrsshhiipp  FFuunnccttiioonn  22..44..22
IInndduuccttiioonn    

As shown in Figure 11, the proposed process for inducing a 
multivariate inductive fuzzy class consists of preparing the data, 
inducing univariate membership functions for the attributes, 
transforming the attribute values into univariate target membership 
degrees, classifying individuals by aggregating the fuzzified attributes 
into a multivariate fuzzy classification, and evaluating the predictive 
performance of the resulting model. 

 

 
Figure 11: Proposed method for multivariate IFC. 

 
The idea of the process is to develop a fuzzy classification that 

ranks the inductive membership of individuals, 𝑖𝑖, in the target class 𝑦𝑦 
gradually. This fuzzy classification will assign individuals an inductive 
membership degree to the predictive inductive fuzzy class 𝑦𝑦′ using the 
multivariate model  𝜇𝜇 . The higher the inductive degree of membership 
𝜇𝜇 (𝑖𝑖) of an individual in 𝑦𝑦′, the greater the degree of inductive support 
for class membership in the target class 𝑦𝑦. 
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In order to accomplish this, a training set is prepared from source 
data, and the relevant attributes are selected using an interestingness 
measure. Then, for every attribute  𝑋𝑋 , a membership function, 
𝜇𝜇 : dom 𝑋𝑋 ⟶ [0,1], is defined. Each 𝜇𝜇  is induced from the data such 
that the degree of membership of an attribute value   𝑋𝑋 (𝑖𝑖) in the 
inductive fuzzy class 𝑦𝑦′ is proportional to the degree of support for the 
inference that  𝑖𝑖 ∈ 𝑦𝑦. After that, in the univariate classification step, 
each variable, 𝑋𝑋 , is fuzzified using 𝜇𝜇 . The multivariate fuzzy 
classification step consists of aggregating the fuzzified attributes into 
one multivariate model, 𝜇𝜇 , of data elements that represents the 
membership function of individual 𝑖𝑖 in 𝑦𝑦′. This inductive fuzzy class 
corresponds to an IFC that can be used for predictive ranking of data 
elements. The last step of the process is model evaluation through 
analyzing the prediction performance of the ranking. Comparing the 
forecasts with the real class memberships in a test set does this. In the 
following paragraphs, every step of the IFC process is described in 
detail. 

In order to analyze the data, combining data from various sources 
into a single coherent matrix composes a training set and a test set. All 
possibly relevant attributes are merged into one table structure. The 
class label 𝑌𝑌 for the target variable has to be defined, calculated, and 
added to the dataset. The class label is restricted to the Zadehan 
domain, as defined in the previous section. For multiclass predictions, 
the proposed process can be applied iteratively. 

Intuitively, the aim is to assign to every individual a membership 
degree in the inductive fuzzy class 𝑦𝑦′. As explained in Section 2.3.1, this 
degree indicates support for the inference that an individual is a 
member of the target class 𝑦𝑦. The membership function for 𝑦𝑦′ will be 
derived as an aggregation of inductively fuzzified attributes. In order to 
accomplish this, for each attribute, a univariate membership function in 
the target class is computed, as described in the previous section.  

Once the membership functions have been induced, the attributes 
can be fuzzified by application of the membership function to the actual 
attribute values. In order to do so, each variable,   𝑋𝑋 , is transformed 
into an inductive degree of membership in the target class. The process 
of mapping analytic variables into the interval [0, 1] is an attribute 
fuzzification. The resulting values can be considered a membership 
degree to a fuzzy set. If this membership function indicates a degree of 
support for an inductive inference, it is called an inductive attribute 
fuzzification (IAF), and this transformation is denoted by the symbol ⇝ 
in Formula 59. 

  𝑋𝑋 i ⇝ 𝜇𝜇   𝑋𝑋 i 	
   Formula 59	
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The most relevant attributes are selected before the IFC core 

process takes place. The proposed method for attribute selection is a 
ranking of the Pearson correlation coefficients (Formula 38) between 
the inductively fuzzified analytic variables and the (Zadehan) target 
class indicator Y. Thus, for every attribute, 𝑋𝑋 , the relevance regarding 
target 𝑦𝑦 is defined as the correlation of its inductive fuzzification with 
the target variable (see Section 3.1.1). 

In order to obtain a multivariate membership function for 
individuals 𝑖𝑖 derived from their fuzzified attribute values    𝜇𝜇 𝑋𝑋 𝑖𝑖 , 
their attribute value membership degrees are aggregated. This 
corresponds to a multivariate fuzzy classification of individuals. 
Consequently, the individual’s multivariate membership function 
    𝜇𝜇 : 𝑈𝑈 ⟶ [0,1] to the inductive fuzzy target class 𝑦𝑦′ is defined as an 
aggregation, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, of the membership degrees of 𝑛𝑛 attributes, 
𝑋𝑋 , 𝑘𝑘 = 1,2, … , 𝑛𝑛 (Formula 60). 

 

  𝜇𝜇 𝑖𝑖 ∶= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇 𝑋𝑋 𝑖𝑖 , … ,     𝜇𝜇 𝑋𝑋 𝑖𝑖  Formula 60 

 
By combining the inductively fuzzified attributes into a 

multivariate fuzzy class of individuals, a multivariate predictive model, 
  𝜇𝜇 , is obtained from the training set. This corresponds to a 
classification of individuals by the fuzzy proposition “𝑖𝑖 is likely a 
member of 𝑦𝑦,” for which the truth value is defined by an aggregation of 
the truth values of fuzzy propositions about the individual’s attributes, 
𝑋𝑋 𝑖𝑖   is  𝑦𝑦′. This model can be used for IFC of unlabeled data for 
predictive ranking. Applying an alpha cutoff,   𝑖𝑖     𝜇𝜇 (𝑖𝑖) ≥ 𝛼𝛼   , an 
𝛼𝛼 ∈ [0,1] leads to a binary classifier. 

There are different possibilities for calculating the aggregation, 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. Simpler methods use an average of the attribute membership 
degrees, logical conjunction (minimum, algebraic product), or logical 
disjunction (maximum, algebraic sum). More sophisticated methods 
involve the supervised calculation of a multivariate model. In this 
thesis, normalized or cutoff linear regression, logistic regression, and 
regression trees are considered. These different aggregation methods 
were tested as a parameter in the meta-induction experiment described 
in Section 4.2 in order to find an optimal configuration. 

Finally, in order to evaluate predictive performance, the classifier 
is applied to a hold-out test set, and the predictions   𝜇𝜇 𝑖𝑖  are compared 
with the actual target variable (𝑖𝑖). The correlation between the 
prediction and the target,   corr 𝜇𝜇   , 𝑌𝑌 , can be used to compare the 
performance of different IFC models. 
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33 AAnnaallyyttiiccss  &&  MMaarrkkeettiinngg  

33..11 AAnnaallyyttiiccss  
Analytics is “the method of logical data analysis” (merriam-

webster.com, 2012a). According to Zimmermann (1997), data analysis is 
the “search for structure in data”. The more data is available, the more 
complex it becomes to find relevant information. Consequently, 
organizations and individuals analyze their data in order to gain useful 
insights. Business analytics is defined as “a broad category of 
applications and techniques for gathering, storing, analyzing and 
providing access to data to help enterprise users make better business 
and strategic decisions” (Turban, Aronson, Liang, & Sharda, 2007, p. 
256). 

The ability of enterprises to analyze the potentially infinite space 
of available data—their capacity of business analytics—is a major 
competitive advantage. Companies that use analytics as key strategies 
are called “analytics competitors” by Davenport (2006, p. 3). They can 
differentiate themselves through a better customer understanding in a 
time when products and technologies are becoming more and more 
comparable. Analytics competitors apply predictive modeling to a wide 
range of fields, such as customer relationship management, supply 
chain management, pricing, and marketing. Their top management 
understands and advocates that most business functions can benefit 
from quantitative optimization. In fact, business analytics can be 
applied to almost any area that concerns an enterprise: 
o Customer relationship management (CRM): Prediction of the most 

appropriate customer relationship activity. 
o Web analytics: Optimization of the website according to click stream 

analysis. 
o Compliance: Prediction of illegal behavior such as fraud or money 

laundering. 
o Risk management: Prediction of credit worthiness. 
o Strategic management: Visualization of customer profiles for 

product or market strategies. 
o Marketing: Prediction of customer product affinity. 

Kohavi, Rothleder, and Simoudis (2002) identified 
comprehensibility and integration as the driving forces of emerging 
trends in business analytics. Today, good business analytics is either 
comprehensible or integrated: Human decision makers need 
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interpretable, visual, or textual models in order to understand and 
apply analytic insights in their daily business. Contrarily, information 
systems demand machine readable, integrated automated interfaces 
from analytic applications to operational systems in order to apply 
scorings or classifications in automated processes. 

In order to enhance the data basis for analytics, large data pools, 
such as data warehouses, have been built. Today, the problem is no 
longer the lack of data, but the abundance of it. Data mining (in the 
broader sense) is “the process of discovering patterns in data”. In a more 
narrow sense, those “structural patterns” help not only to explain the 
data but also to make “nontrivial predictions on new data” (Witten & 
Frank, 2005, p. 5). The common aspect of the two definitions is the 
discovery of patterns in data. In contrast, the second definition 
emphasizes the inductive aspect of data mining, namely prediction. 
Data mining, in its broader sense, means any form of discovery of 
knowledge in data, whereas in the narrower sense, it means model 
induction for prediction using statistics and machine learning. One aim 
of data mining is the induction of models for datasets. If applied 
correctly, models not only describe the past, but also help to forecast the 
future. Successful data mining is a practical demonstration of inductive 
logic. There are two categories of machine learning: non-supervised and 
supervised learning. The former extracts models such as clusters or 
association rules from data without labels. The latter induces a model 
for labeled data, representing the relationship between the data and the 
label. Continuous labels lead to regression models, and categorical ones 
lead to classification models or classifiers. 

Descriptive data analysis presents data as is, that is, it describes 
the data without generalization or conclusion. It is completely 
deductive, because the numbers are true without need for inductive 
support. In a business context, this is often called reporting. A report is 
an understandable tabular or graphical representation of relevant data. 
Usually, methods of classification and aggregation are applied to 
consolidate data into meaningful information. Frequently applied 
techniques for descriptive data analysis are deductive classification, 
aggregation, and grouping. For deductive classification, data records are 
classified according to an a priori predicate. Therefore, the class 
membership is known in advance. Aggregation is the calculation of a 
scalar value from a vector or set, such as sums, averages, or extrema. 
Often, these aggregations are grouped by one or more variables. In such 
cases, the aggregated values are calculated for each combination of 
values in the grouping variables For example, the average cost and 
benefit per customer segment could be an interesting data description 
for many companies. An important part of descriptive data analysis is 
the presentation of the results. The raw output of an analysis is usually 
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a matrix or table, but human decision makers are usually managers 
that want to decide quickly and intuitively based on insights that can be 
understood. Therefore, visualization of data descriptions can help 
increase the understanding of analytic insights.  

Data descriptions might indicate certain conclusions or inferences 
that cannot be directly deduced from the data. For example, if twice as 
many women than men have bought a certain product, an inference 
could be that women are more likely to buy this product in the future. 
The question, therefore, is, what kind of inductive inferences can be 
made from the given data descriptions, and how high is the degree of 
support in the data for this kind of inductive inference? There are two 
important inductive techniques in data analysis: attribute selection and 
prediction. In data abundance, not only the number of available records 
is incredibly large but also the number of available attributes. 
Automated attribute selection applies statistical and machine learning 
techniques for a ranking of association between attributes and a 
prediction target, and thus filters out the most relevant attributes for 
inductive inferences regarding a target class. Prediction means 
inference of an unknown feature (a target variable) from known 
features (the analytic variables). This can be accomplished to a certain 
degree of likelihood using a model induced by methods from statistics or 
machine learning. There are two kinds of predictions: inductive 
classification and regression. Inductive classification means predicting a 
categorical target variable, and regression means predicting a 
numerical target variable. Fuzzy classification is a special case in which 
the prediction consists of a numeric value indicating the gradual 
membership in a category. 

Insights from analytics are traditionally presented to human 
decision makers as tables and graphics. Today, more and more analytic 
results are loaded automatically from analytic systems into operational 
systems, a concept that is called integrated analytics. Those systems 
can automate certain decision processes or display analytic insights to 
users of operational systems. Marketing decisions can be automated, 
such as choosing an individualized advertisement message in the online 
channel (Kaufmann & Meier, 2009). The process of integrated analytics 
can be described in five steps. First, analytic data is collected from 
different sources. Second, a predictive model is induced from the data, 
either in a supervised form using a target variable or in an 
unsupervised form of clustering or association analysis. Third, a 
prediction, classification, or score is assigned to the original data based 
on the induced model. Fourth, these predictions are transmitted to the 
operational systems where they are applied to decision support. Finally, 
outcomes of decision support—for example, sales decisions and 
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actions—are fed back into the analytic data pool for meta-analysis and 
iterative optimization. 

Application of fuzzy logic techniques to analytics is called fuzzy 
data analysis. This permits gradual relationships between data and 
predictions. The application of fuzzy logic to analytics is appropriate 
when there is fuzziness in the data, the prediction target, or in the 
association between the two (Zimmermann H. J., 1997). The advantage 
of fuzzy classification methods is that the class boundary is not sharp: 
Patterns detected by fuzzy data mining provide soft partitions of the 
original data. Furthermore, an object can belong to several classes with 
different degrees of membership (Zimmermann H. J., 2000). Two main 
advantages of fuzzy logic techniques pointed out by Hüllermeier (2005) 
are the elimination of certain threshold effects because of gradual soft 
data partitioning, and the comprehensibility and interpretability of 
resulting models containing linguistic terms. Hüllermeier discusses 
possible fields of application of fuzzy set theory to data mining: Fuzzy 
cluster analysis partitions a set of objects into several fuzzy sets with 
similar properties in an unsupervised manner. Learning of fuzzy rules 
computes decision rules with fuzzy propositions. Fuzzy decision trees 
are a special case of fuzzy rules in which every node of the tree 
partitions the data into a fuzzy subset with an optimal distinction 
criterion. Fuzzy association analysis computes association rules 
between fuzzy restrictions on variables. Fuzzy classification partitions 
sharp data into fuzzy sets according to a classification predicate (Meier, 
Schindler, & Werro, 2008). If this predicate is inferred by induction, the 
process is called inductive fuzzy classification, or IFC (Kaufmann & 
Meier, 2009).  

In business analytics, scoring methods are used for ranking data 
records according to desirable features. Multivariate methods based on 
multiple attributes, for instance linear or logistic regression, can predict 
targets such as customer profitability, product affinity, or credit 
worthiness. The scores are used in daily decision making. Record 
scoring based on data in an information system is an inference about 
unknown target variables, which is not deductive. Rather, it is a form of 
inductive inference. This introduces fuzziness into decision support 
because there is only some degree of support for the hypothesis that a 
given record belongs to a certain class. In fact, statistical models can 
increase the likelihood of correct inductive classification. Accordingly, 
for every scored record, there is fuzziness in the membership to the 
target class. Consequently, fuzzy logic is the appropriate tool for 
reasoning about those fuzzy target classes. The solution is to compute a 
continuous membership function mapping from the data into the fuzzy 
target class to which every record has a degree of membership. Ranking 
or scoring models yield continuous predictions instead of crisp 
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classifications. Those models can serve as target membership functions. 
Thus, scoring methods correspond to an IFC. 

The proposed IFC method provides a means for computing 
inductive membership functions for a target class. These membership 
functions can be visualized. Furthermore, they can be used for inductive 
fuzzification of attributes, which can be applied for attribute selection 
and for improving predictive models. Thus, the proposed IFC methods 
can be applied in the following areas of data analysis: 
o Selection: Attributes can be scored by the correlation of 

automatically generated inductive membership degrees with a 
Boolean or Zadehan target class in order to select relevant 
attributes. 

o Visualization: Induced membership functions can serve as human-
readable diagrams of association between analytic and target 
variables using a plot of automatically generated membership 
functions. 

o Prediction: Datasets used for prediction can be inductively fuzzified 
by transforming the original data into inductive target membership 
degrees, which can improve the correlation of predictions with the 
actual class membership in existing statistical methods. 

SSeelleeccttiioonn  33..11..11
In practice, there is an abundance of data available. The problem 

is to find relevant attributes for a given data mining task. Often, 
thousands of variables or more are available. Most machine learning 
algorithms are not suited for such a great number of inputs. Also, 
human decision makers need to know which of those customer 
attributes are relevant for their decisions. Therefore, the most relevant 
attributes need to be selected before they can be used for visualization 
or prediction. 

In order to find relevant attributes for predicting a target class y, 
an attribute selection method can be derived from membership 
functions induced by IFC, using the method proposed in Section 2.4. All 
possible analytic variables can be ranked by the correlation coefficient 
of their NLR with the target variable. For every attribute, Xk, the 
membership function in the predictive target class y’, denoted by µy’(Xk), 
is computed. The membership in target y is indicated by a Zadehan 
variable Y, which is a variable with a domain of gradual truth values in 
the interval between 0 and 1. Then, the Pearson sample correlation 
coefficients between the NLR-based membership degrees and the 
Zadehan values of Y are calculated. Thus, the relevance of attribute Xk 
regarding target y is defined as the correlation of its inductive 
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fuzzification with the target variable (Formula 61). The most relevant 
variables are those with the highest correlations.   
 

)),((:)( ' YXcorrXrelevance kyk µ= 	
  

Formula 61 

 
The fuzzification of analytic variables prior to attribute relevance 

ranking has the advantage that all types of analytic variables—
linguistic, categorical, Boolean, Zadehan, and numeric variables—can 
be ranked using the same measure. Choosing correlation as a measure 
of association with the target has the advantage that it is a standard 
aggregate in SQL, and thus readily available as a well-performing 
precompiled function in major database systems. 

To illustrate the proposed method, the attributes of the German 
credit data are ranked regarding the target class of customers with a 
good credit rating (Table 2). Those attributes have been inductively 
fuzzified with NLRs. The Pearson coefficient of correlation between the 
resulting membership degrees and the Boolean target variable good 
credit rating has been calculated. One can see that, for a credit rating, 
checking status, credit history, or duration of customer relationship are 
quite correlated attributes, whereas for example, the number of existing 
credits is less relevant.  

This kind of attribute selection can be used as an input for 
visualization and prediction. When a target class is defined, the 
relevant correlated variables can be identified. A visualization of five to 
ten most relevant variables gives good insights about associations in the 
data. 

Table 2 
Example of an Attribute Ranking regarding NLR/Target Correlation1 

Attribute Correlation of NLR with target 
Checking status 0.379304635 
Credit history 0.253024544 
Duration 0.235924759 
Purpose 0.190281416 
Savings status 0.189813415 
Credit amount 0.184522282 
Housing 0.173987212 
Property magnitude 0.157937117 
Age 0.136176815 

                                                
1 http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)  

http://archive.ics.uci.edu/ml/datasets/Statlog+
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Employment 0.128605942 
Personal status 0.093525855 
Installment commitment 0.091375548 
Other payment plans 0.079139824 
Foreign worker 0.077735317 
Job 0.061875096 
Other parties 0.060046535 
Own telephone 0.051481771 
Existing credits 0.042703728 
Residence since 0.034584104 
Num. dependents 0.007769441 

 

VViissuuaalliizzaattiioonn  33..11..22
The IFC-NLR method can be applied to create visualizations of 

associations between an analytic variable (a factor) and a class (a 
target). A visualization of variable association is a human-readable 
presentation that allows the reader to see the distribution of target 
likelihood in tabular form or as a graph.  

Using IFC for visualization, the table consists of relations between 
factor values and normalized target likelihood ratios, and the graph 
results in a plot of the inductive membership function. For categorical 
factors, the graph is a bar chart. For numerical factors, the membership 
function is plotted as a continuous line. The advantage of this method is 
that the notion of membership of a factor X in a target Y is semantically 
clear and intuitively understandable by readers. Furthermore, the 
semantics of the NLR function is mathematically clearly defined.  

As an example, for two variables from the German credit dataset, 
checking status and duration, the inductive fuzzy membership function 
in the target class of customers with a good credit rating can be 
visualized as shown in Figure 12. This graphic can be interpreted as 
follows: Customers without checking accounts or with a balance of more 
than $200 are more likely to have good credit histories than not. 
Customers with a negative balance are more likely to have bad credit 
ratings. For the duration of the credit (in months), the shorter the 
duration is, the higher the likelihood of good credit history. Credits with 
durations of more than 19 months have higher likelihoods of being 
associated with bad credit histories, and accordingly, the NLR is less 
than 0.5. 
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Figure 12: Visualization of relevant attributes and their association with the target as 
an inductive membership function. 

Adapted from “Fuzzy Target Groups in Analytic Customer Relationship Management,” 
by M. Kaufmann and C. Graf, 2012, In A. Meier and L. Donzé (Eds.), Fuzzy Methods for 

Customer Relationship Management and Marketing, p. 1731 Copyright 2012 by 
Publisher. 
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PPrreeddiiccttiioonn  33..11..33
A method for the application of likelihood-based IFC to prediction 

has been introduced by Kaufmann and Meier (2009). The basic idea is to 
create a multivariate inductive model for target class membership with 
a combination of inductively fuzzified attributes derived by membership 
function induction (see Section 2.4). The proposed approach for 
application of likelihood-based IFC to prediction consists of a univariate 
inductive fuzzification of analytic variables prior to a multivariate 
aggregation. This has the advantage that non-linear associations 
between analytic variables and target membership can be modeled by 
an appropriate membership function. As presented in Figure 13, the 
following steps are applied in order to derive an inductive membership 
degree of individual i in the prediction y’ for class y based on the 
individual’s attributes: 
o A: The raw data consists of sharp attribute values. 
o B: An inductive definition of the membership function for the 

attribute values in the predictive fuzzy class y’ is calculated using 
the previously described IFC-NLC methods. 

o C: The attribute values are fuzzified using the derived membership 
functions from step B. This step is called inductive attribute 
fuzzification (IAF), defined as supervised univariate fuzzy 
classification of attribute values. 

o D: After that, the dataset consists of fuzzified attribute values in the 
interval [0,1], indicating the inductive support for class membership. 

o E: The several fuzzified analytic variables are aggregated into a 
membership degree of individuals in the predictive class. This can 
be a simple conjunction or disjunction, a fuzzy rule set, or a 
statistical model derived by supervised machine learning algorithms 
such as logistic or linear regression. 

o F: This results in a multivariate membership function that outputs 
an inductive membership degree for individual i in class y, which 
represents the resulting prediction.  

It is proposed to preprocess analytic data with IFC methods in 
order to improve prediction accuracy. More specifically, attributes used 
for data mining can be transformed into inductive membership degrees 
in the target class, which can improve the performance of existing data 
mining methods. The basic idea is to create a multivariate model for a 
target variable with a combination of inductively fuzzified attributes 
derived by membership function induction. 
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Figure 13: Proposed schema for multivariate IFC for prediction. 

Adapted from “Fuzzy Target Groups in Analytic Customer Relationship Management,” 
by M. Kaufmann and C. Graf, 2012, In A. Meier and L. Donzé (Eds.), Fuzzy Methods for 

Customer Relationship Management and Marketing, p. 172. Copyright 2012 by 
Publisher. 

 
Empirical tests (Section 4.2) have shown that using the proposed 

method of IAF significantly improves the average correlation between 
prediction and target. For binary target variables, a combination of IAF 
with an NLR, and the subsequent application of a logistic regression, 
turned out to be optimal. This configuration is illustrated in Figure 14. 

For numerical targets, a linear fuzzification (LF) of the target, IAF 
using NLD, and calculation of a regression tree have turned out to be 
optimal. This configuration is illustrated in Figure 15. 

However, this improvement by IAF can be shown only in average 
prediction correlation. There are instances of data in which the 
application of IAF lowers the predictive performance. Therefore, an IAF 
is worth a try, but it has to be tested whether it really improves the 
prediction or not in the given data domain. IAF provides a tool for fine-
tuning predictive modeling, but answering the question about the best 
classification algorithm in a specific context takes place in the data 
mining process in which the algorithm with the best results is selected 
(Küsters, 2001). 
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Figure 14: IFC prediction with binary target classes based on categorical attributes. 

 

 
Figure 15: IFC prediction with Zadehan target classes based on numerical attributes. 
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33..22 MMaarrkkeettiinngg  AAnnaallyyttiiccss  
“Analytics competitors understand that most business functions—

even those, like marketing, that have historically depended on art 
rather than science—can be improved with sophisticated quantitative 
techniques.”  (Davenport, 2006, p. 4) 

 
The application of the method of data analysis to marketing is 

called marketing analytics. This can optimize the marketing mix and 
individual marketing on multiple channels. An important challenge in 
marketing is its financial accountability: making costs and benefits of 
marketing decisions explicit. Spais and Veloutsou (2005) proposed that 
marketing analytics could increase the accountability of marketing 
decisions. They point out the need of incorporating marketing analytics 
in daily marketing decision making, which is a conceptual shift for 
marketers to work with mathematical tools. Furthermore, they suggest 
that the problem of fuzziness in consumer information should be 
addressed by fuzzy logic techniques. 

Individual marketing is capable of accounting for all costs and 
benefits of a marketing campaign to daily CRM decisions. Because all 
customers, advertisements, and sales are recorded in information 
systems, the benefit of marketing activities can be measured. For 
example, in an individual marketing campaign, the sales ratio of 
targeted customers can be compared to average or random customers, 
and the sales increase can be directly linked to the corresponding 
marketing campaigns.  

The application of IFC methods to data analysis can be used in 
marketing analytics. Specifically, customer and product analytics, 
target selection, and integrated analytics are proposed as possible 
applications for the methods that have been developed in this thesis. 
Using IFC methods for selection, visualization, and prediction can 
support these four fields in marketing analytics. The benefits of IFC 
include automated generation of graphics with a linguistic 
interpretation, clear model semantics for visualization by membership 
function induction, and a possibly better target selection because of 
optimized predictive models using IAF. As shown in Figure 16, general 
application of IFC to the field of analytics for selection, visualization, 
and prediction can be applied to marketing analytics, specifically. 
Visualizations of induced membership functions of attributes in 
marketing targets provide fuzzy customer and product profiles. 
Furthermore, MFI allows fuzzy definitions of target groups based on 
customer characteristics. Finally, scoring methods can represent 
membership functions to fuzzy target groups defined as fuzzy sets of 
customers to which every individual customer has a degree of 
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membership. These can be integrated into automated analytics 
processes for individual marketing. 

	
  

	
  
Figure 16: Proposed areas of application of IFC to marketing analytics. 

  

CCuussttoommeerr  AAnnaallyyttiiccss  33..22..11
The aim of customer analytics is to make associations between 

customer characteristics and target classes of interesting customers 
with desirable features understandable to marketing decision makers. 
The question is, which customer features are associated with the target? 
A customer report visualizes the likelihood of target class membership 
given different values of an attribute in order to show relevant features 
that distinguish the target class from the rest of the customers. In the 
context of CRM, there are several target customer classes that are 
interesting for profiling: 
o Product affinity: Customers who have bought a given product.  
o Profitability: Customers who are profitable to the enterprise. 
o Recency: Customers who are active buyers because they have 

recently bought a product. 
o Frequency: Customers who buy frequently. 
o Monetary value: Customers who generate a high turnover. 
o Loyalty: Customers who have used products or services for a long 

period of time. 
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A customer profile for the mentioned target customer classes 
should answer the question, what distinguishes customers in this class 
from other customers? Thus, the association between class membership 
and customer attributes is analyzed. The customer attributes that can 
be evaluated for target likelihood include all of the aforementioned 
characteristics, and additionally, socio-demographic data, geographic 
data, contract data, and transaction behavior recorded in operational 
computer systems, such as CRM interactions and contacts in direct 
marketing channels.  

If one looks more closely at the target customer classes, one can 
see that, often, these classes are fuzzy. For example, to generate a “high 
turnover” is a fuzzy proposition, and the corresponding customer class is 
not sharply defined. Of course, one could discretize the class using a 
sharp boundary, but this does not reflect reality in an appropriate 
manner. Therefore, it is proposed to visualize fuzzy customer classes as 
fuzzy sets with membership functions. 

In order to generate customer profiles based on a target class and 
the relevant customer attributes, the method of MFI by NLRs presented 
in Section 2.4.1 can be applied. It is proposed to select the relevant 
customer attributes first, using the method previously described. After 
that, the relevant attributes are called profile variables. For a profile 
variable X, the values xk ∈ dom(X) are called profile characteristics. 
They are assigned an inductive membership degree for the predictive 
target class y’ defined by µy’(xk) := NLR(y|xk). A plot of the 
corresponding membership function represents a visual fuzzy customer 
profile for variable X, as illustrated by Figure 17.  

Two instances of a fuzzy customer profile using NLRs are shown 
in Figure 17, in which the customers of investment funds products of a 
financial service provider are profiled by customer segment and 
customer age. Interpretation of the graphs suggests that customers 
above the age of 50 and customers in the segments Gold and Premium 
are more likely to buy investment funds than the average customer. 

A fuzzy customer profile derived with the IFC-NLR method 
creates a visual image of the customer class to be analyzed by showing 
degrees of membership of customer features in the target characteristic. 
Marketing managers can easily interpret the resulting reports. 
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Figure 17: Schema of a fuzzy customer profile based on IFC-NLR, together with two 
examples of a fuzzy customer profile.  

Adapted from “Fuzzy Target Groups in Analytic Customer Relationship Management,” 
by M. Kaufmann and C. Graf, 2012, In A. Meier and L. Donzé (Eds.), Fuzzy Methods for 

Customer Relationship Management and Marketing, p. 173. Copyright 2012 by 
Publisher. 

 

PPrroodduucctt  AAnnaallyyttiiccss  33..22..22
Marketing target groups can be defined by typical characteristics 

of existing product users. This method is based on analysis of existing 
customer data in the information systems of a company, which is an 
instance of secondary market research. The data of customers that are 
product users (the test group) is compared to the data of customers that 
do not use the product (the control group). The attributes that separate 
test and control group most significantly are used for defining the target 
group of potential customers. These attributes are the most selective 
ones. Accordingly, the target group is derived inductively by similarity 
to the set of existing product users. As an example, a customer profile 
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could show that customers between 30 and 40 years of age in urban 
areas are twice as likely to be product users as other customers. In such 
a case, the target group for this particular product could be defined 
accordingly. 

Analytic target group definitions are based on a set of customer 
characteristics. However, these characteristics differ in relevance. Thus, 
the set of relevant customer characteristics for a product target group is 
a fuzzy set because the boundary between relevant and non-relevant 
characteristics is gradual. The corresponding membership degree can be 
precisiated by a relevance or selectivity metric. It is proposed that an 
NLR be used as a measure of selectivity. 

The likelihood of product usage, UP (the notation is for product P), 
given that a customer record, i, in the existing customer database d has 
characteristic c, can be computed accurately as a sampled conditional 
probability, p(c|UP)d, defined as the number of product users that have 
this feature divided by the total number of product users (Formula 62). 
In this formula, c(i) and UP(i) are Boolean truth values that indicate 
presence or absence of a customer characteristic and the usage of the 
product. 
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This product usage likelihood can be compared to the likelihood, 

p(c |¬UP)d, of the opposite hypothesis that a customer is not a product 
user, given characteristic c, calculated as the number of non-users of the 
product that have characteristic c divided by the total number of non-
users (Formula 63). 
 

|)}(|{|
|)}()(|{|

:)|(
iUdi
iUicdiUcp

P

P
dP ¬∈

¬∧∈
=¬  Formula 63 

 
Thus, the selectivity of a customer characteristic c can be 

expressed by the ratio between the likelihood of product usage, given c, 
and likelihood of product non-usage, given c (Formula 64). This ratio 
can be normalized as formalized in Formula 65. 
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Finally, the selectivity of characteristic c, expressed as an NLR, 

represents an inductive degree of membership of this characteristic in 
the fuzzy target group definition for product P. An inductive fuzzy 
target group definition, t, based on analysis of database d is a fuzzy set 
of customer features and its membership function is defined by the 
corresponding NLR (Formula 66). 
 

dPdt cuNLRc )|(:)( =µ
 

Formula 66 

 
A customer characteristic may or may not be defined by a 

granular attribute value. Characteristics can also be computed by 
functional combination of several basic attribute values. Furthermore, 
the customer characteristic indicator c(i) can indicate a fuzzy truth 
value in the interval [0,1] if the corresponding characteristic c is a fuzzy 
proposition such as “high turnover.” In that case, the definition of the 
NLR for fuzzy truth values from Section 2.4.1 can be applied. However, 
the aim of analytic target group definition is to find or construct optimal 
defining target customer characteristic indicators with the highest 
possible degree of membership in the target group definition. These 
indicators can be constructed by logical connections or functions of 
granular customer characteristics. 

This kind of analytic target group definition is a conceptual one, 
suited for presentation to human decision makers, because it is 
intuitively understandable. It results in a ranking of customer 
characteristics that define typical product customers. However, for 
integrated analytics in analytic CRM, a scoring approach is more 
promising because it yields better response rates, although the resulting 
models may be less comprehensible. 

FFuuzzzzyy  TTaarrggeett  GGrroouuppss  33..22..33
Contemporary information technology provides the means to 

individualize marketing campaigns. Each customer is targeted not only 
directly but also individually with an advertisement message, decision, 
or activity. The behavior of an organization toward an individual 
customer is analytically customized according to the customer’s 
classification, and customers with different characteristics are targeted 
with different behaviors. Individual customers are assigned a score for 
different CRM targets based on a predictive multivariate model. IFC 
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methods can be applied to customer data for individual marketing in 
order to calculate a predictive scoring model for product usage. This 
model can be applied on the data to score customers for their product 
affinity, which corresponds to an IFC of customers in which the 
predictive model is a multivariate membership function. 

An aim of customer analytics is the application of prediction to the 
selection of a target group with likelihood of belonging to a given class 
of customers. For example, potential buyers or credit-worthy customers 
can be selected by applying data analysis to the customer database. 
This is done either by segmentation or scoring (Sousa, Kaymak, & 
Madeira, 2002). By applying a segmentation approach, sharp sets of 
customers with similar characteristics are calculated. Those segments 
have a given size. For individual marketing, a scoring approach is more 
promising, in which every customer is assigned a score predicting a 
likelihood of response. The score is calculated by application of a 
predictive multivariate model with numeric output, such as neural 
networks, linear regression, logistic regression, or regression trees. 
When a numeric score can be normalized, it represents a membership 
function to a fuzzy set of customers with a high response likelihood—a 
fuzzy target group—to which every customer has a degree of 
membership. This scoring process can be applied for every product. 
Thus, for every individual customer, the degree of membership to all 
possible cross-selling target groups is known, and in direct customer 
contact, the customer can be assigned the advertisement message with 
the highest score. 

There are different methods for fuzzy customer scoring. For 
example, fuzzy clustering for product affinity scoring was presented by 
Setnes, Kaymak, and van Nauta Lemke (1998), in which the reason for 
using fuzzy systems instead of neural networks is declared as the 
comprehensibility of the model. Kaufmann and Meier (2009) evaluated 
a supervised fuzzy classification approach for prediction using a 
combination of NLRs with an algebraic disjunction. In this thesis, a 
synthesis of probabilistic modeling and approximate reasoning applying 
fuzzy set theory is proposed for prediction (as previously explained), 
using univariate inductive membership functions for improving the 
target correlations of logistic regressions or regression trees. However, 
all inductive scoring methods that yield a numeric value representing 
response likelihood can be normalized in order to represent an inductive 
membership function to a fuzzy set of customers, and can, therefore, be 
categorized as IFC. 

A classical sharp CRM target group T ⊂ C is a subset of all 
customers C defined by a target group definition t: T := {i ∈ C | t(i)}. In 
the case of scoring methods for target selection, the output of the model 
application is numeric and can be normalized in the interval [0,1] to 
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represent a membership function. In that case, the target group is a 
fuzzy set T’ and the (normalized) customer score is a membership 
function, µT’:C→[0,1]. This score is defined by a predictive model, M, as 
a multivariate combination of n customer attributes, X1, …, Xn, as 
shown in Formula 67. 

 
	
  

))(),...,((:)( 1T' iXiXMi n=µ Formula 67 

 
Because T’ is a fuzzy set, it has to be defuzzified when a campaign 

requires a binary decision. For example, the decision about contacting a 
customer by mail has to be sharp. An alpha cutoff of the fuzzy set allows 
the definition of individual marketing target groups of optimal size 
regarding budget and response rate, and leads to a sharp target group 
Tα, as formalized in Formula 68. 
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Formula 68 

 

IInntteeggrraatteedd  AAnnaallyyttiiccss  33..22..44
For individual marketing, the fuzzy target group membership 

degrees are predictive scores that are processed via the CRM system, 
which dispatches them to the distribution channel systems for mapping 
customers to individualized advertisement messages. In all computer 
supported channels with direct customer contact, inbound or outbound, 
as soon as the customer is identified, a mapping can be calculated to the 
product to which the customer has the highest score. Based on that 
mapping, the advertisement message is chosen. In the online channel, 
logged-in customers are displayed individual advertisement banners. 
Customers are sent individual letters with product advertisement. In 
the call center and in personal sales, if the customer can be identified, 
the agent can try cross-selling for the next best product.  

In analytic customer relationship management (aCRM), customer 
data is analyzed in order to improve customer interactions in multiple 
channels (Turban et al., 2007). This can be applied to individual 
marketing. Target groups for aCRM campaigns are derived analytically 
and individually by application of classification and regression models 
to individual customer data records. The aim is to increase campaign 
response rates with statistical methods. Cross-selling campaigns 
analyze product affinity of customers given their features. Churn 
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(change and turn) campaigns target customers with a low loyalty 
prediction in order to re-gain their trust. Figure 18 illustrates a 
schematic information system that can enable aCRM processes.  

In contemporary enterprises, due to intensive application of 
computing machinery and electronic databases in business processes, 
there exist large amounts of possibly useful customer data in various 
software applications that can serve as data sources for aCRM. The 
heterogeneity of data storage implies a necessity for data integration 
before they can be analyzed. A system that automates this task is called 
a customer data warehouse (Inmon, 2005). Based on this integrated 
data pool, analytics provides inductions of predictive models for 
desirable customer classes, such as product purchase, profitability, or 
loyalty. If these models output a gradual degree of membership to the 
target classes, their application to the customer database can be called 
an IFC. These membership degrees are defined by a prediction of class 
membership for individual customers, sometimes called lead detection. 
The corresponding fuzzy sets of customers can be called fuzzy target 
groups. These analytic results, called leads by aCRM managers, are 
transferred into the operational CRM application, where their 
presentation to human decision makers provides decision support for 
direct customer contact. The utilization of analytic data output (leads) 
takes place in individual marketing channels with direct customer 
contact—for instance, web presence, mailing, call center, or personal 
sales. The results of aCRM campaigns, such as sales, are electronically 
collected and fed back into the customer data warehouse in order to 
improve future aCRM campaigns by meta-analytics. This mechanism is 
called a closed loop. Generally, aCRM is an instance of a business 
intelligence process (Gluchowski, Gabriel, & Dittmar, 2008), which 
involves data sourcing, integration, analytics, presentation, and 
utilization. Furthermore, it is also an instance of integrated analytics, 
in which analytics are integrated into operational systems with 
feedback mechanisms. 

In comparison to mass marketing, in individual marketing, every 
customer is provided with the advertisement that fits best. Especially 
when customer databases, such as a data warehouse, are present, 
individual scoring is possible based on available data: The customer’s 
target membership score is used to assign an individual advertisement 
message to each customer. These messages are delivered electronically 
via customer relationship management application to individual 
marketing channels. Campaign target groups are individualized. All 
customers in the target groups are known individually and are 
contacted directly. 
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Figure 18: Inductive fuzzy classification for individual marketing.  

Adapted from “Fuzzy Target Groups in Analytic Customer Relationship Management,” 
by M. Kaufmann and C. Graf, 2012, In A. Meier and L. Donzé (Eds.), Fuzzy Methods for 

Customer Relationship Management and Marketing, p. 170. Copyright 2012 by 
Publisher. 
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CCaassee  SSttuuddyy::  IIFFCC  iinn  OOnnlliinnee  MMaarrkkeettiinngg  aatt  33..22..55
PPoossttFFiinnaannccee  

The following case study shows the application of the proposed 
methods in practice, from a point of view of information systems and 
methodology. Membership function induction is applied to a real-world 
online marketing campaign. A comparison with crisp classification and 
random selection is made.  

PostFinance Inc.2 is a profitable business unit of Swiss Post. Its 
activities contribute significantly to the financial services market in 
Switzerland. PostFinance is an analytic enterprise feeding business 
processes with information gained from predictive analytics.  

The online channel of PostFinance supports individual 
advertisement banners for logged-in customers. Based on the customer 
score, a customer is assigned the advertisement message for the product 
with the highest response likelihood computed for that particular 
customer. By clicking on the banner, the customer has the opportunity 
to order the product directly. 

The marketing process of PostFinance uses analytical target 
groups and predictive scores on product affinity for individual 
marketing. Target groups for online marketing campaigns are selected 
using inductive classification on the customer data warehouse. Figure 
19 shows the process from customer data to individualized online 
marketing. Target groups are defined in the data warehouse. This is 
done using a predictive model (e.g., logistic regression) or a crisp 
classification (e.g., customers above the age of 50 with a balance higher 
than CHF 10,000). A dataset is generated that assigns an individual 
advertisement message to every single customer based on his or her 
target group. This dataset is loaded into the online platform, where it 
controls the online advertisements. In the online channel, for every 
customer that logs in, the individual advertisement message is mapped 
according to the previous target group selection.   

A case study was conducted with PostFinance in 2008 in order to 
test IFC in a real online marketing campaign. Inductive fuzzy 
classification was applied in a PostFinance online marketing campaign 
promoting investment funds. The aim of the prediction was to forecast 
customers with an enhanced likelihood of buying investments funds. 
The resulting fuzzy classification yielded a fuzzy target group for an 
individual marketing campaign in which every customer had a gradual 
degree of membership. 

 

                                                
2 http://www.postfinance.ch 

http://www.postfinance.ch
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Figure 19: Analytics applied to individual marketing in the online channel at 
PostFinance.  

Adapted from “ An Inductive Fuzzy Classification Approach applied to Individual 
Marketing.,” by M. Kaufmann and A. Meier, 2009, In Proceedings of the 28th North 
American Fuzzy Information Processing Society Annual Conference, p. 4. Copyright 

2009 by Publisher. 

 
The same advertisement message was shown to three groups of 

customers: a test group of 5,000 customers with the highest degree of 
membership to a fuzzy target group, a control group of 5,000 customers 
selected by classical crisp target group definition, and a second control 
group with randomly selected customers. The hypothesis was that a 
gradual scoring approach (an inductive fuzzy customer classification) 
would provide better response rates than a crisp Boolean target 
selection (a segmentation approach), and that a fuzzy target group 
selection using typical characteristics of product users would classify 
customers more softly and eliminate certain threshold effects of Boolean 
classification because attributes can be compensated for with a 
multivariate gradual approach. It was tested whether customers in a 
fuzzy target group selected with a scoring approach had a higher 
response rate than customers in a crisp target group selected with a 
classical segmentation approach. Furthermore, the two groups were 
compared with a random selection of customers. In the following, it is 
shown how the data mining methodology presented in Section 2.4 has 
been applied to a real-world direct marketing campaign. 
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In order to prepare a test set for model induction, a sample 
customer dataset was selected from the customer data warehouse. 
Because of the excellent quality of the cleaned and integrated data in 
the data warehouse, the data preparation step was accomplished by a 
simple database query. The dataset contained anonymous customer 
numbers associated with customer specific attributes. As the target 
variable, the class label was set to 1 if the customer had investment 
funds in his product portfolio and to 0 if else. Mutual information of the 
dependent variables with the target variable was chosen as a ranking 
method. The following attributes were selected as relevant: 
o Customer segment (CS; 0.047 bit), 
o Number of products (NP; 0.036 bit), 
o Overall balance (OB; 0.035 bit), 
o Loyalty (L; 0.021 bit), 
o Customer group (CG; 0.016 bit), 
o Balance on private account (BP; 0.014 bit), and 
o Age (A; 0.013 bit). 

Table 3 
Conditional Probabilities and NLRs for a Categorical Attribute  

X1:  
customer 
segment Y=1 Y=0 p(X1 | Y=1) p(X1 | Y=0) NLRY=1(X) 
Basis 11'455 308'406 0.38 0.82 0.32 
SMB 249 2'917 0.01 0.01 0.52 
Gold 12'666 54'173 0.43 0.14 0.75 
Premium 5'432 10'843 0.18 0.03 0.86 
Total 29'802 376'339       

Using the method presented in Section 2.4, for each of the relevant 
attributes, the fuzzy restriction corresponding to the likelihood of 
having investment funds was induced. In the following section, the 
induction processes for a categorical and a continuous attribute are 
described in detail. 

As the first example, in the domain of the categorical attribute 
customer segment (X1), there are four values: Basis, SMB, Gold, and 
Premium. For customers who have not yet bought investment funds, 
the aim is to define a degree of membership in a fuzzy restriction on the 
customer segment domain in order to classify them for their likelihood 
to buy that product in the future.  

The frequencies and conditional probabilities are presented in 
Table 3. The first column indicates the customer segment. Column Y=1 
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contains the number of customers of each segment who have bought 
investment funds. Column Y=0 contains the number of customers of 
each segment who have not bought that product. According to Formula 
69, the membership degree of segment Basis in the fuzzy restriction y1 
was induced as follows: 
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Formula 69 

The other degrees of the membership were induced analogically. 
The resulting values are shown in column NLR of Table 3. The 
corresponding membership function is illustrated in Figure 20. 

 

Figure 20: Membership function induction for a categorical attribute.  

Adapted from “ An Inductive Fuzzy Classification Approach applied to Individual 
Marketing.,” by M. Kaufmann and A. Meier, 2009, In Proceedings of the 28th North 
American Fuzzy Information Processing Society Annual Conference, p. 4. Copyright 

2009 by Publisher. 

As a second example, for the continuous attribute overall balance, 
the membership function was induced in the following way: First, the 
NLR for deciles of the attribute’s domain was calculated analogically to 
the previous example, represented by grey squares in Figure 21. Then, a 
function, A / (1 + exp(B – C ln(x + 1)))+D, was fitted by optimizing the 
parameters A to D using the method of John (1998). The resulting 
membership function for the customer overall balance is shown as a line 
in Figure 21. 
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Figure 21: Membership function induction for a continuous attribute.  

Adapted from “ An Inductive Fuzzy Classification Approach applied to Individual 
Marketing.,” by M. Kaufmann and A. Meier, 2009, In Proceedings of the 28th North 
American Fuzzy Information Processing Society Annual Conference, p. 5. Copyright 

2009 by Publisher. 

 
Every relevant attribute of the original dataset was transformed 

to a fuzzy membership degree using SQL directly in the database. 
Categorical variables were transformed using a case differentiation 
statement. For example, the attribute customer segment was 
transformed using the following SQL command:	
  

select case  

when customer_segment = 'Basis' then 0.32  

when customer_segment = 'SMB' then 0.52  

when customer_segment = 'Gold' then 0.75  

when customer_segment = 'Premium' then 0.86  

end as fuzzy_customer_segment 

from ads_funds 

 
Continuous variables were transformed using a function expression. For 
example, the attribute overall balance was fuzzified using the following 
SQL expression: 
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select  

0.71/(1+EXP(7.1-0.8*LN(overall_balance + 1)))+0.09  

as fuzzy_overall_balance  

from ads_funds 

	
  
The individual fuzzy attribute domain restrictions were then 
aggregated to a multivariate fuzzy class of customers. This was done 
using an SQL statement implementing the gamma operator 
(Zimmermann & Zisno, 1980) defined in Formula 70. 
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Table 4  
Optimization of the Gamma Parameter for Multivariate Fuzzy Aggregation 

  I(Y;Y') I(Y;Y'=1) LR(Y'=1) 
Gamma = 0 0.018486 0.4357629 6.7459743 
Gamma = 0.5 0.0185358 0.4359879 6.7488694 
Gamma = 1 0.0209042 0.4787567 7.2359172 

 
 
In order to define the gamma parameter, different performance 

measures were calculated. As shown in Table 4, a gamma of 1, 
corresponding to an algebraic disjunction or full compensation, was 
most successful. Thus, the multivariate fuzzy classification was 
performed using the following SQL statement: 

	
  
 

Select  

(1- 

(1-fuzzy_number_of_products) 

* (1-fuzzy_customer_segment) 

* (1-fuzzy_overall_balance) 
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* (1-fuzzy_loyalty) 

* (1-fuzzy_age) 

* (1-fuzzy_balance_on_private_account) 

* (1-fuzzy_customer_group) 

) as multivariate_fuzzy_classification 

from f_ads_funds 

	
  
As a result, a fuzzy class of customers was calculated, for whom 

the degree of membership indicates the product affinity for investment 
funds and represents a product affinity score. This can be used in 
individual marketing for defining target groups for different products.	
  

In order to test the resulting fuzzy classifier, a pilot marketing 
campaign was performed using the resulting fuzzy target group. First, a 
target group of 5,000 customers with the highest membership degree 
was selected from the fuzzy class using an alpha cutoff (Test Group 1). 
Second, as a comparison, 5,000 other customers were selected using a 
crisp classification (Test Group 2), using the following crisp constraints: 
 

Select case when  

Customer segment in (‘Gold’, ‘Premium’, ‘SMB’) 

And Customer_group = 50 Plus 

And Loyalty > 14 

And Number_of_products > 1 

And Age between 35 and 75 

And Balance on private account > 3000 

And Overall_balance > 20000 

Then 1 else 0 end as multivariate_crisp_classification 

From ads_funds 

	
  
This conventional target group selection used the same seven 

customer attributes as the fuzzy classification, but the classification 
was done using a crisp constraints predicate. Third, 5,000 customers 
were selected randomly (Test Group 3) in order to compare inductive 
classification to random selection. 

To each of those 15,000 customers, an online advertisement for 
investment funds was shown. After the marketing campaign, the 
product selling ratio during three months was measured. The results 
are shown in Table 5. The column Y=1 indicates the number of 
customers who have bought the product. The product selling ratio for 
the target group selected by IFC was the most effective. This individual 
marketing campaign using inductive fuzzy target group selection 
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showed that fuzzy classification can lead to a higher product selling 
ratio than crisp classification or random selection. In the case study, 
IFC predictions of product affinity were more accurate than those of the 
crisp classification rules on exactly the same attributes. The conclusion 
is that, in comparison to crisp classification, fuzzy classification has an 
advantageous feature that leads to better response rates because it 
eliminates certain threshold effects by compensation between 
attributes. 

 
Table 5  

Resulting Product Selling Ratios per Target Group 

Test group Y=1 Y=0 Sales Rate 
1: Fuzzy classification 31 4939 0.63% 
2: Crisp classification 15 5037 0.30% 
3: Random selection 10 5016 0.20% 
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44 PPrroottoottyyppiinngg  &&  EEvvaalluuaattiioonn  

Three software prototypes were programmed as proofs of concept 
of the technological aspects of the proposed methods for automated MFI 
in fuzzy data analysis. Master’s students developed two of them, iFCQL 
and IFC-Filter for Weka. The author developed the inductive fuzzy 
classification language IFCL. This implementation also allows 
experiments on the implemented methods for experimental evaluation. 
Using a meta-induction approach, the designed method was applied for 
prediction in several real-world datasets in order to analyze 
characteristics and optimal parameters of the constructed methodology 
and to compare it to conventional predictive approaches. Classical 
inductive statistical methods were applied to gain insights about 
induction by IFC. 

44..11 SSooffttwwaarree  PPrroottoottyyppeess  

IIFFCCQQLL  44..11..11
The first attempt of prototyping software for IFC was developed in 

a master’s thesis by Mayer (2010). The basic idea was an extension of 
the existing fuzzy classification and query language FCQL, for which a 
prototype interpreter was built by Werro (2008).  

In order to derive fuzzy membership functions directly from the 
underlying data, the FCQL language was extended with commands to 
induce membership functions in order to classify data based on them. 
For example, it was intended to describe MFI using the syntax “induce 
fuzzy membership of <dependent variable> in <target variable> from 
<relation>.” For more detail on the iFCQL syntax, see the report by 
Mayer (2010). 

As shown in Figure 22, the architecture of iFCQL reflects the 
language-oriented design approach. The user can enter commands in 
iFCQL, which are translated into SQL, or he or she can enter SQL in 
the command shell, which is transmitted directly to the database by a 
database connector. Using language instead of a graphical user 
interface, it is possible to save and reload scripts for data mining 
processes—this was the intention. Nevertheless, the implementation of 
the iFCQL language interpreter, consisting of lexer, parser, evaluator, 
and SQL generator, turned out to be a complex task that is not directly 
associated with IFC. 

The original idea was to develop a tool to support the proposed 
data mining methodology of this thesis (Section 2.4). Thus, there was 
one statement class for each of the six steps: data preparation (audit), 
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MFI, fuzzification of attribute values, attribute selection, fuzzy 
classification of data records, and model evaluation. Eventually, only 
three syntax elements for the main tasks were implemented, namely 
MFI, univariate classification of attributes, and multivariate 
classification of records. 

 

 
 

Figure 22: Architecture of the iFCQL interpreter.  

Adapted from “Implementation of an Inductive Fuzzy Classification Interpreter,“ 
(master's thesis), by P. Mayer, 2010, p. 59. Copyright 2010 by Mayer, University of 

Fribourg, Switzerland.  

 

IIFFCCLL  44..11..22
This section presents an implementation of a tool that enables the 

computation of inductive membership functions based on the 
methodology proposed in Section 2.4. The inductive fuzzy classification 
language (IFCL) is a research prototype. Its goal is to show the 
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feasibility of implementing the data mining methodology based on IFC. 
It is a markup language designed for simplicity of description and 
parsing; therefore, the development of the language interpreter was 
kept simple. In addition to supporting the basic steps of the proposed 
method, the scope is to support automated experiments for 
benchmarking the predictive performance of the proposed methodology. 
This meta-induction experiment and its results are presented in Section 
4.2 

 

 
 

Figure 23: Inductive fuzzy classification language (IFCL) system architecture. 

As shown in Figure 23, the system architecture of IFCL consists of 
an IFCL file, a command line shell, the IFCL program itself, Weka 
regression algorithms, a relational database, and a data file. In the 
IFCL file, the data mining process steps are described in the IFCL 
language. In a command line shell, the IFCL program is invoked, and 
the corresponding IFCL file is passed to the program. There is no 
graphical user interface because the research concentrated on 
evaluating automated inductive inferences. The IFCL actions 
representing steps of the data mining process are interpreted by the 
IFCL program, which translates them into SQL queries to the relational 
database. For the supervised multivariate aggregation functions linear 
regression, logistic regression and M5P regression trees, open source 
implementations of mining algorithms from the Weka machine learning 
workbench  (Hall et al. 2009) are accessed by the IFCL program. The 
IFC process steps that have been translated to SQL are executed on a 
database server. Analytic data is loaded into the database via a data file 
in comma-separated value format (CSV). The IFCL language supports a 
simple load functionality that creates the necessary database tables 
based on a data description and loads records from a file into database 
tables. The data file contains the data to be analyzed, and the IFCL 
program provides the means to compute predictive models based on the 
data in the form of membership functions. 

The functionality of the software encompasses all steps of the 
proposed data mining process for IFC as presented in Section 2.4.2. This 
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includes data preparation, univariate MFI, fuzzification of attribute 
values, attribute selection, multivariate aggregation, data classification, 
prediction, and evaluation of predictions. This prototype provides the 
possibility  
o to prepare data using arbitrary SQL statements,  
o to induce membership functions with all thirteen methods proposed 

in Table 1 in Section 2.4.1,  
o to fuzzify attribute values using the induced membership functions 

directly in the database,  
o to rank attribute relevance by sorting correlation between 

membership degrees and target class indicators,  
o to aggregate many inductively fuzzified attributes into a fuzzy class 

membership for data records using eight different aggregation 
methods shown in Table 6,  

o to assign membership degrees by fuzzy classification to data records 
in the database,  

o and to evaluate predictive models with correlation analysis.  
All of these steps can be programmed in IFCL-syntax. IFCL is 

fully automatable using scripting files. All models are displayed and 
stored in SQL syntax. Therefore, it provides repeatability of 
experiments and comprehensibility of models with respect to their 
database implementation as queries. Details on the syntax and 
application of IFCL can be found in the appendix (Section A.4) To 
summarize, the functionality of IFCL encompasses the following points: 
o Executing IFCL script files in batch mode, 
o Connecting to the database, 
o Dropping a database table, 
o Executing an SQL script, 
o Loading data into the database,  
o Inducing a membership function, 
o Classification of data, 
o Aggregating multiple variables, 
o Evaluating predictions, 
o Data preparation, and 
o Attribute selection. 
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Steps of the data mining process in Section 2.4.2 are invoked in so 
called IFCL actions. A sequence of actions is listed in IFCL files. IFC-
processes can be described in a tree-like structure of IFCL files. There 
are nodes and leaves of the IFCL tree. An IFCL file is either a node as a 
list of calls to other IFCL files or a leaf containing actual execution 
sequences. IFCL leaves consist of a database connection followed by a 
sequence of IFCL actions. An IFCL file can call the execution of several 
other predefined IFCL files in batch mode using the action execifcl. In 
order to do so, one needs to indicate the correct operation system file 
path of the corresponding IFCL file, either as an absolute path, or a 
path relative to the location of the process that invoked the IFCL 
program. 

IFCL can connect to a database with the action connect. This is 
necessary for operation and has to be done at the beginning of an IFCL 
file leaf. One needs to know the hostname of the database server, the 
service identifier, the port number, a valid username, and a password. 
The user must be granted the rights to read tables. For data 
classifications, the user needs grants to create tables. The action drop 
allows the deletion of an existing database table. The IFCL program 
tests whether the indicated table exists, and executes a drop command 
to the database if and only if the table exists in the database. This is 
useful in preventing an exception because of an attempt to drop a non-
existing table. IFCL allows executing SQL statements in the database 
with the action execsql. A single SQL command can be indicated 
directly within the IFCL syntax. Scripts (statement sequences) can be 
called from a separate SQL script file. The file system path has to be 
indicated in order to call an execution of an SQL file. 

In order to load analytic data into the database server, there are 
two possibilities. First, the SQL*Loader can be called, which is highly 
parameterized. Second, a simpler load mechanism can be invoked 
involving less code. The SQL*Loader has the advantage that it is 
extremely configurable by a control file. The drawback is that there is a 
large amount of code that needs to be written for simpler load tasks. 
Therefore, for simpler loads that do not involve transformation, the 
IFCL load utility is a faster method to load data into the database. The 
call to the SQL*Loader can be made from an IFCL file using the action 
sqlldr. In order to load data, one needs a data file containing the 
analytic data and an SQL*Loader control file for the configuration of 
the load process. Furthermore, one can indicate two SQL*Loader 
parameters, namely skip and errors. (For more details, consult the 
SQL*Loader documentation.) For simpler data loads, the IFCL program 
provides a data loading utility with the action load. The advantage is 
that the load action automatically creates or recreates a table for the 
data load based on an enumeration of attributes and their type, where 
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the type is either n (numerical) or c (categorical). In the enumerations, 
the number of the attribute and the number of its corresponding type 
must be equal: Type 3 corresponds to Attribute 3. The attribute names 
will correspond to table columns, so their syntax is syntactically 
restricted to valid column names. The load action must also be provided 
a path to a file containing the load data, and a delimiter that separates 
data cells in the text file. White spaces and semicolons cannot be used 
as delimiters because they are syntactical elements of the IFCL 
language, and an escape mechanism has not been implemented.  

In order to induce a univariate membership function for a single 
attribute to the target class, the IFCL action inducemf can be used. A 
database table is indicated on which the MFI will be based. One specific 
table column is defined as a target variable. As analytic variables, a 
specific table column can be defined, a list of columns can be 
enumerated, or all columns can be chosen for MFI. One of several 
different methods for MFI can be chosen (see Section 2.4.1). The output 
containing the induced membership function in SQL syntax is written 
to the indicated output file. This SQL classification template will be 
used later for univariate fuzzification of input variables. When more 
than one column is chosen as analytic variables, some of those variables 
can be skipped. The IFCL action will skip columns if they are 
enumerated in the corresponding action parameter. This means that 
those columns are not considered for MFI and they are also not copied 
into the fuzzified table. Alternatively, some columns can be left out by 
indicating the IFCL action to leave columns in the corresponding action 
parameters the way they are. This means that, for those columns, no 
membership function is induced, but those columns are copied into the 
fuzzified table in their original state. This can be useful to incorporate 
original key columns in a fuzzified table. 

In order to fuzzify the input variables using the membership 
functions obtained, the action classify can be invoked using the 
previously generated SQL classification template file. The classification 
action can also apply multivariate fuzzy classification templates 
obtained by the IFCL action aggregatemv, which aggregates multiple 
variables into a multivariate fuzzy class. Template files generated by 
the IFCL actions inducemf and aggregatemv contain an SQL query in 
which the input and output tables are parameterized. A data 
classification applies these two parameters (classified table and output 
table) to this query template stored in the template file. Data is read 
from an existing table, the classified table, and transformed using the 
induced membership functions, and the resulting transformation is 
written into the output table.  

In order to aggregate multiple variables into a multivariate fuzzy 
classification, the corresponding aggregation function can be computed 
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using the IFCL action aggregatemv. A base table is indicated on which 
the aggregation takes place. This is usually a transformed table 
containing inductively fuzzified attributes derived with the actions 
inducemf and classify, but for Weka regression algorithms (linreg, 
logreg, regtree) the aggregatemv action can also be applied to the 
original data. Again, the analytic variables and the target variable are 
indicated, which usually correspond to those variables used for MFI. As 
aggregation operator, either an unsupervised aggregation, such as a 
minimum (min), maximum (max), algebraic product (ap), algebraic sum 
(as), or average (avg), can be chosen or a supervised aggregation, such 
as a linear regression (linreg), a logistic regression (logreg), or a 
regression tree (regtree), can be calculated. The column that contains 
the aggregated membership value for each row must be given a column 
alias. The resulting aggregation function is written as a query template 
to an output file for which the path is defined in the action definition. 
This query template represents the multivariate model as a 
membership function in the target class. It can be used for data 
classification and prediction with the classify action.  

In order to evaluate correlations between columns, the IFCL 
action evaluate can be applied. This is useful to evaluate predictive 
performance, but also for attribute ranking and selection. Using IFCL, 
an attribute selection can be accomplished by ranking the inductively 
fuzzified analytic variables by their correlations with the target 
variable. In order to do this, for all columns of the table, a membership 
function to the target is induced in a training set with the inducemf 
action and the columns are transformed into a membership degree with 
the classify action. Then, the correlations of all fuzzified variables and 
the target variable can be evaluated with the evaluate action. 
  

IIFFCC--FFiilltteerr  ffoorr  WWeekkaa  44..11..33
The IFC-NLR data mining methodology introduced by Kaufmann 

and Meier (2009) has been implemented by Graf (2010) as a supervised 
attribute filter in the Weka machine learning workbench (Hall et al., 
2009). The aim of this implementation is the application of IFC-NLR in 
a typical data mining process. This IFC-Filter allows the evaluation of 
the algorithm.  

Weka can be used for data mining in order to create predictive 
models based on customer data. The IFC-Filter can facilitate 
visualization of the association between customer characteristics and 
the target class, and it can improve predictive performance of customer 
scoring by transforming attribute values into inductive fuzzy 
membership degrees, as previously explained. Thus, it can perform MFI 
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and IAF. As shown in Figure 24, the Weka software provides data 
access to relational databases (RDB), comma separated values (CSV), 
and attribute relation file format (ARFF); classification and regression; 
and predictions. The IFC-Filter implements the functionality for MFI, 
IAF, and visualizations based on the calculated membership functions. 

 

 
Figure 24: Software architecture of the IFC-Filter.  

Adapted from “Fuzzy Target Groups in Analytic Customer Relationship Management,” 
by M. Kaufmann and C. Graf, 2012, In A. Meier and L. Donzé (Eds.), Fuzzy Methods for 

Customer Relationship Management and Marketing, p. 184. Copyright 2012 by 
Publisher. 

The IFC-Filter transforms sharp input data into membership 
degrees that indicate the inductive support for the conclusion that the 
data record belongs to the target class. In order to do so, first, 
membership functions are induced from data and optionally displayed 
to the screen. Then, these functions are applied to fuzzify the original 
attributes. Visualization and prediction based on the concepts of MFI 
and IAF are two main uses for the IFC-Filter software in the data 
mining process. 

In order to visualize associations between variables, inductive 
membership functions can be plotted with the method IFC-NLR 
described earlier. Thus, for every analytic variable, a function mapping 
from the variable’s domain into a degree of membership in the inductive 
fuzzy target class is displayed graphically. This plot gives intuitive 
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insights about associations between attribute values and the target 
class. 

For prediction, the transformation of crisp attribute values from a 
data source into inductive membership degrees can enhance the 
performance of existing classification algorithms. The IFC-Filter 
transforms the original attribute values into inductive membership 
indicating target class likelihood based on the original value. After that, 
a classical prediction algorithm, such as logistic regression, can be 
applied to the transformed data and to the original data in order to 
compare the performance of IAF. It is possible and likely that IAF 
improves prediction. When that is the case, IAF data transformation 
can be applied to huge data volumes in relational databases using the 
SQL code generated by the IFC-Filter. The software is available for 
download3 in source and binary format for researchers and practitioners 
for experimenting and practicing IFC. 

 

 
Figure 25: Knowledge flow with IFC-Filters. 

Adapted from “Fuzzy Target Groups in Analytic Customer Relationship Management,” 
by M. Kaufmann and C. Graf, 2012, In A. Meier and L. Donzé (Eds.), Fuzzy Methods for 

Customer Relationship Management and Marketing, p. 186. Copyright 2012 by 
Publisher. 

As proposed in the section on application of IFC to analytics 
(Section 3.1) the IFC-Filter can visualize membership functions that 
indicate target membership likelihoods. Figure 25 shows two 
screenshots of the membership function plots for the variables Duration 
and Checking status from the German Credit dataset. The IFC-Filter 
has the possibility to activate a frame containing a graphical 
                                                
3 http://diuf.unifr.ch/is/ifc (accessed 11.2010) 

http://diuf.unifr.ch/is/ifc
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illustration of the resulting membership functions. Each analytical 
variable is represented by a tab in this frame. The presentation of 
numerical analytical variables differs slightly from that of categorical 
analytical variables, because it presents a continuous membership 
function. 

As shown in Figure 26, the illustration of numerical analytical 
variables consists of four fields. The first field is a table containing the 
NLRs with the corresponding quantiles and average quantile values 
(AQVs). The second field shows a histogram containing the NLRs and 
their corresponding AQVs. The third field shows the membership 
function of the analytical variable. The fourth field shows the 
membership function in SQL syntax for this particular analytical 
variable, which can be used directly in a relational database for fuzzy 
classification of variables. 

The illustration of categorical analytical variables can be reduced 
to three fields. The first field is a table containing the NLR with the 
corresponding quantile and average value of the quantile. The second 
field shows a histogram containing the NLRs corresponding to the 
categorical values. The third field shows the membership function in 
SQL syntax. 

An additional tab, the SQL panel, contains the membership 
functions of all analytic variables in SQL. It displays a concatenation of 
the membership functions in SQL syntax for all analytical variables 
that have been input for MFI by the IFC-Filter. This database script 
can be applied in a database in order to transform large database tables 
into inductive degrees of membership in a target class. This can 
improve the predictive quality of multivariate models. 
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Figure 26: Visualization of membership functions with the IFC-Filter. 

Adapted from “Fuzzy Target Groups in Analytic Customer Relationship Management,” 
by M. Kaufmann and C. Graf, 2012, In A. Meier and L. Donzé (Eds.), Fuzzy Methods for 

Customer Relationship Management and Marketing, p. 188. Copyright 2012 by 
Publisher. 
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44..22 EEmmppiirriiccaall  TTeessttss    
This section describes the experiments that have been conducted 

using the IFCL prototype (Section 4.1.2). Sixty real-world datasets (see 
the appendix in Section A.1) with categorical and numerical target 
attributes have been used to build predictive models with different 
parameters. The results of these experiments allow the answering of the 
following research questions: Which is a suitable MFI method for the 
application of fuzzy classification for prediction? Which aggregation 
operators are suitable for the multivariate combination of fuzzy classes? 
Can it be statistically supported that this method of IFC leads to higher 
predictive performance?  

In order to find the answers to these research questions, the aim is 
to inductively infer conclusions about inductive methods, which is called 
a meta-induction scheme. Thus, quantitative statistical methods are 
applied to the data on the performance of IFC using different 
parameters gained by running the automated prediction experiments.  

EExxppeerriimmeenntt  DDeessiiggnn  44..22..11
The aim of these experiments was to determine the optimal 

parameters for a maximal predictive performance in order to gain 
insights about IFC. Using the scripting functionality of the IFCL 
prototype, a systematic benchmarking of predictive performance of 
different IFC algorithms was conducted. From the UCI Machine 
Learning Repository,4 Weka numeric datasets archive,5 and Weka UCI 
datasets archive,6 60 statistical datasets were used for systematic 
automated prediction experiments using different parameters. These 
datasets are listed in Table 9 and Table 10 in Section A.1. They contain 
real-world data from different processes that can be used for testing 
machine learning algorithms. They have been chosen by their tabular 
structure and by the type of the prediction target. Apart from that, they 
were chosen randomly.  

For categorical target classes, a Boolean target variable was 
extracted with a simple predicate (see Table 9, column Target). For 
numerical target classes, a Zadehan target variable was generated 
using inductive target fuzzification using both linear and percentile 
fuzzification (see Table 10). 

                                                
4 http://archive.ics.uci.edu/ml/ (accessed 03.2010) 
5 http://sourceforge.net/projects/WEKA/files/datasets/datasets-
numeric.jar/datasets-numeric.jar/download (accessed 08.2010) 
6 http://sourceforge.net/projects/WEKA/files/datasets/datasets-UCI.jar/datasets-
UCI.jar/download (accessed 08.2010) 

http://archive.ics.uci.edu/ml/
http://sourceforge.net/projects/WEKA/files/datasets/datasets-numeric.jar/datasets-numeric.jar/download
http://sourceforge.net/projects/WEKA/files/datasets/datasets-numeric.jar/datasets-numeric.jar/download
http://sourceforge.net/projects/WEKA/files/datasets/datasets-numeric.jar/datasets-numeric.jar/download
http://sourceforge.net/projects/WEKA/files/datasets/datasets-UCI.jar/datasets-UCI.jar/download
http://sourceforge.net/projects/WEKA/files/datasets/datasets-UCI.jar/datasets-UCI.jar/download
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The experimental parameters included 13 methods for IAF (Table 
1), two types of base target classes (numerical or categorical), two types 
of inductive target fuzzification for numerical target variables (ITF; 
Formula 43 and Formula 44), and eight methods for multivariate 
aggregation (Table 6). As benchmarks, three state of the art prediction 
methods (regression trees, linear and logistic regression) were applied 
for prediction without prior IAF.  

Table 6 
Different Aggregation Methods used for Prediction Experiments 

Abbreviation Description 
logreg Logistic regression 
regtree Regression trees 
linreg Linear regression 
avg Average membership degree 
min Minimum membership degree 
ap Algebraic product 
as Algebraic sum 
max Maximum membership degree 

 
In order to test predictive performance, for every combination of 

dataset, IAF method, ITF method, and aggregation method, the 
correlation of the prediction with the actual class value was computed. 
This has been done using a repeated hold-out cross-validation method: 
For every parameter combination, the correlation result was calculated 
10 times with different random splits of 66.7% training data versus 
33.3% test data, and the results were averaged. 

Prediction quality of model instances was measured with the 
Pearson correlation coefficient (Weisstein, 2010b) between the (Boolean 
or Zadehan) predictive and target variables in order to measure the 
proximity of predictions and targets in two-dimensional space. 
Significance of prediction correlation for experiment parameters 
θ1 and θ2 was estimated with a non-parametric statistical test, the one-
sided Wilcoxon Signed-Rank (WSR) test (Weisstein, 2012a), where the 
null hypothesis, H0, supposes that the average prediction correlation, 
γ(θ1) := avg(corr(Y’,Y)| θ1),  of experiments with parameter θ1, is smaller 
or equal to γ(θ2), where Y is the target variable, Y’ is the predictive 
model output, and both Y and Y’ are Boolean or Zadehan variables with 
a range of truth values within [0,1]. The statistical test hypothesis 
is  formalized by H0: γ(θ1) ≤ γ(θ2). If the corresponding p-value returned 
by WSR is significantly small, it is likely that θ1 performs better than 
θ2.  

In addition to their statistical meaningfulness, the reason for 
using these measures, Pearson correlation and WSR, is that both are 
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precompiled functions in certain database systems, and thus computed 
very efficiently for large numbers of experiments. 

RReessuullttss  44..22..22
This subsection describes the results of the meta-inductive 

prediction experiments. It describes the findings about the best 
performing methods for MFI and multivariate class aggregation. 
Additionally, it evaluates which dataset parameters correlate with the 
performance improvement gained by IAF.  

In order to evaluate the best performing aggregation method, the 
average correlation between prediction and actual value of the target 
variable has been calculated for every aggregation method for 
categorical as well as numerical targets over all datasets and MFI 
methods. In Figure 27, the result of this evaluation for categorical 
variables is shown. Clearly, logistic regression is the best aggregation 
method for binary targets with an average correlation of 0.71.7  
	
  

	
  
Figure 27: Average prediction correlation for different aggregation methods for binary 

targets. 

A Wilcoxon Signed Rank (WSR)8 test returned a p-value of 0.0115 for 
the hypothesis that the average correlation between prediction and 
target for logistic regression is smaller than or equal to that of 
regression trees. This means that, with a high probability, the 
predictive performance of logistic regression is higher than that of 
regression tree. The p-value for the difference in performance between 
logistic and linear regression is even smaller: 0.00105. Therefore, 

                                                
7 See Query 2 in Chapter A 

8 See Query 3 and data in Table 11 in Chapter A 
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logistic regression performs significantly better as an aggregation 
method for prediction than the other methods. 

As illustrated by Figure 28, the best performing method of 
multivariate class aggregation for numerical targets is regression trees 
with an average correlation of 0.66.9 The WSR significance test10 
showed, with a p-value of 1.30152E-06, that the average correlation of 
regression trees is smaller than or equal to the average correlation of 
linear regression. Again, this result is, statistically, very significant. 

	
  

	
  
Figure 28: Average prediction correlation for different aggregation methods for fuzzified 

numerical targets. 

In order to determine the best performing combination of 
membership induction method for IAF and multivariate aggregation 
method, the average correlation between prediction and actual value of 
the target variable has been calculated for every combination. As shown 
in Figure 29, the best combination for binary target variables is logistic 
regression, with an NLR as MFI method for IAF, with an average 
prediction correlation of 0.71.11 The best benchmark method without 
IAF is regression trees on rank 24 of 107 with an average prediction 
correlation of 0.699. The top 23 combinations all involved a form of IAF. 
The best performing method was to combine an IAF using NLR with a 
logistic regression. 

The WSR significance test returned a p-value of 0.180012 for the 
hypothesis that the average correlation between prediction and target 
for logistic regression with NLR is smaller than or equal to that of 
logistic regression with IAF using NLD. This means that, for logistic 
                                                
9 See Query 7 in Chapter A 
10 See Query 8 and data in Table 12 in Chapter A 
11 See Query 4 in Chapter A 
12 See Query 5 and data in Table 14 in Chapter A 
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regression with IAF, NLR does not perform significantly better than 
NLD. However, the WSR showed, with a p-value of 0.04888, that a 
logistic regression with IAF using NLR performs equally or less well 
compared to regression trees without IAF. Consequently, a significant 
performance improvement of logistic regression models can be achieved, 
on average, with IAF. 

 

	
  
Figure 29: Average prediction correlation for combinations of membership function 

induction and aggregation methods for binary targets. 

 
Figure 30: Average prediction correlation of predictions with linear versus percentile 

ITF, given regression trees as the aggregation method. 

In order to apply MFI methods from Section 2.4, numerical target 
variables need to be fuzzified. As proposed in this section, two 
approaches for inductive target fuzzification (ITF) have been proposed. 
Both were tested and compared in the experiments. In Figure 30, one 
can see that the average correlation between prediction and target was 
much higher for linear ITF.13 The WSR significance test14 returned a p-
value of 0.0000289. Thus, linear target fuzzification performs 
significantly better for predicting fuzzy classes than percentile target 
fuzzification. 
 

                                                
13 See Query 9 in Chapter A 
14 See Query 10 and data in Table 13 in Chapter A 
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Figure 31: Average prediction correlation for combinations of membership function 

induction and aggregation methods for fuzzified numerical targets. 

In Figure 31, the results for experiments with combinations of 
different IAF and aggregation methods for data with numerical 
targets15 are shown, given linear ITF of numerical target variables. In 
this case, IAF with NLD, together with a supervised aggregation using 
Weka M5P regression trees (regtree), is the best method with an 
average correlation of 0.697. The difference between this combination 
and the benchmark prediction using regression trees without IAF is 
significant with a WSR p-value16 of 0.0026. 

There are several parameters that distinguish datasets. These 
include number of variables, number and percentage of categorical or 
numerical variables, number of rows, ratio between number of rows and 
number of columns, and the linearity of the prediction target. This 
linearity was measured by the average correlation of the predictions of a 
linear regression benchmark model, YLR, with the target variable Y: 
Linearity := avg(corr(YLR,Y)). The question is whether any of these 
parameters correlate significantly with the improvement of predictive 
performance of regression models with IAF. 

In order to answer this question for binary target predictions, 
correlation and level of significance of correlation were calculated, using 
a non-parametric correlation test, between the parameters and the 
relative improvement of the predictive performance of logistic 
regression if the analytic variables are fuzzified using NLR versus 
logistic regression without IAF.17 As the statistical test, Spearman’s rho 
(Weisstein, 2012b), with a z-score significance test was applied, which 
exists as a precompiled function in the database.18 

                                                
15 See Query 11 in Chapter A 
16 See Query 12 and data in Table 15 in Chapter A 
17 See Query 14 in Chapter A 
18 http://docs.oracle.com/cd/B28359_01/server.111/b28286/functions029.htm 
(6/2012) 
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Table 7 
Correlation and p-Value of Dataset Parameters and Improvement of Logistic Regression 

with IAF for Binary Target Variables 

Parameter 
Correlation with 
Improvement with IAF p-value 

Number of categorical variables 0.335516011 0.069899788 
Number of numeric variables -0.097871137 0.60688689   
Percentage of categorical variables 0.206624854 0.273290146 
Percentage of numeric variables -0.206624854 0.273290146 
Number of columns 0.228400654 0.224758897 
Average correlation of the prediction of 
linear regression -0.50567297 0.004362976 
Number of rows (n) 0.089665147 0.637498617 
Ratio number of rows / number of 
columns -0.001557286 0.993483625 

	
  

	
  
Figure 32: Relationship between target linearity and IAF benefit for binary target 

variables. 

 
As shown in Table 7, the correlation between target linearity and 

improvement by NLR fuzzification is negative and significant (p < 
0.005). This means that the less linear the connection between the 
analytic variables and the target variable is, the more a Boolean 
prediction using logistic regression can be improved with an IAF using 
NLRs. In Figure 32, this association is visualized in a scatter plot.19 

                                                
19 See Query 15 and data in Table 16 in Chapter A 
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For fuzzified numerical prediction targets, Table 8 shows similar 
results.20 The improvement of regression trees with IAF NLD correlates 
negatively and significantly with the linearity of association between 
analytic and target variables. The lower the performance of linear 
regression, the more a predictive regression tree model can benefit from 
IAF using NLD. This association is illustrated21 in Figure 33. 

 

Table 8  
Correlation and p-Value of Dataset Parameters and Improvement of Regression Trees 

with IAF for Zadean Target Variables 

Parameter 
Correlation w/ 
Improvement by IAF p-value 

Number of categorical variables 0.121461217 0.522578264 
Number of numeric variables 0.03610839 0.84975457 
Percentage of categorical variables 0.036497846 0.848152597 

Percentage of numeric variables -0.036497846 0.848152597 
Number of columns 0.195910119 0.299481536 
Average correlation of the 
prediction of linear regression -0.583537264 0.000712151 
Number of rows (n) 0.081432863 0.668807278 
Ratio number of rows / number of 
columns -0.043381535 0.81994093 
   	
  

	
  
Figure 33: Relationship between target linearity and IAF benefit for fuzzified numerical 

target variables. 

                                                
20 See Query 14 in Chapter A 
21 See Query 15 and data in Table 17 in Chapter A 
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“Every species is vague, every term goes cloudy at its edges, and 

so in my way of thinking, relentless logic is only another name for 
stupidity—for a sort of intellectual pigheadedness. If you push a 
philosophical or metaphysical enquiry through a series of valid 
syllogisms—never committing any generally recognized fallacy—you 
nevertheless leave behind you at each step a certain rubbing and 
marginal loss of objective truth and you get deflections that are difficult 
to trace, at each phase in the process. Every species waggles about in its 
definition, every tool is a little loose in its handle, every scale has its 
individual.”  (H. G. Wells, 1908)  
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55 PPrreecciissiiaattiinngg  FFuuzzzziinneessss  bbyy  IInndduuccttiioonn  

55..11 SSuummmmaarryy  ooff  CCoonnttrriibbuuttiioonn  
A methodology for IFC has been introduced. This method allows 

automated derivation of membership functions from data. The idea is to 
translate sampled probabilities into fuzzy restrictions. Thus, a 
conceptual switch from the probabilistic to the possibilistic view is 
applied in order to reason about the data in terms of fuzzy logic. 
Business applications of MFI have been proposed in the area of 
marketing analytics in the fields of customer and product analytics, 
fuzzy target groups, and integrated analytics for individual marketing. 
A prototype inductive fuzzy classification language (IFCL) has been 
implemented and applied in experiments with 60 datasets with 
categorical and numerical target variables in order to evaluate 
performance improvements by application of the proposed methodology. 
Seven questions (Section 1.1) have guided the research conducted for 
this thesis. The following list summarizes the answers that this thesis 
proposes: 
o What is the theoretical basis of inductive fuzzy classification (IFC) 

and what is its relation to inductive logic?  
Inductive logic is defined as “a system of evidential support that 
extends deductive logic to less-than-certain inferences” 
(Hawthorne, 2008, “”Inductive Logic,” paragraph 1). Fuzzy 
classes are fuzzy sets (Zadeh 1965) defined by propositional 
functions (Russell, 1919) with a gradual truth-value (i.e., 
mapping to fuzzy propositions; Zadeh 1975). Their membership 
functions are thus inductive if their defining propositional 
functions are based on less-than-certain inferences (Section 2.4). 
The inductive fuzzy class y’ = { i ∈U | i is likely a member of y } 
is defined by a predictive model, µ, for membership in class y, 
where “likely” is a fuzzy set of hypotheses. The truth function of 
the fuzzy propositional function L(i,y) := “i is likely a member of 
y” is a fuzzy restriction (Zadeh, 1975a) on U defined by µy‘. 

o How can membership functions be derived inductively from data?  
 Membership functions can be derived using ratios or differences 
of sampled conditional probabilities. Different formulas have 
been proposed in Section 2.4.1 and tested in Section 4.2 
Normalized differences and ratios of likelihoods have shown to 
provide optimal membership degrees. For numeric variables, a 
continuous membership function can be defined by piecewise 
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linear function approximation. The numeric variable is 
discretized using quantiles and a linear function is approximated 
to the average values and the membership degrees for every 
adjacent pair of quantiles. For numerical target variables, 
normalization leads to a linear fuzzification with a membership 
degree to a fuzzy set that can be used to calculate likelihoods of 
fuzzy hypotheses. 

o How can a business enterprise apply IFC in practice?  
Inductive fuzzy classes can support marketing analytics by 
providing selection, visualization, and prediction in the fields of 
customer analytics, product analytics, fuzzy target selection, and 
integrated analytics for individual marketing. These techniques 
improve decision support for marketing by generating visual, 
intuitive profiles and improved predictive models, which can 
enhance sales (Section 3.2). A case study shows a real-world 
application with a financial service provider (Section 3.2.5). 

o How can the proposed methods be implemented in a computer 
program? 

 The IFCL prototype uses a database server for data storage, 
access, and computation (Section 4.1.2). The analytic process is 
configured in a text file using a synthetic language called IFCL. 
This language allows definition of all computations necessary for 
MFI, IAF, target fuzzification, attribute selection, supervised 
multivariate aggregation, fuzzy classification of data using 
predictive models, and model evaluation. Additionally, the IFCL 
prototype allows experiments on the proposed methods for MFI 
in batch mode. Furthermore, student works have shown 
implementations of IFC with graphical user interfaces.  

o How is IFC optimally applied for prediction?  
First, data is prepared and relevant attributes are selected. 
Then, each attribute is inductively fuzzified, so that the 
membership degree indicates the degree of membership in the 
target class. Finally, those multiple membership degrees are 
aggregated into a single membership degree with a multivariate 
regression, which represents the inductive class prediction. 
Optimally, for binary targets, attributes are fuzzified with NLRs 
and aggregated using logistic regression. For numerical targets, 
the target attribute is fuzzified using a linear normalization, the 
dependent attributes are fuzzified using NLD and then 
aggregated using regression trees (Section 3.1.3).  
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o Which aggregation methods are optimal for the multivariate 
combination of fuzzy classes for prediction?  

In the experimental phase, product, algebraic sum, minimum, 
maximum, average, logistic regression, linear regression, and 
regression trees have been tested for their predictive 
performance using the prototype software IFCL. For the 
aggregation of fuzzified attributes into a single prediction value 
for data records, the experiments showed that, on average, a 
supervised aggregation using multivariate regression models 
(logistic regression for Boolean targets and regression trees for 
Zadehan targets) are optimal (Section 4.2.2). 

o Can it be statistically supported that the proposed method of IFC 
improves predictive performance?  

Inductive attribute fuzzification using NLRs significantly 
improved average prediction results of classical regression 
models (Section 4.2.2). In fact, this improvement significantly 
and negatively correlated with the linearity of association 
between the data and the target class. Thus, the less linear this 
association is, demonstrated by a smaller correlation of the 
predictions of a linear regression model with the actual values, 
the more a multivariate model can be improved by transforming 
attributes into an inductive membership degree using the 
methods proposed in this thesis. 

55..22 DDiissccuussssiioonn  ooff  RReessuullttss  
Human perception and cognition is blurred by uncertainty and 

fuzziness. Concepts in our minds cluster perceptions into categories that 
cannot always be sharply distinguished. In some cases, binary 
classifications are feasible, such as detecting the presence or absence of 
light. Nevertheless, in many cases, our classification relies on fuzzy 
terms such as bright. Some concepts are gradual and can be ordered by 
their degree. In our previous example, brightness is a perception that is 
ordinal because some visions are brighter than others. By mapping an 
ordinal scale to Zadehan truth values, a membership function can be 
defined in order to clearly precisiate the semantics of fuzzy words, 
concepts, or terms, in the sense of Zadeh (2008). In fact, fuzzy set theory 
has not yet been recognized enough for its most valuable contribution: It 
provides a tool for assigning precise definitions to fuzzy statements! In 
Section 2.2.1, the sorites paradox, an age-old philosophical puzzle, was 
easily resolved by application of fuzzy set theory; such is the power of 
Zadehan logic. 
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Conditioned by fuzziness of cognition, the human mind infers and 
reasons based on fuzzy ideas, and often, successfully so. Induction is an 
uncertain type of reasoning, and thus classifies inferences into a fuzzy 
set: the fuzzy class of inductively supported conclusions. On one hand, 
induction is always uncertain, and even the most unlikely event can 
actually happen, even if induction indicates the contrary, such as the 
observation of a black swan (Taleb, 2007). On the other hand, how can 
we learn if not from past experience? Good inductive inferences are 
reliable more often than not. Furthermore, gaining insights by 
evaluating likelihoods of hypotheses using objective data is a 
cornerstone of empiricism. Thus, induction and its support measure, the 
likelihood ratio, can amplify past experience by leading to better and 
more reliable inductive inferences. While many concepts are fuzzy, 
induction provides a tool for precisiation. 

The transformation of likelihood ratios into membership functions 
to fuzzy sets by normalization is a tool for reasoning about uncertainty 
by amplification of past experience, where the fuzziness of class 
membership is precisiated by likelihood in the data. Accordingly, MFI 
with NLRs applies the law of likelihood and fuzzy set theory to make 
inductive inferences and to represent them as membership functions to 
fuzzy classes. 

There are three main advantages of applying likelihood-based 
MFI in analytics. First, a membership function makes hidden 
meaningful associations between attributes in the data explicit. It 
allows visualizing these associations in order to provide insight into 
automated inductive inferences. Second, a two-dimensional plot of these 
membership functions is easily interpretable by humans. Those 
visualizations are precisiations of inductive associations. Third, these 
membership functions are models that allow for a better quality of 
predictions and thus more accurate decisions. 

Likelihood-based precisiation of fuzziness can be applied to 
marketing analytics. Data analysis on customers, products, and 
transactions can be applied for customer relationship management 
(CRM) and individual marketing. This kind of analytic CRM provides 
decision support to company representatives in marketing channels 
with direct customer contact for offers, underwriting, sales, 
communications, gifts, and benefits. 

For the analytics process, it is proposed to classify customers 
inductively and fuzzily in order to target individual customers with the 
right relationship activities. First, the customers are classified by 
assigning them to different targets (classes), such as product offers or 
promotional gifts. Second, this classification is done inductively by 
analyzing present data as evidence for or against target membership 
based on customer characteristics. Third, the assignment of individual 
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customers to targets is fuzzy if the resulting classes have a gradual 
membership function. Finally, those inductive membership degrees to 
fuzzy targets provide decision support by indicating the likelihood of 
desired response in customer activities based on customer 
characteristics. These membership functions can be used in analytics to 
select the most important characteristics regarding a target, visualize 
the relationship between characteristics and a target, and predict target 
membership for individual customers.  

The proposed method for MFI is based on calculating likelihoods 
of target membership in existing data. These likelihoods are turned into 
a fuzzy set membership function by comparison and normalization 
using an NLR or an NLD. This algorithm has been implemented in the 
Weka machine learning workbench as a supervised attribute filter, 
which inductively fuzzifies sharp data and visualizes the induced 
membership functions. This software can be downloaded for 
experimental purposes. 

Sharp binary classification and segmentation lead to anomalies of 
threshold, and fuzzy classification provides a solution with gradual 
distinctions that can be applied to CRM, as pointed out by Werro (2008). 
Gradual customer partitioning has the advantage that the size of target 
groups can be varied by choosing a threshold according to conditions 
such as budget or profitability. Of course, scoring methods for CRM are 
state of the art; additionally, the present approach suggests that fuzzy 
logic is the appropriate tool for reasoning about CRM targets because 
they are essentially fuzzy concepts. Scoring provides a means for 
precisiation of this fuzziness, which provides numerical membership 
degrees of customers in fuzzy target groups. 

The advantages of MFI for fuzzy classification of customers are 
efficiency and precision. First, membership functions to CRM targets 
can be derived automatically, which is an efficient way of definition. 
And second, those inferred membership functions are precise because 
they indicate an objective, measurable degree of likelihood for target 
membership. Thus, the semantics of the membership function is clearly 
grounded. 

55..33 OOuuttllooookk  aanndd  FFuurrtthheerr  RReesseeaarrcchh  
The first point of further research is further development of the 

IFCL software. This prototype has fulfilled its purpose in answering the 
research questions of this thesis, but it lacks many features to make it 
suitable for productive use. Further development of this software could 
address the following points:  
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o refactoring of the source code with a clear object oriented design 
methodology,  

o adding a graphical user interface,  
o redesign of certain syntactical elements that have turned out to be 

inconvenient,  
o adding a syntax checker for the IFCL language,  
o adding support for all databases with a JDBC interface,  
o handling null values in the data,  
o and allowing multiclass predictions. 

As a second research direction, the field of application of IFC will 
be diversified. So far, applications have been proposed and evaluated in 
the area of marketing. Providing applications for web semantics 
analytics and biomedical analytics is envisioned.  

Third, the logical framework of fuzzy classification by induction is 
intended to be generalized. “Inductive approximate reasoning” can be 
defined as a methodology for the application of logic with gradual truth-
values using less-than-certain inferences. Also, the epistemological 
problem of induction will be tackled, because the likelihood ratio as a 
measure of support is distorted for large values of    𝑝𝑝(𝐻𝐻 ∩ 𝐸𝐸)/𝑝𝑝(𝐻𝐻), which 
is exemplified by the paradox of the raven (Vickers, 2009): Is the 
conclusion that a Raven (𝐸𝐸) is black (𝐻𝐻) truly supported by countless 
observations of white clouds (𝐻𝐻 ∩ 𝐸𝐸)? At least, it increases the likelihood 
ratio by decreasing 𝑝𝑝(𝐸𝐸|𝐻𝐻); perhaps, there might be other useful 
measures of inductive support.  

The most important suggestion for further research is the 
investigation of multidimensional MFI. This thesis is concentrated on 
induction of membership functions for single variables and their 
multivariate combination. As such, not all possible combinations of all 
variables are evaluated (see Section 2.2.2). In a multivariate model, a 
given attribute value can be assigned the same weight for every 
combination with values of other variables, for example, in a linear 
regression. In a multidimensional model, the same attribute value has 
different weights in different contexts, because every vector of a possible 
attribute value combination is assigned an individual weight or 
membership degree. Therefore, it might be interesting for future 
research to investigate the properties of multidimensional MFI. Instead 
of a multivariate combination of univariate membership functions, a 
multidimensional membership function assigns a membership degree to 
vectors of attribute value combinations, and the influence of an 
attribute value is not only dependent on itself, but also on the context of 
the other attribute’s values. Thus, predictive performance could be 
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improved because the interdependency of attributes can be modeled. 
This could resolve the “watermelon paradox” stated by Elkan (1993, p. 
703), because the inductive membership function to the concept of 
watermelon is measured in two dimensions, with “red inside” as a first 
coordinate and “green outside” as a second. 

The following research questions can be of interest: How are 
multidimensional membership functions induced from data? How are 
multidimensional membership degrees computed for vectors of 
categorical values, for vectors of numerical values, and for vectors of 
numerical and categorical values? How are continuous functions derived 
from those discrete degrees? Can multidimensional membership 
functions improve prediction? In what cases is it advisable to work with 
multidimensional membership functions?  

A possibility is to use n-linear interpolation using n-simplexes 
(Danielsson & Malmquist, 1992), which are hyper-triangles or 
generalizations of triangles in multidimensional space. Using 
simplexes, for every n-tuple of possible dimension value combinations, a 
corresponding likelihood measure (such as an NLR) could be sampled. 
Then, n different membership degree samples would represent the 
edges of a simplex. This hyper-triangle would represent a piece of the 
continuous multidimensional membership function, which could be 
approximated by combining simplexes to piecewise linear hyper 
surfaces. 
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AA.. AAppppeennddiixx  

AA..11.. DDaattaasseettss  uusseedd  iinn  tthhee  EExxppeerriimmeennttss  
Table 9 

Data Sets with Categorical Target Variable, Transformed into a Binary Target  

Name Target Filter22 Records Link (accessed 08.2010) 

abalone rings <= 9 No 2743 
http://archive.ics.uci.edu/ml/d
atasets/Abalone 

adult class = ' >50K' No 21623 
http://archive.ics.uci.edu/ml/d
atasets/Adult 

anneal class <> '3' yes 597 
http://archive.ics.uci.edu/ml/d
atasets/Annealing 

balance class = 'L' No 404 
http://archive.ics.uci.edu/ml/d
atasets/Balance+Scale 

bands band_type = 'band' Yes 237 
http://archive.ics.uci.edu/ml/d
atasets/Cylinder+Bands 

breastw class = 'benign' No 437 

http://archive.ics.uci.edu/ml/d
atasets/Breast+Cancer+Wisc
onsin+(Diagnostic) 

car 
acceptable <> 
'unacc' No 1145 

http://archive.ics.uci.edu/ml/d
atasets/Car+Evaluation 

cmc 
contraceptive_met
hod <> '1' No 1002 

http://archive.ics.uci.edu/ml/d
atasets/Contraceptive+Metho
d+Choice 

credit a16 = '+' No 431 
http://archive.ics.uci.edu/ml/d
atasets/Credit+Approval 

creditg class = 'good' No 679 

http://archive.ics.uci.edu/ml/d
atasets/Statlog+(German+Cr
edit+Data) 

diabetes 
class <> 
'tested_positive' No 489 

http://archive.ics.uci.edu/ml/d
atasets/Pima+Indians+Diabe
tes 

diagnosis 
inflammation = 
'yes' No 87 

http://archive.ics.uci.edu/ml/d
atasets/Acute+Inflammation 

glass 

type in (  '''build 
wind float''', 
'''build wind non-
float''', '''vehic 
wind float''', 
'''vehic wind non-
float''') No 157 

http://archive.ics.uci.edu/ml/d
atasets/Glass+Identification 

heart y= '2' No 188 
http://archive.ics.uci.edu/ml/d
atasets/Statlog+(Heart) 

hepatitis class = 'LIVE' No 59 
http://archive.ics.uci.edu/ml/d
atasets/Hepatitis 

horse outcome = '1' Yes 124 http://archive.ics.uci.edu/ml/d
                                                
22 See Section A.1.1 and A.1.2 

http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
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atasets/Horse+Colic 

hypothyroid class <> 'negative' Yes 1800 
http://archive.ics.uci.edu/ml/d
atasets/Thyroid+Disease 

internetads y=1 No 2153 

http://archive.ics.uci.edu/ml/d
atasets/Internet+Advertisem
ents 

ionosphere class = 'g' No 230 
http://archive.ics.uci.edu/ml/d
atasets/Ionosphere 

iris class = 'Iris-setosa' No 99 
http://archive.ics.uci.edu/ml/d
atasets/Iris 

letter class = 'F' No 13221 
http://archive.ics.uci.edu/ml/d
atasets/Letter+Recognition 

lymph 
class = 
'metastases' No 99 

http://archive.ics.uci.edu/ml/d
atasets/Lymphography 

segment class = 'sky' No 1490 

http://archive.ics.uci.edu/ml/d
atasets/Statlog+(Image+Seg
mentation) 

sonar class = 'Mine' No 143 

http://archive.ics.uci.edu/ml/d
atasets/Connectionist+Bench
+(Sonar,+Mines+vs.+Rocks) 

spectf y=1 Yes 177 
http://archive.ics.uci.edu/ml/d
atasets/SPECTF+Heart 

vehicle class = 'saab' No 552 

http://archive.ics.uci.edu/ml/d
atasets/Statlog+(Vehicle+Sil
houettes) 

waveform class <> 1 No 3342 

http://archive.ics.uci.edu/ml/d
atasets/Waveform+Database
+Generator+(Version+2) 

wine class = 2 No 110 
http://archive.ics.uci.edu/ml/d
atasets/Wine 

wisconsin diagnosis = 'B' Yes 391 

http://archive.ics.uci.edu/ml/d
atasets/Breast+Cancer+Wisc
onsin+(Diagnostic) 

yeast cls = 'CYT' Yes 973 
http://archive.ics.uci.edu/ml/d
atasets/Yeast 

 
  

http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
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Table 10  
Data Sets with Numerical Target Variable, Transformed into a Fuzzy Proposition µ↑  

(see Formula 43 and Formula 44) 

Name Target Filter23 Records Link (accessed 08.2010) 

auto93 µ↑(price) Yes 138 

http://www.amstat.org/public
ations/jse/v1n1/datasets.lock.
html 

autohorse µ↑(horsepower) No 65 
http://archive.ics.uci.edu/ml/d
atasets/Automobile 

baskball 

µ↑−

(points_per_minut
e) No 62 

http://lib.stat.cmu.edu/datase
ts/smoothmeth 

bodyfat µ↑(bodyfat) No 163 
http://lib.stat.cmu.edu/datase
ts/bodyfat 

bolts µ↑(t20bolt) No 30 
http://lib.stat.cmu.edu/datase
ts/bolts 

breasttumor µ↑(tumor_size) No 181 

http://archive.ics.uci.edu/ml/
machine-learning-
databases/breast-cancer/ 

cholestrol µ↑ (chol) No 203 
http://archive.ics.uci.edu/ml/d
atasets/Heart+Disease 

cloud µ-(te) No 68 
http://lib.stat.cmu.edu/datase
ts/cloud 

communities 

µ↑−

(violentcrimesperp
op) Yes 1363 

http://archive.ics.uci.edu/ml/d
atasets/Communities+and+C
rime 

cpu µ↑(prp) No 135 

http://archive.ics.uci.edu/ml/
machine-learning-
databases/cpu-performance/ 

elusage 
µ↑(average_electric
ity_usage) No 35 

http://lib.stat.cmu.edu/datase
ts/smoothmeth 

fishcatch µ↑(wheight) No 97 

http://www.amstat.org/public
ations/jse/datasets/fishcatch.
dat 
http://www.amstat.org/public
ations/jse/datasets/fishcatch.t
xt 

forestfires µ↑(area) No 346 
http://archive.ics.uci.edu/ml/d
atasets/Forest+Fires 

fruitfly µ↑(longevity) No 79 

http://www.amstat.org/public
ations/jse/datasets/fruitfly.da
t 
http://www.amstat.org/public
ations/jse/datasets/fruitfly.txt 

housing µ↑(price) No 348 
http://archive.ics.uci.edu/ml/d
atasets/Housing 

lowbwt µ↑(bwt) No 124 

http://www.umass.edu/statda
ta/statdata/data/lowbwt.txt 
http://www.umass.edu/statda

                                                
23 See Section A.1.1 and A.1.2 

http://www.amstat.org/public
http://archive.ics.uci.edu/ml/d
http://lib.stat.cmu.edu/datase
http://lib.stat.cmu.edu/datase
http://lib.stat.cmu.edu/datase
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/d
http://lib.stat.cmu.edu/datase
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/
http://lib.stat.cmu.edu/datase
http://www.amstat.org/public
http://www.amstat.org/public
http://archive.ics.uci.edu/ml/d
http://www.amstat.org/public
http://www.amstat.org/public
http://archive.ics.uci.edu/ml/d
http://www.umass.edu/statda
http://www.umass.edu/statda
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ta/statdata/data/lowbwt.dat 

meta µ↑(error_rate) No 348 
http://archive.ics.uci.edu/ml/d
atasets/Meta-data 

parkinsons µ↑ (motor_UPDRS) Yes 1172 
http://archive.ics.uci.edu/ml/d
atasets/Parkinsons 

pbc µ↑ (survival_time) Yes 114 
http://lib.stat.cmu.edu/datase
ts/pbc 

pharynx µ↑(days_survived) Yes 117 

http://www.umass.edu/statda
ta/statdata/data/pharynx.txt 
http://www.umass.edu/statda
ta/statdata/data/pharynx.dat 

pollution µ↑(mort) No 39 
http://lib.stat.cmu.edu/datase
ts/pollution 

quake µ↑(richter) No 1463 
http://lib.stat.cmu.edu/datase
ts/smoothmeth 

sensory µ↑(score) No 391 
http://lib.stat.cmu.edu/datase
ts/sensory 

servo 
µ↑(servo_rise_time 
) No 108 

http://archive.ics.uci.edu/ml/d
atasets/Servo 

sleep µ↑(total_sleep) No 41 
http://lib.stat.cmu.edu/datase
ts/sleep 

slump µ↑(slump_cm) Yes 75 

http://archive.ics.uci.edu/ml/d
atasets/Concrete+Slump+Tes
t 

strike µ↑ (volume) No 416 
http://lib.stat.cmu.edu/datase
ts/strikes 

veteran µ(survival) No 88 
http://lib.stat.cmu.edu/datase
ts/veteran 

wineqred µ↑(quality) No 1058 
http://archive.ics.uci.edu/ml/d
atasets/Wine+Quality 

wineqwhite µ↑(quality) No 3247 
http://archive.ics.uci.edu/ml/d
atasets/Wine+Quality 

 
   

http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
http://lib.stat.cmu.edu/datase
http://www.umass.edu/statda
http://www.umass.edu/statda
http://lib.stat.cmu.edu/datase
http://lib.stat.cmu.edu/datase
http://lib.stat.cmu.edu/datase
http://archive.ics.uci.edu/ml/d
http://lib.stat.cmu.edu/datase
http://archive.ics.uci.edu/ml/d
http://lib.stat.cmu.edu/datase
http://lib.stat.cmu.edu/datase
http://archive.ics.uci.edu/ml/d
http://archive.ics.uci.edu/ml/d
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AA..11..11.. AAttttrriibbuuttee  SSeelleeccttiioonn  FFiilltteerrss  
 
Data set Selected attributes in prediction experiments 
anneal surface_quality, family, ferro, thick, formability, chrom, condition, 

steel, non_ageing, phos, surface_finish, bf, enamelability, width, 
blue_bright_varn_clean, strength, carbon, shape, cbond, bw_me, 
exptl, lustre, bl 

auto93 Type, City_MPG, Highway_MPG, Air_Bags_standard, 
Drive_train_type, Number_of_cylinders, Engine_size, RPM, 
Engine_revolutions_per_mile, Manual_transmission_available, 
Fuel_tank_capacity, Passenger_capacity, Length, Wheelbase, 
Width, U_turn_space, Rear_seat_room, Luggage_capacity, Weight, 
Domestic 

bands grain_screened, ink_color, proof_on_ctd_ink, blade_mfg, 
cylinder_division , paper_type, ink_type, direct_steam, solvent_type, 
type_on_cylinder  , press_type, press , unit_number , cylinder_size, 
paper_mill_location, plating_tank, proof_cut, viscosity, caliper, 
ink_temperature, humifity, roughness, blade_pressure, varnish_pct, 
press_speed, ink_pct, solvent_pct, ESA_Voltage, ESA_Amperage , 
wax, hardener, roller_durometer, current_density_num , 
anode_space_ratio, chrome_content 

communities pctilleg, pctkids2par, pctfam2par, racepctwhite, numilleg, 
pctyoungkids2par, pctteen2par, racepctblack, pctwinvinc, 
pctwpubasst, numunderpov, pctpopunderpov, femalepctdiv, 
pctpersdensehous, totalpctdiv, pctpersownoccup, pctunemployed, 
malepctdivorce, pcthousnophone, pctvacantboarded, pctnothsgrad, 
medfaminc, pcthousownocc, housvacant, pcthousless3br, 
pctless9thgrade, medincome, blackpercap, pctlarghousefam, 
numinshelters, numstreet, percapinc, agepct16t24, population, 
numburban, pctwofullplumb, pcthousoccup, lemaspctofficdrugun, 
pctemploy, mednumbr, pctoccupmgmtprof, pctimmigrec10, 
numimmig, pctbsormore, medrentpcthousinc, pctoccupmanu, 
pctimmigrec8, pctwwage, agepct12t29, pctlarghouseoccup, 
hisppercap, popdens, pctimmigrecent, pctimmigrec5 

horse  Age, surgery, mucous_membranes, to_number(pulse) as pulse, 
capillary_refill_time, to_number(packed_cell_volume) as 
packed_cell_volume, peristalsis, pain, abdominal_distension, 
temperature_of_extremities, to_number(rectal_temperature) 

hypothyroid on_thyroxine, query_on_thyroxine, on_antithyroid_medication, sick, 
pregnant, thyroid_surgery, I131_treatment, query_hypothyroid, 
query_hyperthyroid, lithium, goitre, tumor, hypopituitary, psych, 
to_number(replace(TSH, '?', null)) as TSH, to_number(replace(T3, 
'?', null)) as T3, to_number(replace(TT4, '?', null)) as TT4, 
to_number(replace(T4U, '?', null)) as T4U, to_number(replace(FTI, 
'?', null)) as FTI, referral_source 

parkinsons subject_no, age, sex, test_time, Jitter_prc, Jitter_abs, Jitter_rap, 
Jitter_PPQ5, Jitter_DDP, Shimmer, Shimmer_dB, Shimmer_APQ3, 
Shimmer_APQ5, Shimmer_APQ11, Shimmer_DDA, NHR, HNR, 
RPDE, DFA, PPE 
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pbc Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13, Z14, Z15, Z16, 
Z17 

pharynx Inst, sex, Treatment, Grade, Age, Condition, Site, T, N, Status 
slump Cement, Slag, Fly_ash, Water, SP, Coarse_Aggr, Fine_Agg 
spectf f12s, f22r, f10s, f9s, f16s, f3s, f5s, f8s, f5r, f19s, f2s, f13s, f15s, f20s 
wisconsin radius, texture, perimeter, area, smoothness, compactness, 

concavity, concave_points, symmetry, fractal_dimension 

yeast mcg, gvh, alm, mit, erl, pox, vac, nuc 
 

AA..11..22.. RReeccoorrdd  SSeelleeccttiioonn  FFiilltteerrss  
 
Data set Selection criteria 
horse surgery <> '?'  and mucous_membranes <> '?'  and pulse <> '?'   and 

capillary_refill_time <> '?'  and packed_cell_volume <> '?'  and 
peristalsis <> '?'  and pain <> '?'  and abdominal_distension <> '?'  
and temperature_of_extremities <> '?'  and rectal_temperature <> '?' 

hypothyroid TSH <> '?' and T3 <> '?' and TT4 <> '?' and T4U <> '?' and FTI <> '?' 
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AA..22.. DDaattaabbaassee  QQuueerriieess

AA..22..11.. DDaattaabbaassee  QQuueerriieess  ffoorr  EExxppeerriimmeennttss  wwiitthh  
SShhaarrpp  TTaarrggeett  VVaarriiaabblleess  

Query 1: View for evaluation of experiment base data 
create table evaluation_basis3 as  

select 

dataset, method_tmp as aggregation, ifc, 

holdout_no, 

correlation, 

auc,mae,rmse, 

c_s, c_s_sig, c_k, c_k_sig 

from 

( 

  select  

  ifcl_file,dataset,case when ifc is null then 'noifc' else ifc 

end as ifc,  

  correlation, 

  percent_rank() over(partition by dataset order by correlation) 

as r, 

  --correlation as r, 

  auc,mae,rmse, 

  replace( 

  replace(regexp_replace(replace(ifcl_file, 

'./metainduction/'||dataset||'/'||ifc||'/', ''), '[[:digit:]]+_', 

''),'.ifcl') 

  ,  './metainduction/'||dataset||'/', '') as method_tmp, 

  holdout_no, 

  c_s, c_s_sig, c_k, c_k_sig 

  from 

  ( 

      select 

      ifcl_file,dataset,correlation,auc,mae,rmse, 

      replace(replace(ifc_method_tmp, 

'./metainduction/'||dataset||'/', ''), '/', '') as ifc, 

      holdout_no, c_s, c_s_sig, c_k, c_k_sig 

      from 
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      ( 

        SELECT  

        ifcl_file,correlation,auc,mae,rmse, 

        replace(replace(REGEXP_SUBSTR(ifcl_file, 

'./metainduction/[[:alnum:]]+/'),  

'./metainduction/', ''), '/', '') as dataset, 

        REGEXP_SUBSTR(ifcl_file, 

'./metainduction/([[:alnum:]]+)/([[:alpha:]])+/')  as 

ifc_method_tmp, 

        holdout_no, c_s, c_s_sig, c_k, c_k_sig 

        from evaluations_repeated 

      ) 

  ) 

) 

where method_tmp not like '%numeric%' 

and method_tmp not like '%ct%' 

 

create index ix1 on evaluation_basis3(dataset) 

create index ix2 on evaluation_basis3(ifc) 

 

Query 2: Average correlation per aggregation method 
select aggregation, avg(correlation)  

from evaluation_basis3 

where ifc <> 'noifc'  

group by aggregation  

order by avg(correlation) desc 

 

Query 3: Test of significance in difference between logistic regression, 
linear regression and regression tree as aggregation methods 
select stats_wsr_test(corr_logreg, corr_regtree, 'ONE_SIDED_SIG'),  

stats_wsr_test(corr_logreg, corr_linreg, 'ONE_SIDED_SIG') 

from  

( 

 select  

 dataset, 
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 sum(case when aggregation = 'logreg' then correlation else 0 

end) / 

 sum(case when aggregation = 'logreg' then 1 else 0 end) as 

corr_logreg, 

 sum(case when aggregation = 'regtree' then correlation else 0 

end) / 

 sum(case when aggregation = 'regtree' then 1 else 0 end) as 

corr_regtree, 

   sum(case when aggregation = 'linreg' then correlation else 0 

end) / 

 sum(case when aggregation = 'linreg' then 1 else 0 end) as 

corr_linreg 

 from evaluation_basis3 

 where ifc <> 'noifc' 

group by dataset 

) 

 

Query 4: Average correlation per induction and aggregation method 
select  

ifc, aggregation, avg(correlation)  

from evaluation_basis3 

group by ifc, aggregation 

order by avg(correlation) desc 

 

Query 5: Test of significance of difference between logistic regression 
using NLR-IAF, NLD-IAF and regression trees without IAF 
select  

stats_wsr_test(corr_logreg_nlr, corr_regtree_no_iaf, 

'ONE_SIDED_SIG'), 

stats_wsr_test(corr_logreg_nlr, corr_logreg_nld, 'ONE_SIDED_SIG') 

from 

( 

   select  

   dataset,  

sum(case when ifc||'.'||aggregation = 'nlr.logreg' then 

correlation  
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else 0 end)  

/ sum(case when ifc||'.'||aggregation = 'nlr.logreg' then 1 else 0 

end)  

as corr_logreg_nlr, 

   sum(case when ifc||'.'||aggregation = 'nld.logreg' then 

correlation  

else 0 end)  

/ sum(case when ifc||'.'||aggregation = 'nld.logreg' then 1 else 0 

end)  

as corr_logreg_nld, 

   sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 

correlation  

else 0 end)  

/ sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 1 

else 0 end)  

as corr_regtree_no_iaf 

   from evaluation_basis3 

     where dataset is not null 

   group by dataset ) 

 

AA..22..22.. DDaattaabbaassee  QQuueerriieess  ffoorr  EExxppeerriimmeennttss  wwiitthh  
NNuummeerriiccaall  TTaarrggeett  VVaarriiaabblleess  

Query 6: View for evaluation of experiment base data 
create table evaluation_basis_num as  

select 

dataset, method_tmp as aggregation, ifc, fuzzification, 

holdout_no, 

correlation, 

auc,mae,rmse, 

c_s, c_s_sig, c_k, c_k_sig 

from 

( 

  select  

  ifcl_file,dataset, 

  nvl(replace(substr(ifc, 1, regexp_instr(ifc, '._l|_p')),'_', 

''), 'noifc') as ifc, 
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  replace(substr(ifc, regexp_instr(ifc, '._l|_p')+1, length(ifc)), 

'_', '') as fuzzification,  

  correlation, 

  percent_rank() over(partition by dataset order by correlation) 

as r, 

  --correlation as r, 

  auc,mae,rmse, 

  replace( 

  replace(regexp_replace(replace(ifcl_file, 

'./metainduction_num/'||dataset||'/'||ifc||'/', ''), 

'[[:digit:]]+_', ''),'.ifcl') 

  ,  './metainduction_num/'||dataset||'/', '') as method_tmp, 

  holdout_no, 

  c_s, c_s_sig, c_k, c_k_sig 

   from 

  ( 

      select 

      ifcl_file,dataset,correlation,auc,mae,rmse, 

      replace(replace(ifc_method_tmp, 

'./metainduction_num/'||dataset||'/', ''), '/', '') as ifc, 

      holdout_no, c_s, c_s_sig, c_k, c_k_sig 

      from 

      ( 

        SELECT  

        ifcl_file,correlation,auc,mae,rmse, 

        replace(replace(REGEXP_SUBSTR(ifcl_file, 

'./metainduction_num/[[:alnum:]]+/'),  

'./metainduction_num/', ''), '/', '') as dataset, 

        REGEXP_SUBSTR(ifcl_file, 

'./metainduction_num/([[:alnum:]]+)/([[:print:]])+/')  as 

ifc_method_tmp, 

        holdout_no, c_s, c_s_sig, c_k, c_k_sig 

        from evaluations_repeated_num 

      ) 

  ) 

) 

 

create index ix3 on evaluation_basis_num(dataset) 
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create index ix4 on evaluation_basis_num(ifc) 

create index ix5 on evaluation_basis_num(fuzzification) 

 

Query 7: Average correlation per aggregation method, given linear ITF 
select aggregation, avg(correlation)  

from evaluation_basis_num 

where ifc <> 'noifc'  

group by aggregation  

order by avg(correlation) desc 

 

Query 8: Test of significance in difference between regression tree, 
linear regression and average 
select  

stats_wsr_test(corr_regtree, corr_avg, 'ONE_SIDED_SIG'),   

stats_wsr_test(corr_regtree, corr_linreg, 'ONE_SIDED_SIG') 

from  

( 

 select  

 dataset, 

 sum(case when aggregation = 'avg' then correlation else 0 

end) / 

 sum(case when aggregation = 'avg' then 1 else 0 end) as 

corr_avg, 

 sum(case when aggregation = 'regtree' then correlation else 0 

end) / 

 sum(case when aggregation = 'regtree' then 1 else 0 end) as 

corr_regtree, 

   sum(case when aggregation = 'linreg' then correlation else 0 

end) / 

 sum(case when aggregation = 'linreg' then 1 else 0 end) as 

corr_linreg 

 from evaluation_basis_num 

 where ifc <> 'noifc' 

group by dataset 

) 
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Query 9: Average correlation per target fuzzification method 
select  

fuzzification, avg(correlation)  

from evaluation_basis_num 

where aggregation = 'regtree' 

group by fuzzification 

order by avg(correlation) desc 

 

Query 10: Test of significance between target fuzzification methods 
select  

stats_wsr_test(corr_l, corr_p, 'ONE_SIDED_SIG') 

from  

( 

 select  

 dataset, 

 sum(case when fuzzification = 'l' then correlation else 0 

end) / 

 sum(case when fuzzification = 'l' then 1 else 0 end) as 

corr_l, 

 sum(case when fuzzification = 'p' then correlation else 0 

end) / 

 sum(case when fuzzification = 'p' then 1 else 0 end) as 

corr_p 

 from evaluation_basis_num 

 where aggregation = 'regtree' 

  and ifc <> 'noifc' 

group by dataset 

) 

Query 11: Average correlation per induction and aggregation method 
(given linear target fuzzification) 
select  

ifc, aggregation, avg(correlation)  

from evaluation_basis_num 

where (fuzzification = 'l' or fuzzification is null) 

and aggregation <> 'logreg_p' 

group by ifc, aggregation 



 
 
 

142 

order by avg(correlation) desc 

 

Query 12: Test of significance of difference between regression trees 
using NLD-IAF , NLDU-IAF and regression trees without IAF 
select  

stats_wsr_test(corr_regtree_nld, corr_regtree_no_iaf, 

'ONE_SIDED_SIG'), 

stats_wsr_test(corr_regtree_nld, corr_regtree_nldu, 

'ONE_SIDED_SIG'), 

stats_wsr_test(corr_regtree_nld, corr_regtree_nlr, 

'ONE_SIDED_SIG') 

from 

( 

   select  

   dataset,  

sum(case when ifc||'.'||aggregation = 'nld.regtree' then 

correlation  

else 0 end)  

/ sum(case when ifc||'.'||aggregation = 'nld.regtree' then 1 else 

0 end)  

as corr_regtree_nld, 

   sum(case when ifc||'.'||aggregation = 'nldu.regtree' then 

correlation  

else 0 end)  

/ sum(case when ifc||'.'||aggregation = 'nldu.regtree' then 1 else 

0 end)  

as corr_regtree_nldu, 

sum(case when ifc||'.'||aggregation = 'npr.regtree' then 

correlation  

else 0 end)  

/ sum(case when ifc||'.'||aggregation = 'npr.regtree' then 1 else 

0 end)  

as corr_regtree_nlr, 

   sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 

correlation  

else 0 end)  

/ sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 1 

else 0 end)  
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as corr_regtree_no_iaf 

   from evaluation_basis_num 

     where dataset is not null 

   group by dataset 

) 

AA..22..33.. DDaattaabbaassee  QQuueerriieess  ffoorr  BBootthh  TTyyppeess  ooff  
EExxppeerriimmeennttss  

Query 13: Table with data parameters for each dataset 
-- Execute 00_load_all.bat first 

create or replace view data_params as 

select * from 

( -- improvement 

  select dataset, (corr_logreg_nlr- 

corr_logreg_no_iaf)/corr_logreg_no_iaf as improvement_by_iaf 

  from 

  ( 

    select  

    dataset,  

    sum(case when ifc||'.'||aggregation = 'nlr.logreg' then 

correlation  

    else 0 end)  

    / sum(case when ifc||'.'||aggregation = 'nlr.logreg' then 1 

else 0 end)  

    as corr_logreg_nlr, 

    sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 

correlation  

    else 0 end)  

    / sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 1 

else 0 end)  

    as corr_regtree_no_iaf, 

    sum(case when ifc||'.'||aggregation = 'noifc.logreg' then 

correlation  

    else 0 end)  

    / sum(case when ifc||'.'||aggregation = 'noifc.logreg' then 1 

else 0 end)  

    as corr_logreg_no_iaf 
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    from evaluation_basis3 

    where dataset is not null 

    group by dataset 

  ) 

  union 

  select  

  dataset, (corr_regtree_nld - 

corr_regtree_no_iaf)/corr_regtree_no_iaf as improvement_by_iaf 

  from 

  ( 

  select  

    dataset,  

    sum(case when ifc||'.'||aggregation = 'nld.regtree' then 

correlation  

    else 0 end)  

    / sum(case when ifc||'.'||aggregation = 'nld.regtree' then 1 

else 0 end)  

    as corr_regtree_nld, 

    sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 

correlation  

    else 0 end)  

    / sum(case when ifc||'.'||aggregation = 'noifc.regtree' then 1 

else 0 end)  

    as corr_regtree_no_iaf 

    from evaluation_basis_num 

    where dataset is not null 

    group by dataset 

  ) 

) 

join 

( -- column count 

  select  

  replace(lower(table_name), '_tr', '') as dataset, 

  sum(case when data_type in ('CHAR', 'VARCHAR2') then 1 else 0 

end) as ncatcols, 

  sum(case when data_type in ('NUMBER', 'FLOAT') then 1 else 0 

end) as nnumcols, 
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  sum(case when data_type in ('CHAR', 'VARCHAR2') then 1 else 0 

end)/count(*) as pcatcols, 

  sum(case when data_type in ('NUMBER', 'FLOAT') then 1 else 0 

end)/count(*) as pnumcols, 

  count(*) as ncols 

  from  

  sys.all_tab_columns 

  where table_name in 

  ('ABALONE_TR', 'ADULT_TR', 'ANNEAL_TR', 'BALANCE_TR', 

'BANDS_TR', 'BREASTW_TR', 'CAR_TR', 'CMC_TR', 'CREDIT_TR', 

'CREDITG_TR', 'DIABETES_TR', 'DIAGNOSIS_TR', 'GLASS_TR', 

'HEART_TR', 'HEPATITIS_TR', 'HORSE_TR', 'HYPOTHYROID_TR', 

'INTERNETADS_TR', 'IONOSPHERE_TR', 'IRIS_TR', 'LETTER_TR', 

'LYMPH_TR', 'SEGMENT_TR', 'SONAR_TR', 'SPECTF_TR', 'VEHICLE_TR', 

'WAVEFORM_TR', 'WINE_TR', 'WISCONSIN_TR', 'YEAST_TR', 'AUTO93_TR', 

'AUTOHORSE_TR', 'BASKBALL_TR', 'BODYFAT_TR', 'BOLTS_TR', 

'BREASTTUMOR_TR', 'CHOLESTROL_TR', 'CLOUD_TR', 'COMMUNITIES_TR', 

'CPU_TR', 'ELUSAGE_TR', 'FISHCATCH_TR', 'FORESTFIRES_TR', 

'FRUITFLY_TR', 'HOUSING_TR', 'LOWBWT_TR', 'META_TR', 

'PARKINSONS_TR', 'PBC_TR', 'PHARYNX_TR', 'POLLUTION_TR', 

'QUAKE_TR', 'SENSORY_TR', 'SERVO_TR', 'SLEEP_TR', 'SLUMP_TR', 

'STRIKE_TR', 'VETERAN_TR', 'WINEQRED_TR', 'WINEQWHITE_TR') 

  and column_name <> 'IS_TRAINING' 

  and column_name <> 'Y' 

  group by table_name 

) 

using (dataset) 

join 

( -- correlation of linear regression 

  select dataset, avg(correlation) as avg_corr_linreg from 

evaluation_basis3 

  where ifc = 'noifc' 

  and aggregation = 'linreg' 

  group by dataset 

  union 

  select dataset, avg(correlation) from evaluation_basis_num 

  where ifc = 'noifc' 

  and aggregation = 'linreg' 
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  group by dataset 

)  

using (dataset) join 

( -- row count 

  select 'abalone' as dataset, 'c' as target_type, count(*) as 

nrows from abalone_tr 

  union select 'abalone', 'c', count(*) from abalone_tr 

  union select 'adult', 'c', count(*) from adult_tr 

  union select 'anneal', 'c', count(*) from anneal_tr 

  union select 'balance', 'c', count(*) from balance_tr 

  union select 'bands', 'c', count(*) from bands_tr 

  union select 'breastw', 'c', count(*) from breastw_tr 

  union select 'car', 'c', count(*) from car_tr 

  union select 'cmc', 'c', count(*) from cmc_tr 

  union select 'credit', 'c', count(*) from credit_tr 

  union select 'creditg', 'c', count(*) from creditg_tr 

  union select 'diabetes', 'c', count(*) from diabetes_tr 

  union select 'diagnosis', 'c', count(*) from diagnosis_tr 

  union select 'glass', 'c', count(*) from glass_tr 

  union select 'heart', 'c', count(*) from heart_tr 

  union select 'hepatitis', 'c', count(*) from hepatitis_tr 

  union select 'horse', 'c', count(*) from horse_tr 

  union select 'hypothyroid', 'c', count(*) from hypothyroid_tr 

  union select 'internetads', 'c', count(*) from internetads_tr 

  union select 'ionosphere', 'c', count(*) from ionosphere_tr 

  union select 'iris', 'c', count(*) from iris_tr 

  union select 'letter', 'c', count(*) from letter_tr 

  union select 'lymph', 'c', count(*) from lymph_tr 

  union select 'segment', 'c', count(*) from segment_tr 

  union select 'sonar', 'c', count(*) from sonar_tr 

  union select 'spectf', 'c', count(*) from spectf_tr 

  union select 'vehicle', 'c', count(*) from vehicle_tr 

  union select 'waveform', 'c', count(*) from waveform_tr 

  union select 'wine', 'c', count(*) from wine_tr 

  union select 'wisconsin', 'c', count(*) from wisconsin_tr 

  union select 'yeast', 'c', count(*) from yeast_tr 

  union select 'auto93', 'n', count(*) from auto93_tr 

  union select 'autohorse', 'n', count(*) from autohorse_tr 
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  union select 'baskball', 'n', count(*) from baskball_tr 

  union select 'bodyfat', 'n', count(*) from bodyfat_tr 

  union select 'bolts', 'n', count(*) from bolts_tr 

  union select 'breasttumor', 'n', count(*) from breasttumor_tr 

  union select 'cholestrol', 'n', count(*) from cholestrol_tr 

  union select 'cloud', 'n', count(*) from cloud_tr 

  union select 'communities', 'n', count(*) from communities_tr 

  union select 'cpu', 'n', count(*) from cpu_tr 

  union select 'elusage', 'n', count(*) from elusage_tr 

  union select 'fishcatch', 'n', count(*) from fishcatch_tr 

  union select 'forestfires', 'n', count(*) from forestfires_tr 

  union select 'fruitfly', 'n', count(*) from fruitfly_tr 

  union select 'housing', 'n', count(*) from housing_tr 

  union select 'lowbwt', 'n', count(*) from lowbwt_tr 

  union select 'meta', 'n', count(*) from meta_tr 

  union select 'parkinsons', 'n', count(*) from parkinsons_tr 

  union select 'pbc', 'n', count(*) from pbc_tr 

  union select 'pharynx', 'n', count(*) from pharynx_tr 

  union select 'pollution', 'n', count(*) from pollution_tr 

  union select 'quake', 'n', count(*) from quake_tr 

  union select 'sensory', 'n', count(*) from sensory_tr 

  union select 'servo', 'n', count(*) from servo_tr 

  union select 'sleep', 'n', count(*) from sleep_tr 

  union select 'slump', 'n', count(*) from slump_tr 

  union select 'strike', 'n', count(*) from strike_tr 

  union select 'veteran', 'n', count(*) from veteran_tr 

  union select 'wineqred', 'n', count(*) from wineqred_tr 

  union select 'wineqwhite', 'n', count(*) from wineqwhite_tr 

) 

using (dataset)	
  

Query 14: Correlation of parameters with the performance improvement 
by IFC 
select  

target_type, 

CORR_S(improvement_by_iaf, ncatcols) c_ncatcols, 

CORR_S(improvement_by_iaf, ncatcols, 'TWO_SIDED_SIG') p_ncatcols, 

CORR_S(improvement_by_iaf, nnumcols) c_nnumcols, 
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CORR_S(improvement_by_iaf, nnumcols, 'TWO_SIDED_SIG') p_nnumcols, 

CORR_S(improvement_by_iaf, pcatcols) c_pcatcols, 

CORR_S(improvement_by_iaf, pcatcols, 'TWO_SIDED_SIG') p_pcatcols, 

CORR_S(improvement_by_iaf, pnumcols) c_pnumcols, 

CORR_S(improvement_by_iaf, pnumcols, 'TWO_SIDED_SIG') p_pnumcols, 

CORR_S(improvement_by_iaf, ncols) c_ncols, 

CORR_S(improvement_by_iaf, ncols, 'TWO_SIDED_SIG') p_ncols, 

CORR_S(improvement_by_iaf, avg_corr_linreg) c_avg_corr_linreg, 

CORR_S(improvement_by_iaf, avg_corr_linreg, 'TWO_SIDED_SIG') 

p_avg_corr_linreg, 

CORR_S(improvement_by_iaf, nrows) c_nrows, 

CORR_S(improvement_by_iaf, nrows, 'TWO_SIDED_SIG') p_nrows, 

CORR_S(improvement_by_iaf, nrows/ncols) c_nrowscols, 

CORR_S(improvement_by_iaf, nrows/ncols, 'TWO_SIDED_SIG') 

p_nrowscols 

from data_params 

group by target_type 

 

Query 15: Table for scatter plot visualization of association between 
linearity of data and improvement by IAF 
 
select dataset, target_type, avg_corr_linreg, improvement_by_iaf  

from data_params order by target_type, dataset 
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AA..33.. EExxppeerriimmeennttaall  RReessuullttss  TTaabblleess  
Table 11 

Average Prediction Correlations per Dataset/Aggregation Method for Binary Targets  

Dataset Avg. Corr. Log. Reg. Avg. Corr. Reg. Tree Avg. Corr. Lin. Reg. 
abalone 0.638687626 0.651733317 0.636539418 
adult 0.659169773 0.651350849 0.636197273 
anneal 0.823367865 0.846689248 0.797382729 
balance 0.920732292 0.791055945 0.840604813 
bands 0.454571882 0.351967704 0.426261177 
breastw 0.939085094 0.927238012 0.931453636 
car 0.914349826 0.933901714 0.811581886 
cmc 0.425228906 0.421732164 0.418979581 
credit 0.76498662 0.757839955 0.767073216 
creditg 0.457163162 0.426897568 0.437699783 
diabetes 0.54510302 0.533295481 0.546568895 
diagnosis 1 0.868887353 0.965967697 
glass 0.794456151 0.774937317 0.802028743 
heart 0.695053211 0.643374806 0.684389592 
hepatitis 0.291646106 0.383819768 0.388031234 
horse 0.572088107 0.529928212 0.555148535 
hypothyroid 0.792125757 0.892843929 0.79338345 
internetads 0.805987731 0.753679747 0.78294501 
ionosphere 0.819557055 0.799538551 0.798060482 
iris 1 0.999193202 0.991252264 
letter 0.626368894 0.798441855 0.480644051 
lymph 0.695768921 0.672304979 0.726334152 
segment 0.99999997 0.997855955 0.992554443 
sonar 0.558775153 0.554680801 0.578090696 
spectf 0.501761759 0.447468223 0.463867849 
vehicle 0.475892051 0.460322532 0.437534698 
waveform 0.82107583 0.785686835 0.74716555 
wine 0.918745813 0.861574492 0.914019581 
wisconsin 0.908323537 0.872676408 0.88191778 
yeast 0.421658925 0.424627552 0.423187415 
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Table 12 

Average Prediction Correlations per Dataset and Aggregation Method for Numerical 
Target Variables 

Dataset Avg. Corr. Avg. Avg. Corr. Reg. Tree Avg. Corr. Lin. Reg. 
auto93 0.691201303 0.857445115 0.738746817 
autohorse 0.892653343 0.926796658 0.930059659 
baskball 0.536398611 0.638183226 0.539943795 
bodyfat 0.744776961 0.980938537 0.977226072 
bolts 0.79763048 0.894265558 0.905782285 
breasttumor 0.231971819 0.380396489 0.258283305 
cholestrol 0.176404133 0.345649097 0.163348437 
cloud 0.8020314 0.891982414 0.865600118 
communities 0.731280609 0.79667882 0.780258252 
cpu 0.788972056 0.814152614 0.794450568 
elusage 0.865618561 0.897333607 0.872277672 
fishcatch 0.845272306 0.918434123 0.894956413 
forestfires 0.018454772 0.167736369 0.014733488 
fruitfly -0.131668697 0.165425495 -0.067547186 
housing 0.687542408 0.908550517 0.86615543 
lowbwt 0.741678073 0.810166446 0.788121932 
meta 0.27658433 0.448502931 0.353513754 
parkinsons 0.326735958 0.881670195 0.605425938 
pbc 0.475841958 0.67048775 0.487261393 
pharynx 0.606093213 0.775843245 0.683939249 
pollution 0.656915329 0.811606345 0.655832652 
quake 0.057471089 0.081629626 0.058700741 
sensory 0.290356213 0.400912946 0.337693928 
servo 0.703894008 0.828999856 0.780728183 
sleep 0.713524339 0.753362622 0.601491837 
slump 0.422059811 0.668746482 0.500413959 
strike 0.382845386 0.485543157 0.418259534 
veteran 0.358292594 0.483294002 0.413181002 
wineqred 0.544798097 0.615254318 0.595187199 
wineqwhite 0.507972143 0.577186397 0.543279329 
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Table 13: 
Average Prediction Correlations for IAF on Data with Numerical Target Variables using 

Linear versus Percentile ITF 

Dataset Linear ITF Percentile ITF 
auto93 0.88105593 0.833834299 
autohorse 0.946780795 0.90681252 
baskball 0.635879956 0.640486496 
bodyfat 0.984034462 0.977842612 
bolts 0.921790457 0.866740659 
breasttumor 0.385000153 0.375792824 
cholestrol 0.365144244 0.32615395 
cloud 0.926867976 0.857096852 
communities 0.82334782 0.770009819 
cpu 0.937630747 0.690674481 
elusage 0.905249904 0.88941731 
fishcatch 0.94873926 0.888128986 
forestfires 0.210580299 0.124892439 
fruitfly 0.157932749 0.172918241 
housing 0.940547453 0.87655358 
lowbwt 0.814805887 0.805527006 
meta 0.577117175 0.319888686 
parkinsons 0.880604806 0.882735584 
pbc 0.666064677 0.674910823 
pharynx 0.785763664 0.765922825 
pollution 0.807044092 0.816168598 
quake 0.078567569 0.084691683 
sensory 0.399599899 0.402225994 
servo 0.872101166 0.785898546 
sleep 0.783933708 0.722791535 
slump 0.708012949 0.629480015 
strike 0.522569102 0.448517211 
veteran 0.515124253 0.45146375 
wineqred 0.619064343 0.611444293 
wineqwhite 0.58210665 0.572266143 
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Table 14 
Average Prediction Correlations per Dataset and Three Different Combinations of 

Supervised Aggregation and IAF for Binary Target Variables	
  

Dataset 
Avg. Corr. Log. Reg. 
+ IAF NLR 

Avg. Corr. Log. Reg. 
+ IAF NLD 

Avg. Corr. Reg. Tr 
w/o IAF 

abalone 0.633651826 0.636990551 0.64867844 
adult 0.662989858 0.656921233 0.608645742 
anneal 0.826555309 0.823932942 0.853821973 
balance 0.923393427 0.924777928 0.79058825 
bands 0.461862401 0.450021541 0.343296921 
breastw 0.939701709 0.939464426 0.930009743 
car 0.91660187 0.913644582 0.948927087 
cmc 0.42385694 0.423400481 0.455736376 
credit 0.768277547 0.763557368 0.751852807 
creditg 0.464104961 0.469843758 0.393045324 
diabetes 0.556749014 0.545362638 0.50644607 
diagnosis 1 1 0.944533837 
glass 0.802605598 0.804760434 0.824622632 
heart 0.694785041 0.70493683 0.657426735 
hepatitis 0.374975313 0.311577565 0.339608818 
horse 0.569485166 0.55213211 0.541218353 
hypothyroid 0.80477987 0.800429276 0.898883448 
internetads 0.807436554 0.808116466 0.798458728 
ionosphere 0.809199099 0.819279121 0.764848148 
iris 1 1 0.996991022 
letter 0.6349395 0.62902598 0.727029396 
lymph 0.68823764 0.690663197 0.727999682 
segment 0.999999995 0.999999953 0.997593306 
sonar 0.559774797 0.557996241 0.496422658 
spectf 0.505452116 0.510651243 0.473619771 
vehicle 0.46898602 0.496373681 0.559857093 
waveform 0.826959479 0.821165897 0.783760649 
wine 0.912450784 0.923247357 0.90726124 
wisconsin 0.912735058 0.907890135 0.873368639 
yeast 0.420860794 0.420696658 0.412990274 
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Table 15 
Average Prediction Correlations per Dataset and Three Different Combinations of 

Supervised Aggregation and IAF for Numerical Target Variables	
  

Dataset 
Avg. Corr. Reg. Tr. 

+ IAF NLD 
Avg. Corr. Reg. Tr. 

+ IAF NLDU 
Avg. Corr. Reg. Tr. 

w/o IAF 
auto93 0.851949884 0.854702482 0.783694291 

autohorse 0.934671172 0.932528555 0.939116035 
baskball 0.651189815 0.65121036 0.623578896 
bodyfat 0.989455545 0.990353116 0.991221665 

bolts 0.899445255 0.90182103 0.921987087 
breasttumor 0.379942005 0.37994241 0.252316629 

cholestrol 0.354768905 0.346985441 0.193892889 
cloud 0.901964456 0.89860454 0.913436117 

communities 0.798599026 0.796617813 0.791015749 
cpu 0.843304898 0.842528113 0.97677025 

elusage 0.905475647 0.905995831 0.881926102 
fishcatch 0.932313534 0.933532791 0.985895292 
forestfires 0.175728178 0.169928128 0.014991533 

fruitfly 0.212102028 0.212108602 -0.064702557 
housing 0.918270044 0.917557553 0.900012141 
lowbwt 0.813006747 0.812914092 0.783555356 
meta 0.462534319 0.454644049 0.368499477 

parkinsons 0.887066413 0.881144444 0.941203949 
pbc 0.66081537 0.660799138 0.534079402 

pharynx 0.773127351 0.773127987 0.708101866 
pollution 0.829522663 0.831729118 0.60923147 

quake 0.082057392 0.08047578 0.073515546 
sensory 0.404010864 0.404010206 0.386991775 
servo 0.82787911 0.827815554 0.912721346 
sleep 0.77696476 0.764053467 0.730795112 
slump 0.690106281 0.689333045 0.493530846 
strike 0.496745411 0.496578249 0.415429314 

veteran 0.471382971 0.471232266 0.437471553 
wineqred 0.611102154 0.615205884 0.580172859 

wineqwhite 0.572707345 0.573805738 0.563459737 
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Table 16 
Relationship between Target Linearity and Improvement of Logistic Regression by IAF 

NLR for Binary Target Variables 

Dataset Target linearity Improvement by IAF NLR 
abalone 0.632486147 -0.015038624 
adult 0.601697632 0.003616993 
anneal 0.847487701 0.265333889 
balance 0.839927779 0.010051891 
bands 0.397808335 0.101084917 
breastw 0.92253246 -0.001225938 
car 0.814076541 -0.001610122 
cmc 0.351769834 0.17744701 
credit 0.733383933 0.063102998 
creditg 0.425527893 0.040954514 
diabetes 0.527451425 0.044424251 
diagnosis 0.972462485 -5.2E-16 
glass 0.817993073 -0.003667589 
heart 0.6866888 0.030462835 
hepatitis 0.381693585 0.098467765 
horse 0.552106327 0.111811784 
hypothyroid 0.584747606 0.080805492 
internetads 0.784842676 0.00291351 
ionosphere 0.681485184 0.15769256 
iris 0.97214843 2.97338E-06 
letter 0.45185967 0.10947387 
lymph 0.723280478 0.033367981 
segment 0.956800746 -4.89814E-09 
sonar 0.512394902 0.043510527 
spectf 0.452480291 -0.002580917 
vehicle 0.57214217 -0.206318239 
waveform 0.724956824 0.075158502 
wine 0.910709707 -0.029160901 
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Table 17 
Relationship between Target Linearity and Improvement of Regression Trees by IAF 

NLD for Numerical Target Variables 

Dataset Target linearity Improvement by IAF NLD 
autohorse 0.946606415 -0.004733029 
auto93 0.736992093 0.087094666 
baskball 0.623578896 0.044278148 
bodyfat 0.990358409 -0.001781761 
bolts 0.85950705 -0.024449184 
breasttumor 0.236969021 0.505814364 
cholestrol 0.170467119 0.82971591 
cloud 0.912861146 -0.0125588 
communities 0.797109195 0.009586759 
cpu 0.930542139 -0.136639452 
elusage 0.845600615 0.026702402 
fishcatch 0.963623075 -0.054348325 
forestfires 0.073146275 10.72182832 
fruitfly -0.064702557 -4.278108926 
housing 0.854820529 0.020286285 
lowbwt 0.778262746 0.037586867 
meta 0.383398892 0.25518311 
parkinsons 0.459022397 -0.057519453 
pbc 0.530953313 0.237297988 
pharynx 0.699754036 0.091830693 
pollution 0.679583809 0.361588664 
quake 0.066085663 0.116191016 
sensory 0.336532333 0.043977907 
servo 0.836899785 -0.092955244 
sleep 0.709322872 0.063177281 
slump 0.436362228 0.398304251 
strike 0.42286715 0.195739913 
veteran 0.397186311 0.077516853 
wineqred 0.583219599 0.053310483 
wineqwhite 0.52352684 0.01641219 
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AA..44.. IIFFCCLL  SSyynnttaaxx  aanndd  AApppplliiccaattiioonn  

AA..44..11.. GGrraammmmaarr  NNoottaattiioonn  
The syntax will be described with the aid of meta-linguistic formulae in 
the Backus-Naur Form (BNF) as proposed by Backus, et al. (1960): 
 
<…>   Meta-linguistic variables: nodes of the grammar tree 
::=  Definition of syntax element placeholders 
… | …  Alternative choice of syntax elements 
<character> A symbol 
<string> Any sequence of symbols 
<integer>  A sequence of digits (0-9) 
<decimal> A sequence of digits (0-9) containing one decimal point 
<empty> An empty set of symbols: no symbol at all 
 
All symbols that are not inside of less than / greater than signs ( <…> ) 
except  the symbols ::= and | are used literally in the IFCL language. 
Different meta-linguistic variable declarations are separated by an 
empty line. Comments can be made in IFCL files as a sequence of 
symbols enclosed by the character #. In fact, comments are filtered out 
before parsing, so they are not part of the language itself. 

AA..44..22.. IIFFCCLL  FFiillee  SSttrruuccttuurree  
 
<IFCL file> ::=  

<IFCL file node> <IFCL file leaf> 

 

<IFCL file node> ::=  

<IFCL file execution call> <IFCL file node>  

| <empty> 

 

<IFCL file leaf> ::=  

<connect to database>  <IFCL leaf action sequence>  

   

<IFCL leaf action sequence> ::=   

<IFCL leaf action> <IFCL action sequence> | <empty>  

   

<IFCL leaf action> ::=   

| <drop database table>  

| <execute sql>  

| <load database>  
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| <induce membership function>  

| <aggregate multiple variables> 

| <data classification>  

| <evaluate correlations> 

AA..44..33.. EExxeeccuuttiinngg  IIFFCCLL  FFiilleess  iinn  BBaattcchh  MMooddee  
o Syntax 
<IFCL file execution call> ::= @execifcl: file == <ifcl file 

path>; 

 

<ifcl file path> ::= <string> 

o Example 
@execifcl: file == ./metainduction/abalone/load.ifcl; 

AA..44..44.. CCoonnnneeccttiinngg  ttoo  tthhee  DDaattaabbaassee  
o Syntax 
<connect to database> ::=  

@connect:  

hostname == <database host name>  ; 

SID  == <database service identifier> ; 

port  == <database server port number> ; 

username  == <user name> ; 

password  == <password> ; 

 

<database host name> ::= <string> 

 

<database service identifier>::= <string> 

 

<database server port number> ::= <integer> 

 

<user name> ::= <string> 

 

<password> ::= <string> 

o Example 
@connect: 

HostName   == localhost; 
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SID        == XE; 

Port       == 1521; 

UserName   == ME; 

Password   == passwort; 

AA..44..55.. DDrrooppiinngg  aa  DDaattaabbaassee  TTaabbllee  
o Syntax 
<drop database table> ::= @drop: table == <table name>; 

 

<table name>::= <string> 

o Example 
@drop: table == abalone_te_nlr_regtree 

AA..44..66.. EExxeeccuuttiinngg  aann  SSQQLL  SSccrriipptt  
o Syntax 
<execute sql> ::= @execsql: <sql> 

 

<sql> ::= 

file == <sql script file path> ; 

| command == <sql statement> ; 

 

<sql script file path> ::= <string> 

 

<sql statement> ::= <string> 

o Example 
@execsql: file == metainduction/abalone/01_sql/table_split.sql; 

AA..44..77.. LLooaaddiinngg  DDaattaa  iinnttoo  TThhee  DDaattaabbaassee    
o Syntax 
<load database> ::= <SQL*Loader> | <IFCL loader> 

 

<SQL*Loader>::=  

@sqlldr: 

data == <path to data file> ; 

control == <path to sqlldr control file> ; 

skip == <number of rows to skip>; 
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errors == <number of errors to accept>; 

 

<path to data file> ::= <string> 

 

<path to sqlldr control file> ::= <string> 

 

<number of rows to skip> ::= <integer> 

 

<number of errors to accept> ::= <integer> 

o Example 
@sqlldr: 

data == metainduction/abalone/00_data/data.csv; 

control == metainduction/abalone/00_data/sqlldr.ctl; 

skip == 0; 

errors == 10000; 

 
o Syntax 
<IFCL loader> ::= 

@load: 

file ==  <path to data file> ; 

table == <table to be created and loaded> ; 

delimiter == <data delimiting character> ; 

attributes == <attribute list> ; 

types == <type list>; 

 

<path to data file> ::= <string> 

 

<data delimiting character> ::= <character> 

 

<attribute list> ::= <attribute> <attribute list> | <empty> 

 

<attribute> ::= <string> 

 

<type list> ::= <type> <type list> | <empty> 

 
<type> ::= n | c 
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o Example 
@load: 

file == ./metainduction/balance/00_data/00_data.csv; 

table == balance_load; 

delimiter == ,; 

attributes == left_weight, left_distance, right_weight, 

right_distance, class; 

types == n, n, n, n, c; 

AA..44..88.. IInndduucciinngg  aa  MMeemmbbeerrsshhiipp  FFuunnccttiioonn  
o Syntax 
<induce membership function> ::= 

@inducemf: 

table == <table for membership function induction> ; 

target variable == <table column> ; 

analytic variables == <column> | <column list> | <all columns> 

induction == <induction type> ; 

output file == <path to output file for sql classification 

template> ; 

<optional skipped columns> 

<optional left out columns> 

 

<table for membership function induction> ::= <string> 

 

<column> ::= <string> 

 

<all columns> ::= * 

 

<column list> ::=  <column> <column list or empty>  

 

<column list or empty> = <column>  <column list or empty> | 

<empty> 

 

<induction type> ::= l | nlr | nlru | nld | nldu | cp | npr | npru 

| npd | npdu | iff | nc | mm 

 

<path to output file for sql classification template> ::= <string> 
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<optional skipped columns> ::=  

skip columns == <column list> ; 

 

<optional left out columns> ::= 

let columns == <column list> ; 

o Example 
@inducemf: 

table == abalone_tr; 

target variable == y; 

analytic variables == *; 

induction == cp; 

output file == ./metainduction/abalone/02_output/cp.sql.template; 

AA..44..99.. CCllaassssiiffiiccaattiioonn  ooff  DDaattaa  
o Syntax 
<data classification> ::= 

@classify: 

classified table == <table to be classified> ; 

template file == <path to sql classification template file> ; 

output table == <table for storing resulting classification> ; 

 

<table to be classified> ::= <string> 

 

<path to sql classification template file> ::= <string> 

 

<table for storing resulting classification> ::= <string> 

o Example 
@classify: 

classified table == abalone_te; 

template file == ./metainduction/regtree.sql.template; 

output table == abalone_te_rt; 

AA..44..1100.. AAggggrreeggaattiinngg  MMuullttiippllee  VVaarriiaabblleess  
o Syntax 
<aggregate multiple variables> ::= 

@aggregatemv: 
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table == <table to be aggregated> ; 

analytic variables == <column> | <column list> | <all columns> ; 

aggregation operator == <aggretation operator>; 

target variable == <table column>; 

output file == <path to output file>; 

column alias == <name of column containing aggregated membership 

value>; 

 

<table to be aggregated> ::= <string> 

 

<aggretation operator> ::= linreg | logreg | regtree | min | max | 

ap | as | avg 

 

<name of column containing aggregated membership value> ::= 

<string> 

o Example 
@aggregatemv: 

table == abalone_tr_s; 

analytic variables == *; 

aggregation operator == linreg; 

target variable == y; 

output file == 

./metainduction/abalone/02_output/linreg.sql.template; 

column alias == mfc; 

AA..44..1111.. EEvvaalluuaattiinngg  PPrreeddiiccttiioonnss  
o Syntax 
<evaluate correlations> ::=  

@evaluate: 

table == <table containing resulting prediction> ; 

<analytic variables> ::= <column> | <column list> | <all columns> 

; 

target variable == <table column>; 

<optional result table> 

<optional output file> 

 

<optional result table> ::=  
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result table == <table for storing evaluation results> | <empty> ; 

 

<table for storing evaluation results> ::= <string> 

 

<optional output file> ::=  

output file == <file for storing evaluation results> | <empty> ; 

 

<file for storing evaluation results> ::= <string> 

o Example 
@evaluate: 

table == abalone_te_rt; 

target variable == y; 

analytic variable == mfc; 

result table == evaluations; 

output file == metainduction/anneal/attreval.csv; 

AA..44..1122.. DDaattaa  PPrreeppaarraattiioonn  
The following example IFCL code shows how to prepare datasets for 
training and evaluation using the IFCL load action. It shows also how 
to split training and test data randomly. 
o Example: 
@connect: 

HostName   == localhost; 

SID        == XE; 

Port       == 1521; 

UserName   == ME; 

Password   == passwort; 

 

@load: 

file == ./metainduction_num/sensory/00_data/00_data.csv; 

table == sensory_load; 

delimiter == ,; 

attributes == 

Occasion,Judges,Interval,Sittings,Position,Squares,Rows_,Columns, 

Halfplot,Trellis,Method,Score; 

types == c,c,c,c,c,c,c,c,c,c,c,n; 

null == ?; 
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@drop: table == sensory_split; 

 

@execsql: command == 

create table sensory_split as 

select  

Occasion,Judges,Interval,Sittings,Position,Squares,Rows_,Columns, 

Halfplot,Trellis,Method,Score as y, 

# percent rank fuzzification # 

percent_rank() over (order by score) as y_p,  

# linear fuzzification # 

(score - min(score) over()) / (max(score) over()-min(score) 

over()) as y_l, 

case when dbms_random.value <= 0.667 then 1 else 0 end as 

is_training 

# random split of data for training and test sets # 

from sensory_load; 

 

@drop: table == sensory_tr; 

 

# create table with training set # 

@execsql: command == 

create table sensory_tr as 

select * from sensory_split where is_training = 1; 

 

@drop: table == sensory_te; 

 

# create table with test set # 

@execsql: command == 

create table sensory_te as 

select * from sensory_split where is_training = 0; 

AA..44..1133.. AAttttrriibbuuttee  SSeelleeccttiioonn  
The following example IFCL code shows how to select relevant 
attributes from a relation regarding a target attribute. 
o Example: 
@connect: 

HostName   == localhost; 
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SID        == XE; 

Port       == 1521; 

UserName   == ME; 

Password   == passwort; 

 

@inducemf: # membership function induction # 

table == sensory_tr; 

target variable == y; 

analytic variables == *; 

induction == nlr; 

output file == 

./metainduction_num/sensory/02_output/nlr.sql.template; 

 

@classify: # inductive attribute fuzzification # 

classified table == sensory_tr; 

template file == 

./metainduction_num/sensory/02_output/nlr.sql.template; 

output table == sensory_tr_nlr; 

 

@drop: table == attribute_selection; 

 

@evaluate: # ranking of correlation of fuzzified attribute values 

and target # 

table == sensory_tr_nlr; 

target variable == y; 

analytic variables == *; 

output file == metainduction_num/sensory/attreval.csv; 

result table == attribute_selection; 
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AA..66.. KKeeyy  TTeerrmmss  aanndd  DDeeffiinniittiioonnss    

IFC Inductive fuzzy classification: Assigning individuals to fuzzy 
sets for which membership function is generated from data 
so that the membership degrees provide support for an 
inductive inference.  

ITF Inductive target fuzzification: Transformation of a numerical 
target variable into a membership degree to a fuzzy class. 

MFI Membership function induction: Derivation of an inductive 
mapping from attribute values to membership degrees based 
on available data. 

IFCL Inductive fuzzy classification language: Software prototype 
implementing IFC. 

NLR Normalized likelihood ratio: A proposed formula for MFI. 
NLD Normalized likelihood difference: Another proposed formula 

for MFI. 
IAF Inductive attribute fuzzification: Transformation of attribute 

values into membership degrees using induced membership 
functions. 

Zadehan 
Variable  

A variable with a range of [0,1] representing truth values, 
analogous to Boolean variables with a range of {0,1}. 

Zadehan 
Logic 

A framework for reasoning with gradual truth values in the 
interval between 0 and 1. 
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