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Abstract. Information filtering based on structure properties of user-object bipartite networks is of both
theoretical interest and practical significance in modern science. In this paper, we empirically investigate
the framework of heat-conduction-based (HC) information filtering [Y.-C. Zhang et al., Phys. Rev. Lett.
99, 154301 (2007)] in terms of the local node similarity. We compare nine well-known local similarity
measures on four real networks. The results indicate that the local-heat-conduction-based similarity has
the best accuracy and diversity simultaneously. Embedding the object degree effect into the heat conduction
process, we present a new user similarity measure. Experimental results on four real networks demonstrate
that the improved similarity measure could generate remarkably higher diversity and novelty results than
the state-of-the-art HC information filtering algorithms based on local information, and the accuracy is
also increased greatly or approximately unchanged. Since the improved similarity index only need the local
information of user-object bipartite networks, it is therefore a strong candidate for potential application
in information filtering of large-scale bipartite networks.

1 Introduction

Information filtering based on statistical properties of
user-object bipartite networks has been an important is-
sue for both academic and commercial interests in the
last decades [1,2]. Comparing with traditional users activ-
ities, the development of information systems nowadays
not only provide a platform for users to directly collabo-
rate with each other through reviews and ratings, but also
provide us a practical way to analyze users’ collective be-
haviors [3]. The increasing popularity of e-commerce and
online social networks brings massive amount of acces-
sible information, more than every individual’s ability to
process. Another impact of Internet and social networks is
that any person with access to the Internet can become an
author and a publisher. As a consequence, the fast devel-
opment of Internet and social networks renders the quality
of the information extremely diverse and the quantity of
information available is enormous [3–5]. Meanwhile, in-
formation that is highly important for one individual has
no meaning for many others. By predicting users’ inter-
ests and habits based on their historical records, online
recommender systems play an increasingly important role
in information filtering, which could increase the sales and
enhance users loyalties to web sites [5]. Zhang et al. [6] pro-
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posed a new information framework based on the heat con-
duction process, namely heat-conduction-based (HC) rec-
ommendation model. HC model supposes that the objects
one user has collected have the recommendation power
to help the target user find potential relevant objects. It
firstly constructs a propagator matrix Wh, where the el-
ement wαβ denotes the conduction rate from object oβ

to oα. Denote H as the temperature vector of m com-
ponents: the source components are of temperature one,
while the remaining components are of temperature zero.
The task of HC model is to find the temperatures of the
remain nodes through thermal equilibrium [6] by solving
the equationWhH = f , where f is the flux vector. This is
the discrete analog of the function −κ∇2T (r) =∇ ·J(r),
with the discrete matrix WH analog of ∇2, H(i) playing
the role of −κT (r) and f(i) playing the role of∇·J(r) [6].
Inspired by the HC recommendation model, random walks
have been successfully embedded into the object similar-
ity measurement [7]. In this kind of algorithm, we need to
calculate the object similarity matrix firstly, then generate
the recommendation lists according to object similarities.
Based on the local information of the user-object bipar-
tite network, collaborative filtering (CF) algorithm is a
method of making automatic predictions (filtering) about
the interests of a user by collecting preferences or taste in-
formation from many users (collaborating). If we suppose
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the users giving ratings to one specific object have the rec-
ommendation powers to predict the potential interesting
users, the CF algorithm is one kind of the user-based HC
model. Liu et al. [8] introduced random walks to calculate
the user similarity and found that the modified algorithm
has remarkably higher accuracy. By considering the high-
order correlation of the users and objects, Liu et al. [9] and
Zhou et al. [10] proposed the ultra accurate algorithms, in
which the second-order correlation information is used to
measure user or object similarities.
Since the HC model is implemented based on ma-

trix operations, it is very time-consuming and cannot
be applied for large-scale systems. Despite the random
walks [7,8,11], heat conduction [6,12] and hybrid algo-
rithm [1] have been successfully introduced to measure
user or object similarities, there are lots of ways to or-
ganize the local information of user-object bipartite net-
works to predict users’ interests and habits. It is thus in-
teresting to understand the physics of user-object local
interactions and their influence on information filtering.
Bipartite networks has been studied extensively using

different approaches ranging from statistics [13] to projec-
tion methodology [7]. In this class of networks, there are
two different kinds node sets U and O, and only the con-
nection between two kinds of nodes is allowed. As an im-
portant class of bipartite networks, user-object networks
play the central role in e-commerce systems [13–16]. In
addition to the empirical analysis on the user-object bi-
partite networks [17–19], great efforts have been made to
project bipartite networks into monopartite networks [7],
how to model bipartite networks [20–23], and how to char-
acterize bipartite networks [24,25]. However thus far a
comprehensive picture of the dependence of algorithmic
performance of the HC model on network topology is lack-
ing. The reason is twofold: (i) the current works have not
linked the the statistical properties of bipartite networks
and the current state of development together, while (ii)
the statistical physics community has not paid enough at-
tention to the information filtering and information over-
load problems. Accordingly, dozens of important issues
are still insufficiently explored. For example, one may be
concerned with how to choose a suitable algorithm given
some structural descriptions of a network, such as the de-
gree heterogeneity [18], mixing pattern [26], assortative
property [27,28], community structure [25], small-world
effect [29,30] and so on. Meanwhile, comparison of the
performances of some recommendation algorithms may re-
veal some of the structural information of the bipartite
networks. It is just like the synchronizing process can be
used to reveal the underlying community structure [31].
The algorithms based only on local information are gen-
erally fast but of lower accuracy, while the ones making
use of knowledge of global topology are of higher accuracy
yet higher computational complexity.
In this paper, we empirically investigate the frame-

work of the HC information filtering model on the ba-
sis of the user similarity, namely user-based HC model.
Although the framework is simple, it opens a rich space
for exploration since the design of similarity measures is

challenging and can be related to very complicated phys-
ical dynamics and mathematical theory, such as random
walks [7,8] and heat conduction [6,12]. Here we concen-
trate on local-information-based similarities. We compare
nine well-known local measures on four real networks, and
the results indicate that the local-heat-conduction-based
index has the best overall performance. Motivated by the
object degree effect on user similarity measurement [8],
we present an improved HC index, namely IHC index. By
using the square function to depress popular object ef-
fects, the IHC index could further enhance the accuracy,
diversity and novelty greatly. Since the objects of four data
sets are different, this outstanding performance of HC and
IHC indices indicates that enhancing small-degree users’
recommendation powers and depressing large-degree ob-
ject effects could improve accuracy and diversity simulta-
neously.

2 Heat-conduction-based information filtering
model

A recommendation system consists of a set of user nodes,
object nodes and connections between two nodes cor-
responding to an object voted or collected by a user,
represented by a bipartite network G(U, O, E). We de-
note the object set as O = {o1, o2, . . . , om}, the user
set as U = {u1, u2, . . . , un} and the connection set as
E = {e1, e2, · · · , ep}. The bipartite network can then be
represented by an adjacent matrix A = {aαj} ∈ Rm,n,
where aαj = 1 if object oα is collected by user uj , and
aαj = 0 otherwise.
The HC model could be used in two ways: item-based

and user-based models. The item-based HC model sup-
poses that the objects one user has collected have the
power to find the potential relevant objects to the target
user. The general framework of the item-based HC model
is as follows: (i) construct the weighted object network (i.e.
determine the matrix W ) from the known user-object re-
lations; (ii) determine the initial resource vector f for each
user; (iii) get the final resource distribution via

f ′ = W f ; (1)

(iv) recommend those uncollected objects with highest fi-
nal resource. Note that the initial configuration f is de-
termined by the user’s personal information, thus for dif-
ferent users, the initial configuration is different. To the
user-based HC model, for a given object oα, the ith ele-
ment of fα should be zero if aαi = 0. That is to say, one
should not put any recommendation power (i.e. resource)
onto an unrated user. The simplest case is to set a uniform
initial configuration as fα

i = aαi. Under this configuration,
all users rated object oα have the same recommendation
power.
Based on the user-object matrix A, the object sim-

ilarity network has been calculated by the random
walks [7,8,11,32], heat conduction [6,12], and hybrid [1]
measures. However, several similarity measures have been
successfully used in the CF model [33–35] and link
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predictions [36], such as common neighbor index, Jaccard
index [37], Searenson index [38], hybrid index [39], second-
order index [9] and so on. The CF model supposes that
the users who have similar tastes or interests prefer to
have similar interests in the future [40–44], which is simi-
lar with the user-based HC model. Some of these measures
are not directly proposed to bipartite networks, for exam-
ple, Salton index [45] is proposed by Salton in 1983 and
has a long history of study in citation networks. How-
ever, this idea could be directly introduced to measure
the node similarities of bipartite networks. The measure
of user similarity is very important for both user-based
and item-based HC models. Since most of previous works
focus on item-based HC model [6–8], the understanding
of the similarity effect on user-based HC model is lacking.
In this paper, we extensively investigate nine well-known
similarity measures based on the local information of bi-
partite networks and compare their performances on four
different data sets. The detail definitions would be intro-
duced in the next section.

3 Nine similarity measures based on the local
information

In this section, we introduce nine similarity measures. All
these measures are based on the local structural infor-
mation of user-object bipartite networks contained in the
testing set. We firstly give a brief introduction of each
measure as follows.

(AA) Adamic-Adar Index. For a user ui, let Γ (ui)
denotes the object set user ui has selected or rated. This
index refines the simple counting of common neighbours
by assigning less connected neighbours more weight, and
is defined as [46]

wij =
∑

z∈Γ (ui)
⋂

Γ (uj)

1
log kz

, (2)

where kz denotes the degree of object z.
(CN) Common Neighbours. By common sense, two

users, ui and uj , are more likely to have similar inter-
ests if they have many commonly rated objects. The sim-
plest measure of the neighbourhood overlap is the directed
count, namely

wij = |Γ (ui)
⋂

Γ (uj)|. (3)

(HPI) Hub Promoted Index. This index is proposed for
quantifying the topological overlap of pairs of substrates
in metabolic networks [47], and is defined as

wij =
|Γ (ui)

⋂
Γ (uj)|

min{kui , kuj}
. (4)

According to the definition, the similarities to large-degree
users are likely to be assigned high scores since the denom-
inator is determined by the lower user degree only.

(JAC) Jaccard Index. This index was proposed by
Jaccard [37] over a hundred years ago, and is defined as

wij =
|Γ (ui)

⋂
Γ (uj)|

|Γ (ui)
⋃

Γ (uj)| . (5)

(LHN) Leicht-Holme-Newman Index. This index assigns
high similarity to node pairs that have many common
neighbours not comparing with the possible maximum,
but with the expected number of such neighbours [48]. It
is defined as

wij =
|Γ (ui)

⋂
Γ (uj)|

kui × kuj

, (6)

where the denominator, kui × kuj , is proportional to the
expected number of common neighbours of user ui and uj

in the configuration model.
(SEA) Searensen Index. This index is used mainly for

ecological community data [38], and is defined as

wij =
2|Γ (ui)

⋂
Γ (uj)|

kui + kuj

. (7)

(SAL) Salton Index. The Salton index [45] is defined as

wij =
|Γ (ui)

⋂
Γ (uj)|√

kui × kuj

, (8)

where kui = |Γ (ui)| denotes the degree of user ui. The
Salton index is also called the cosine similarity in the lit-
erature.

(RW) Random-walk-based index. To the similarity
from uj to ui, a certain amount of resource is associated
with user uj, and the weight wij represents the proportion
of the resource uj would like to distribute to ui. The mea-
sure of This directed measure is defined as follows [7,8]

wij =
1

kuj

m∑
l=1

alialj

kol

. (9)

(HC) Local-Heat-conduction-based index. When calcu-
lating the directed similarity from user uj to ui, user uj

is set as a heat resource and the temperature is set as 1,
then the heat will diffuse from uj to his collected objects,
and diffused back to user ui [6,12]. The final temperature
user ui received is defined as follows

wij =
1

kui

m∑
l=1

alialj

kol

. (10)

4 Experimental results

4.1 Data

In this paper, we consider four representative networks
drawn from disparate fields: (1) MovieLens data set con-
sists of 6040 users on 3592movies(objects) and rating scale
from one (i.e., worst) to five (i.e., best). (2) Netflix data
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Table 1. Basic statistics of four data sets, namely MovieLens,
Netflix, Delicious and Amazon. m and n represent the number
of users and objects nodes, respectively. E is the number of
the actual user-object entries in each data set. E/(m × n) is
an equation used to calculate the sparsity of the data set.

Data sets m n E E/(m × n)
MovieLens 6040 3592 750 000 0.0346
Netflix 10 000 6000 701 947 0.0117
Delicious 10 000 232 657 1 233 997 5.3× 10−4

Amazon 34 808 80 774 855 857 3.04 × 10−4

set is a random sample of the whole records of user ac-
tivities in Netflix.com, which consists of 6000 movies and
10 000 users and 824802 ratings. We apply a coarse grain-
ing method: a movie is considered to be collected by a
user only if the rating is larger than two. In this way, the
Movielens data has 750 000 edges, and the Netflix data
has 701 947 edges. (3) Delicious data set is a random sam-
ple of the whole records of user selections in Del.icio.us.
(4) Amazon data set is also a random sample of the whole
records. The statistical properties of the four data sets are
shown in Table 1. To test the performance of these nine
user similarity measures, the data set E is randomly di-
vided into two parts E = ET ∪ EP , where the training
set ET is treated as the known information, contains p
percent of the data, and the remaining 1− p part is set as
the probe set EP , whose information is not allowed to be
used for prediction.

4.2 Metrics

Accuracy. An accurate method will put preferable ob-
jects in higher places. Here we use average ranking score [7]
to measure the ability of the measure to produce a good
uncollected object ranking list that matches the target
user’s preference. For an arbitrary user ui, if the object
oα is not collected by user ui, while the entry ui-oα is in
the probe set, we use the rank of oα in the recommenda-
tion list to evaluate the accuracy. For example, if there are
8 uncollected objects for user ui, and object oα is ordered
at the 3rd place, we say the position of oα is 3/8, denoted
by riα = 0.375. Since the probe entries are actually col-
lected by users, a good algorithm is expected to give high
recommendations to them, leading to a small riα. There-
fore, the mean value of the positions, averaged over all
the entries in the probe set, can be used to evaluate the
algorithmic accuracy

〈r〉 = 1
n

n∑
i=1

(∑
(ui,oα)∈Ep riα

m− kui

)
, (11)

where Ep is the edge set existing in the probe set, and m
is the number of objects in the system. The smaller the
average ranking score, the higher the algorithmic accuracy,
and vice verse.

Diversity. The analysis results on Facebook data set
shows that, besides the common interests, users of on-
line social networks also have their specific tastes and

interests [3], leading to diverse selection behaviors. Liu
et al. [12] found that users’ tastes on Movielens and Netflix
data could also be divided into two categories: common
interests and specific interests [11]. Therefore, besides ac-
curacy, the diversity of the recommendation list is taken
into account to evaluate the algorithmic performance. In
general, most of the users would not show negative alti-
tude to popular objects, therefore, ranking popular ob-
jects at the top part of the recommendation lists would
generate higher accuracy. However, personalized recom-
mendation algorithms should not only present accurate
prediction but also generate different recommendations to
different users according to their specific tastes or habits.
The diversity of user ui and uj ’s recommendation lists can
be quantified by the Hamming distance,

Sij = 1− 〈Qij(L)〉/L, (12)

where L is the length of the recommendation list and Qij

is the number of overlapped objects in user ui and uj ’s
recommendation lists. The average Hamming distance S
could be used to measure the algorithmic diversity. The
largest S = 1 indicates recommendations to all users are
completely different, in other words, the system has high-
est diversity. While the smallest S = 0 means all of rec-
ommendations are exactly the same.

Popularity. A accurate and diverse recommender sys-
tem is expected to help users find the niche or unpopular
objects which is hard for them to identify yet match their
preferences. The metric popularity is introduced to quan-
tify the capacity of an algorithm to generate unexpected
recommendation lists, which is defined as the average col-
lected times over all recommended objects

〈k〉 = 1
n

∑
i

⎛
⎝ 1

L

∑
oα∈OL

i

koα

⎞
⎠ , (13)

where OL
i is user ui’s the recommendation list with

length L. A smaller average degree 〈k〉, corresponding to
the less popular objects, are preferred since those small-
degree objects are hard to be found by users themselves.

F-measure. F -measure has been extensively used to
in the information retrieval and natural language pro-
cessing communities [49,50]. In fact, the F -measure is a
harmonic mean of recall (R) and precision (P). Since all
of accuracy 〈r〉, diversity S and popularity 〈k〉 are very
important to measure information filtering algorithm’c
performance, we apply the similar idea to construct F -
measure. Because the smaller value of 〈r〉 indicates higher
accuracy, while larger hamming distance S means higher
diversity, meanwhile, small popularity 〈k〉 indicates that
the algorithm could present fresh new information to the
user. Therefore, F -measure could be given in a harmonic
mean way

F =
3

1
1−〈r〉 +

1
S +

1
(kmax−〈k〉)/kmax

, (14)

where kmax denotes the largest object degree in the sys-
tem. When the accuracy 〈r〉 equals to 0, diversity S equals
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Table 2. Algorithmic performances for MovieLens, Netflix, Delicious and Amazon data sets when p = 0.9, including the
accuracy 〈r〉, diversity S and popularity 〈k〉 corresponding to the length of recommendation list L = 10. The abbreviations,
AA, CN, HPI, JAC, LHN, SEA, SAL, RW, HC and IHC stand for Adamic-Adar index, Common Neighbours, Hub Promoted
Index, Jaccard Index, Leicht-Holme-Newman Index, Searensen Index, Salton Index, Random-walks-based Index, Local-Hear-
Conduction Index and improved HC index respectively. The entries corresponding to the highest accuracies among these nine
measures are emphasized in black. Each number is obtained by averaging over five runs with independently random division of
training set and probe set.

MO NE DE AM
〈r〉 〈k〉 S 〈r〉 〈k〉 S 〈r〉 〈k〉 S 〈r〉 〈k〉 S

AA 0.1336 1964 0.5816 0.0923 3007 0.6053 0.3821 328 0.8378 0.2854 403 0.8636
CN 0.1217 1995 0.5649 0.0590 3124 0.5760 0.2373 567 0.5564 0.1356 573 0.8283
HPI 0.1209 1999 0.5667 0.0590 3147 0.5892 0.2323 576 0.5589 0.1343 576 0.8326
JAC 0.1176 1991 0.5881 0.0573 3117 0.6397 0.2206 547 0.6323 0.1318 539 0.8664
LHN 0.1173 1992 0.5864 0.0576 3102 0.6281 0.2212 522 0.6665 0.1324 528 0.8751
SEA 0.1186 1994 0.5833 0.0577 3124 0.6338 0.2207 550 0.6278 0.1319 543 0.8641
SAL 0.1193 1997 0.5764 0.0580 3140 0.6158 0.2219 568 0.5877 0.1314 555 0.8606
RW 0.1143 1975 0.6003 0.0525 3074 0.5876 0.2178 497 0.7033 0.1351 443 0.9175
HC 0.1080 1968 0.6242 0.0499 3089 0.6564 0.2029 401 0.8399 0.1313 324 0.9620
IHC 0.0999 1833 0.7306 0.0487 2658 0.8099 0.2126 237 0.9634 0.1356 140 0.9959

to 1 and 〈k〉 = 1, F -measure would equal to 1. On the
contrary, F -measure equals to 0, when 〈r〉 = 0, S = 0
or 〈k〉 = kmax. The larger the F -measure, the better the
algorithmic performance, and vice versa.

4.3 Simulation results

Table 2 shows the effects of local similarity measures on
user-based HC information filtering model for MovieLens,
Netflix, Delicious and Amazon data sets, from which we
find that both accuracy and diversity of HC index are
the best one in all nine measures. For MovieLens, Net-
flix and Delicious data sets, the AA index could generate
the lowest popularity, while for Amazon, the lowest 〈k〉 is
obtained by the HC index.
According to the information which have been used in

the measures, including users or objects’ degree and the
number of common neighbors, these nine measures could
be divided into two categories: directed and undirected
similarities. Although CN, SAL, JAC, SEA, HPI, LHN
indices are designed in different ways, they didn’t take
into account the similarity direction, which are only deter-
mined by the number of common neighbors and two neigh-
bor users’ degrees, who have at least one common rated
object. It should be noticed that although the AA index
is undirected, the popular object effects are depressed by
using the log function, which means that if two uses com-
monly rated small-degree objects, their similarity would
be larger than other user pairs rated large-degree objects.
In reality, there are lots of channels for all users to obtain
the popular objects’ information, while it is hard to iden-
tify users’ specific interests or tastes, therefore, popular
objects’ effects should be depressed. Besides these seven
measures, RW and HC indices not only take into account
the similarity direction but also depress popular object
effects. Extensively experimental results [1] on the item-
based HC model indicates that the RW index could gen-

erate high accuracy and low diversity recommendation by
emphasizing large-degree objects’ recommendation pow-
ers. On the contrary, by highlighting small-degree object
effects, the HC model is of high diversity and low accu-
racy. The experimental results in Table 2 show that, dif-
ferent with the item-based HC model, the HC index of the
user-based HC model could simultaneously generate best
accuracy and diversity recommendations for different data
sets.

5 Improved HC measure and experimental
results

The extensively experimental results on four different data
sets indicate that the HC index outperforms all undirected
measures, as well as the RW index in accuracy and di-
versity simultaneously. The common property of RW and
HC indices indicates that depressing popular object effects
could enhance information filtering performance, however,
we don’t know whether we could improve the recommen-
dation performance by further depressing large-degree ob-
jects’ effects. Inspired by object degree effects on the user-
based HC model [8], we argue that it deserves the further
investigation about the influence of popular objects on
item-based HC. As a result, we rewrite the HC index as

wt
ij =

1
kui

m∑
l=1

alialj

kα
ol

, (15)

where α is a free parameter to investigate when the sup-
pression of popular objects starts to be effective or ineffec-
tive respectively in four data sets. As shown in Figure 1,
the average ranking score 〈r〉 as a function of α, one can
find that the average ranking score in each subplot has a
clear minimum. According to the benchmark MovieLens
data set, the parameter αopt = 2.0 when the average rank-
ing score 〈r〉 reaches the minimal value, thus we set the
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Fig. 1. (Color Online) The average ranking
score 〈r〉 for MovieLens, Netflix, Delicious and
Amazon data sets as a function of α. Accord-
ing to the results above, one can find each sub-
plot has a clear minimum around α = 2.0 for
MovieLens, α = 1.6 for Netflix, α = 0.8 for
Delicious and α = 0.4 for Amazon, respec-
tively. All the numerical results are obtained
by averaging over five independent runs with
random data division of training and probe set.

parameter α is equal to 2.0 for all data sets. Due to the dif-
ferent statistical properties of each data set, for example
sparsity, the optimal parameter α is distinct actually. In
spite of the above fact, we find that the optimal parameter
for Netflix is close to 2.0. At the same time, the optimal
parameters for Amazon and Delicious data sets have a
large difference, however, the average ranking score 〈r〉 is
stable relatively. In conclusion, we finally set the denomi-
nator, the object degree, as the squared term, and present
an improved HC index, namely IHC index, which could
be written as

wij =
1

kui

m∑
l=1

alialj

k2
ol

. (16)

Experimental results show that the IHC index could
greatly improve the diversity S, decrease the popularity
〈k〉 and increase the accuracy for MovieLens, Netflix and
Delicious data sets. Although the accuracy for Amazon
data set is not good as the one obtained by the HC index,
it is also approximately unchanged.
Figure 2 shows the results of F -measure for MovieLens,

Netflix, Delicious and Amazon data sets, from which one
can see that F -measure of the six undirected measures
are close for different data sets. Meanwhile, the results
of direct measures, including IHC, HC and RW indices,
are much larger than the ones obtained by undirected
ones. It should be emphasized that the performances of
the IHC index are much better than HC and RW indices.
We also notice that the F -measure of the AA index is
much better than the ones of undirected measures, which
may be caused by the fact that the average object degree
〈k〉 is very large. The above results suggest that enhancing
small-degree users’ recommendation power and depressing
large-degree object effects are two effective ways to en-
hance information filtering performance. Since four data

Fig. 2. (Color Online) F -measures of ten similarity measures
for MovieLens, Netflix, Delicious and Amazon data sets, from
which one can find that the largest one is obtained by the
IHC index, which is much larger than the ones of HC and RW
indices. While the results of six undirected measures, including
LHN, JAC, SEA, SAL, CN, LHN and HPI indices, are close
with each other. The results of the AA index are better than
the above six undirected measures, but are also worse than the
ones obtained by the IHC index.

sets are collected from different web sets and the charac-
teristics of the objects are different, therefore, the above
results suggest that there are somehow common user col-
lective behavior patterns in online systems, which could
be investigated in the future work.

6 Conclusion and discussions

In this paper, based on the local information of user-object
bipartite networks, we empirically investigate the effects
of nine similarity measures on user-based HC information
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filtering model. Experimental results indicate that the
undirected measure, local-heat-conduction-based index,
performs the best accuracy and diversity for different data
sets. Combining the HC measure and the square func-
tion, we present an improved HC (IHC) measure. Exper-
imental results show that the accuracy 〈r〉, diversity S
and popularity 〈k〉 could be greatly improved for Movie-
Lens, Netflix and Delicious data sets. Although the ac-
curacy of the IHC index for Amazon data set is approx-
imately unchanged, both popularity 〈k〉 and diversity S
are increased greatly. According to the IHC measure defi-
nition, small-degree users’ recommendation powers are en-
hanced and large-degree object effects are depressed by
the square function. Therefore, we could say that there
are two general ways to improve information filtering per-
formance. Firstly, depressing large-degree object effects.
Secondly, increasing small-degree users’ recommendation
powers. We here strongly recommend the IHC measure
to relevant applications and theoretical analyses, not only
for its good performance, but also for its simplicity and
grace. In real applications, the traditional HC model based
on global matrix may be less efficient for they need long
time and huge memory, while the local information based
measures only exploited limited information may be less
effective for their low accuracies. A properly designed algo-
rithm can provide a good tradeoff just like the IHC index
presented in this paper. Although the HC information fil-
tering framework is very simple, it opens a rich space for
investigation since in principle, all measures can be embed-
ded into this framework. Besides these measures discussed
in this paper, a number of similarities are based on the
global structural information, such as the pseudoinverse of
the Laplacian matrix [51], the transferring similarity [52],
the PageRank index [53] and so on. These measures may
give better performances than the local ones, however, the
calculation of such measures, including determination of
the optimal parameters for specific networks, is of high
complexity, and thus infeasible for huge-size networks.
Up to now, although random walks [7,11] and the local

heat conduction [12] process have been successfully em-
bedded into the HC information filtering model, we lack
systematic comparison and understanding of the perfor-
mances of these measures, which is set as our future works.
Empirical analysis on more known and newly proposed
similarity measures as well as more real networks is very
valuable for deeply understanding users’ collective behav-
ior patterns and building up knowledge and experience. A
clear picture of this issue can be completed by putting to-
gether of many fragments from respective empirical stud-
ies. Besides the empirical results, an alternative way is to
build artificial network models with controllable topolog-
ical features. In this way, we could have a clear picture
on the unknown and uncontrollable ingredients which are
always mixed together in real networks.
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Lett. 96, 114102 (2006)
32. J.-G. Liu, Q. Guo, Y.-C. Zhang, Phys. A 390, 2414 (2011)

ht
tp

://
do

c.
re

ro
.c

h



33. X. Su, T.M. Khoshgoftaar, Advances in Artificial
Intelligence 421425 (2009)

34. J.L. Herlocker, J.A. Konstan, K. Terveen, J.T. Riedl, ACM
Trans. Inf. Syst. 22, 5 (2004)

35. J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R.
Gordon, J. Riedl, Commun. ACM 40, 77 (1997)
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