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We provide a detailed derivation of a recently developed first-principles approach to calculating averages in
systems of interacting, spherical Brownian particles under time-dependent flow. Although we restrict ourselves
to flows which are both homogeneous and incompressible, the time dependence and geometry (e.g., shear and
extension) are arbitrary. The approximations formulated within mode-coupling theory are particularly suited to
dense colloidal suspensions and capture the slow relaxation arising from particle interactions and the resulting
glass transition to an amorphous solid. The delicate interplay between slow structural relaxation and time-
dependent external flow in colloidal suspensions thus may be studied within a fully tensorial theory.

I. INTRODUCTION

Imposing flow on a colloidal suspension distorts the mi-
crostructure away from that of the quiescent state and induces
a nontrivial macroscopic stress response. The microscopic
dynamics underlying this macroscopic behavior are governed
by a combination of potential, Brownian, and hydrodynamic
forces which interact in a complicated fashion with the
solvent flow field, as described by the Smoluchowski equation
[1,2]. The subtle balance between these various physical
mechanisms gives rise to a rich phenomenology but also
serves to complicate the formulation of tractable theoretical
approaches [3]. In the present work we will present details of a
first-principles theory, first outlined in Ref. [4], which provides
a unified description of the mechanical response of colloidal
liquids and glasses to external flow, albeit in the absence of
hydrodynamic interactions.

Colloidal suspensions are of great importance for practical
applications and the performance of many commercial prod-
ucts and industrial processes often depends on the rheological
nonlinearities which occur when colloidal particles are added
to a Newtonian solvent [5]. For example, the phenomena of
shear thinning, shear thickening, and yielding are relevant for
the even spreading of paints, shock absorption in automobiles
and the flow of toothpaste, respectively. In order to control and
tune the rheology of a suspension to meet the needs of a specific
application, it is, thus, necessary to have an understanding
of how the microscopic interactions between the constituents
influence the macroscopic response [6]. The challenge to sta-
tistical physics is to identify tractable approximation schemes
which capture the relevant physics while remaining simple
enough for concrete calculations to be performed.

Quiescent monodisperse systems of spherical particles
display an equilibrium phase diagram with colloidal gas, fluid,
and crystalline phases, analogous to those found in simple flu-
ids [7]. By introducing a sufficent degree of polydispersity, the
mechanisms leading to crystallization can be suppressed and
the system may undergo dynamical arrest to a metastable glass
or gel phase. Experimentally, such arrested states are charac-
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terized by very slow structural relaxation [8–10]. As the system
remains nonergodic on measureable time scales, it appears as
a soft amorphous solid with a corresponding elastic modulus.
Many features of the dynamical arrest observed in colloidal
experiments are captured by the mode-coupling theory (MCT),
both for repulsive glasses for which the arrest is caused by
steric hinderance [11] and attractive glasses and gels where
interparticle attraction dominates the dynamics [12,13] (al-
though ageing dynamics are neglected within standard MCT).

It is fair to say that the MCT-based theoretical understand-
ing of quiescent glasses is now in a fairly advanced state and
that the linear response regime is under control. However,
much less is known about the nonlinear response of arrested
states and, despite progress, consensus remains to be achieved
regarding the fundamental physical mechanisms at work. A
key feature of systems under flow is the competition between
the time scale of structural relaxation, which becomes very
large close to the glass transition, and the time scale defined
by the inverse of the flow rate. This competition is captured
in an elegant way by generalized MCT treatments [14–17]
for which the memory function generating the slow relaxation
becomes reduced by shear via the mechanism of wave-vector
advection. Various nonlinear rheological phenomena related to
shear thinning are found to arise. The earliest generalizations
of MCT to treat nonlinear rheology focused on the special
case of shear flow [14,15] (see also Ref. [16] for a detailed
account). More recently, the theory has been extended, first, to
treat time-dependent shear [17,18] and, subsequently, to treat
arbitrary time-dependent flow [4]. These final developments
have elevated the theory to the status of a full constitutive
model in the sense that nonsteady three-dimensional flows
can be addressed. Although full numerical solution of the
equations in three dimensions has not yet been achieved, a
simplified schematic version of the tensorial theory has been
developed which provides sensible predictions regarding the
flow and yielding behavior of systems with densities close to
and above the glass transition [19].

We would like to clarify the relationship of the present
work with our previous publications on this topic. The
original outline for extending MCT to treat nonlinear rheology
under steady shear flow was presented in Ref. [14]. Due
to the technical difficulty of numerically solving the closed
MCT equations in three dimensions, tractable schematic and
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semischematic models aiming to capture the essential physical
mechanisms were developed in Ref. [20]. The approach
of Ref. [14] was generalized to treat time-dependent shear
flow and applied to the special case of shear step-strain
[17]. During the subsequent development of the theory we
made significant technical improvements which involved an
alternative definition of the transient density correlator from
that employed in Refs. [14,17,20]. [The improved definition
is given by (68) below.] This new definition ensures that the
initial decay rate [see (90) below] remains positive for all
shear rates, which improves the numerical stability of the
theory and leads to simpler and more elegant expressions. It
is this improved formulation which was employed in the short
paper [4] and which will be explained in detail in this work.
The simple-shear theory recently presented in Ref. [16] also
employed the improved formalism and is a special case of the
results presented here. It has already been solved numerically
for steady shear in two dimensions leading to results for
stresses, structure, and single-particle motion in qualitative
agreement with Brownian dynamics simulations [21,22].

In this paper we present full details of the tensorial time-
dependent theory that was outlined in Ref. [4]. Our theory starts
from a well-defined microscopic starting point (the Smolu-
chowski equation) and leads directly to an approximation for
the time-dependent nonequilibrium distribution function from
which average quantities can be calculated. This includes, but
is not limited to, an approximation for the macroscopic stress
tensor as a functional of the velocity gradient tensor.

The paper is structured as follows: In Sec. II we define the
microscopic dynamics of the colloidal particles. In Sec. III
considerations of translational invariance are employed to
identify the deformation measures appropriate for describing
the system under flow. In Sec. IV we develop the integration-
through-transients formalism which generates a generalized
Green-Kubo relation for the macroscopic stress tensor, the
mode-coupling approximation of which is outlined in Sec. V.
Our approximate expression for the stress requires knowledge
of the transient density correlator. In Sec. VI we develop a
mode-coupling equation of motion for this quantity which
captures the competition between slow structural relaxation
and the fluidizing effect of flow. In Sec. VII we consider
application of the integration-through-transients formalism
to calculation of the distorted structure factor and show
how an integration over the anisotropy, which encodes the
microstructural distortion, recovers the constitutive equation
as obtained earlier in Sec. V. Finally, in Sec. VIII we give a
discussion and outlook to future work.

II. MICROSCOPIC DYNAMICS

We consider a system of N spherical Brownian parti-
cles of diameter d dispersed in a solvent with a specified
time-dependent velocity profile v(r,t) = κ(t) · r, where the
velocity gradient κ(t) is taken to be a fixed input quantity.
We assume incompressible flow, Tr κ(t) = 0, and will, from
the outset, neglect hydrodynamic interactions. Our choice to
neglect hydrodynamics is largely motivated by the desire to
obtain a computationally tractable theory, but may also be
physically jusifiable for high volume fraction states close to
the glass transition, where particle motion is slow. Given these

assumptions, the distribution function of particle positions
obeys the simplified Smoluchowski equation [1]

∂�(t)

∂t
= �(t)�(t), (1)

where the Smoluchowski operator is given by

�(t) =
∑
i

∂ i · [∂ i − Fi − κ(t) · ri]. (2)

In order to simplify notation we have set both the thermal
energy kBT and bare diffusion coefficient D0 equal to unity.
The total force acting on particle i due to potential interations is
given by Fi = −∂ iUN , where UN is the total potential energy.

III. TRANSLATIONAL INVARIANCE

Employing a spatially constant velocity gradient has the
consequence that the two-time correlation functions are
invariant with respect to spatial translation. The requirement
that translational invariance holds for the two-time correlations
provides a method to identify the relevant affine deformation
measures required for our subsequent analysis. A prerequisite
is an understanding of the invariance properties of the time-
dependent distribution function �(t). If the system is taken
to be in thermodynamic equilibrium at some initial time t0
which, without loss of generality, can be taken as the time
origin t0 = 0, the Smoluchowski equation (1) may be formally
solved to obtain the distribution at later times,

�(t) = e

∫ t
0 ds �(s)

+ �e, (3)

where we have introduced a time-ordered exponential function
(Appendix A). In the following, we will, first, use the formal
solution (3) to prove the translational invariance of �(t)
and then use this result to analyze the two-time correlation
functions.

A. Distribution function

The fact that κ(t) does not depend on spatial coordinates
suggests that the translational invarance of the equilibrium
state will be preserved by the Smoluchowski dynamics;
only relative particle motion is physically relevant. However,
proof of this expectation for a general time-dependent flow
is complicated by the fact that the Smoluchowski operator
is itself not translationally invariant. Shifting all particle
coordinates by a constant vector r′

i = ri + a leads to the shifted
Smoluchowski operator

�(�′,t) = �(�,t) − a · κT (t) · P ≡ �(�,t) + A(t), (4)

where P ≡ ∑
i ∂ i and we have used

P · κ(t) · a = a · κT (t) · P. (5)

The positions of all particles are represented by � ≡
{r1, . . . ,rN }. Substitution of (4) into (3) gives the distribution
function following the shift

�(�′,t) = e

∫ t
0 ds (�(�,s)+A(s))

+ �e(�), (6)

where we have used the obvious translational invariance of the
equilibrium distribution �e(�′) = �e(�). The next step is to
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write the time-ordered exponential explicitly in terms of its
series definition

e

∫ t
0 ds (�(s)+A(s))

+

= 1 +
∫ t2

t1

ds1[�(s1) + A(s1)]

+
∫ t2

t1

ds1

∫ s1

t1

ds2 [�(s1) + A(s1)][�(s2) + A(s2)]

+ · · · . (7)

In order to simplify this expression we define the commutators

c(2)(s1,s2) ≡ [A(s1),�(s2)]

c(3)(s1,s2,s3) ≡ [c(2)(s1,s2),�(s3)]
(8)

...

c(n)(s1, . . . ,sn) ≡ [c(n−1)(s1, . . . ,sn−1),�(sn)].

Due to the fact A(t) is independent of spatial coordinates,
simple expressions are obtained for the commutators

c(2)(s1,s2) = a · κT (s1)κT (s2) · P

c(3)(s1,s2,s3) = −a · κT (s1)κT (s2)κT (s3) · P
(9)

...

c(n)(s1, · · · ,sn) = (−1)na ·
n∏
i=1

κT (si) · P.

Newton’s third law states that the sum of internal forces in the
system must be zero. It follows that

Pψe =
∑
i

∂ i
e−UN

Z
= ψe

∑
i

Fi = 0, (10)

where Z is the canonical partition function. We thus have

A(s1)�e(�) = 0 (11)

c(n)(s1, . . . ,sn)�e(�) = 0. (12)

For each term in (7) the commutation relations (8) may be
used to bring all factors of � to the left of the integrand.
Application of the relations (11) and (12) then eliminates all
terms involving κ . We are, thus, left with

�(�′,t) =
[

1 +
∫ t2

t1

ds1�(�,s1)

+
∫ t2

t1

ds1

∫ s1

t1

ds2�(�,s1)�(�,s2) + · · ·
]
�e

(13)

= exp+

[ ∫ t

0
ds �(�,s)

]
�e. = �(�,t), (14)

which is the desired result. We have, thus, demonstrated that
the distibution function is translationally invariant for any
homogeneous flow field κ(t) (although it will be anisotropic,
reflecting the symmetry of the imposed velocity gradient).

B. Two-time correlation function

We now consider the properties under uniform translation
of the two-time correlation functions, namely the correlation
of two wave-vector-dependent fluctuations. Without loss of
generality we may express the wave-vector-dependent fluctu-
ations as

fq(�,t,t ′) = e

∫ t
t ′ ds �

†(�,s)
−

∑
i

X
f

i (�)eiq·ri , (15)

where the variable Xfi depends on the fluctuation under
consideration. The adjoint Smoluchowski operator can be
obtained from (1) by partial integration

�†(t) =
∑
i

[ ∂ i + Fi + ri · κT (t) ] · ∂ i . (16)

In contrast to the distribution function, which evolves from
time t ′ to time t according to the propagator exp+

∫ t
t ′ ds �(s),

the time evolution of fluctuations (“observables”) is dictated by
the adjoint propagator exp−

∫ t
t ′ ds �

†(s), where the operation of
taking the adjoint reverses the time ordering [see Eqs. (A9) and
(A10)]. In the present work, we will consider only fluctuations
for which Xfi (�) is translationally invariant. This assumption
holds, for example, in the case of the density ρq(t), obtained
by setting X

ρ

i = 1 in (15) and the less familiar case of
wave-vector-dependent stress fluctuations σαβ(q,{ri}) [23,24],
obtained by setting

(
Xσi

)
αβ

= δαβ − 1

2

∑
j �=i

rαij r
β

ij

rij

du(rij )

drij
(17)

in (15), where u(r) is the pair interaction potential. According
to this definition σαβ(q,{ri}) has dimensions of energy (recall
that we set kBT = 1) and thus requires division by a volume
to become a true stress. One should thus bear in mind that the
familiar macroscopic stress arises from taking the average of
σαβ(q = 0,{ri})/V .

The two-time correlation function is formally defined by

Cfqgk
(t,t ′) =

∫
d� �(t ′)f ∗

q e

∫ t
t ′ ds �

†(s)
− gk. (18)

As in the previous subsection, we now shift all particle
coordinates by a constant vector, ri → ri + a to obtain the
shifted adjoint Smoluchowski operator

�†(�′,t) = �†(�,t) + a · κT (t) · P ≡ �†(�,t) + A†(t). (19)

The distribution function appearing in (18) is invariant with
respect to this shift as proven in (14). To make further
progress we employ the identity (B1) to factorize the ordered
exponential

e

∫ t
t ′ ds �

†(�,s)+A†(s)
−

= e

∫ t
t ′ ds �

†(�,s)
−

× exp−

[ ∫ t

t ′
ds e

− ∫ t
s
ds ′�†(�,s ′)

+ A†(s) e
∫ t
s
ds ′�†(�,s ′)

−

]
. (20)

The argument of the second exponential is a compli-
cated “interaction representation” of the operator A†(s) but
can be simplified considerably using the nested commuta-
tor expansion (C2) derived in Appendix C. Defining the
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commutators

b(2)(s1,s2) ≡ [�†(s1),A†(s2)]

b(3)(s1,s2,s3) ≡ [�†(s1),[�†(s2),A†(s3)]]
(21)

b(4)(s1,s2,s3,s4) ≡ [�†(s1),[�†(s2),[�†(s3),A†(s4)]]],
...

we find that

b(2)(s1,s2) = −a · κT (s2)κT (s1) · P

b(3)(s1,s2,s3) = a · κT (s3)κT (s2)κT (s1) · P
(22)

...

b(n)(s1, · · · ,sn) = (−1)(n+1)a ·
n−1∏
i=0

κT (sn−i) · P.

Using (21) and (22) in the expansion (C2) yields a simplifica-
tion of the interaction representation operator

e
− ∫ t

s
ds ′�†(�,s ′)

+ A†(s) e
∫ t
s
ds ′�†(�,s ′)

−

= a · κT (s)

[
1 +

∫ t

s

ds1 κT (s1)

+
∫ t

s

ds1

∫ s1

s

ds2 κT (s2)κT (s1) + · · ·
]

· P

= −a ·
[
∂

∂s
e

∫ t
s
ds ′κT (s ′)

−

]
· P, (23)

where the last equality follows from (A8) and the definition of
the ordered exponential (A2). Substitution into (20) yields the
useful result

e

∫ t
t ′ ds �

†(�,s)+A†(s)
−

= e

∫ t
t ′ ds �

†(�,s)
− exp

[
a · ( − 1 + e

∫ t
t ′ ds κT (s)

−
) · P

]
, (24)

Substitution of (24) into (18), noting that P gk = i k gk, and
using the adjoint relation (A10) leads to our final result,

Cfqgk
(t,t ′) = e−i( q−k(t,t ′) )·a Cfqgk

(t,t ′), (25)

where the time-dependent wave vector is given by

k(t,t ′) = k · e
∫ t
t ′ ds κ(s)

+ . (26)

The condition of translational invariance thus requires that
the phase factor vanishes and leads us the conclusion that
fluctuation at wave vector k at earlier time t ′ is correlated with
one at q = k(t,t ′) at later time t , as a result of the affine flow.
Equivalently, one can employ the inverse transformation (see
Appendix A) to show that an earlier fluctuation at wave vector
k = q̄(t,t ′) is correlated with a later one at wave vector q,
where

q̄(t,t ′) = q · e−
∫ t
t ′ ds κ(s)

− . (27)

In the following we will refer to (27) as the forward-advected
wave vector and (26) as the reverse-advected wave vector.

C. Rheological tensors and advection

The ordered exponential identified in (27) may appear
unfamiliar but is nothing more than the inverse of the

deformation gradient tensor

E(t,t ′) = ∂r(t)

∂r(t ′)
, (28)

a standard quantity in elasticity theory [25,26]. The deforma-
tion gradient transforms a vector (“material line”) at time t ′ to
a new vector at later time t . Thus, for spatially homogeneous
deformations, r(t) is transformed from the past to the present
via

r(t) = E(t,t ′) · r(t ′), (29)

where Eαβ = ∂rα/∂rβ , and from the present to the past using
the inverse deformation gradient

r(t ′) = E−1(t,t ′) · r(t). (30)

Taking the time derivative of (28) and applying the chain rule to
the right-hand side generates a differential equation connecting
the deformation to the velocity gradient

∂

∂t
E(t,t ′) = κ(t)E(t,t ′). (31)

Given the boundary condition E(t,t) = 1 the general solution
of (31) is, thus,

E(t,t ′) = e

∫ t
t ′ ds κ(s)

+ , (32)

with inverse (see Appendix A)

E−1(t,t ′) = e
− ∫ t

t ′ ds κ(s)
− . (33)

The tensors (32) and (33) are precisely those identified
from our consideration of the translational invariance of
wave-vector-dependent density fluctuations, namely k̄(t,t ′) =
k · E−1(t,t ′) and k(t,t ′) = k · E(t,t ′).

IV. INTEGRATION THROUGH TRANSIENTS

A. Nonequilibrium distribution function

If we now assume that the system was in thermodynamic
equilibrium in the infinite past the formal solution (3) becomes

�(t) = e

∫ t
−∞ ds �(s)

+ �e. (34)

Despite being formally exact, the fact that the time evo-
lution is entirely contained within the distribution function
proves inconvenient when attempting to make a closure
approximation. For this reason, we seek an alternative, but
equivalent, solution for which the observables evolve in time
and the distribution function remains fixed. The procedure
is analogous to the passage from Schrödinger to Heisenberg
pictures in quantum mechanics and will lead to a Dyson-
equation like representation of the transient dynamics [27].

Without loss of generality we can separate both the
Smoluchowski operator and the distribution function into
equilibrium and nonequilibrium contributions,

�(t) = �e + δ�(t), (35)

�(t) = �e + δ�(t), (36)

where δ�(t) = −∑
i ∂ i · [κ(t) · ri] and δ�(t) remains to be

determined. The equilibrium distribution satisfies �e�e =
0, whereas nonequilibrium steady states are determined by
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�� = 0. When acting on the equilibrium distribution the
nonequilibrium Smoluchowski operator generates a term
proportional to the stress tensor

�(t)�e = δ�(t)�e = [κ(t) : σ̂ ]�e, (37)

where A : B ≡ ∑
αβ AαβBβα and σ̂ is the zero wave-vector

limit of the potential part of the stress tensor, which we now
write in the following form:

σ̂αβ = δαβ −
∑
i

rαi F
β

i . (38)

In order to avoid any confusion, we note that a simple transfor-
mation to relative coordinates [28] suffices to demonstrate the
equivalence of (38) to the more familiar Kirkwood form (17)
[24]. Thus, despite first impressions, the compact expression
(38) to be employed in our calculations does not depend on
the choice of coordinate origin.

For the incompressible flow under consideration we have
κ(t) : δ = Tr κ(t) = 0, such that the Kronecker δ in (38) is
irrelevant at this stage of the calculation. Substitution of (35)
and (36) into (1) thus yields an equation for δ�(t),

∂

∂t
δ�(t) = �(t)δ�(t) + [κ(t) : σ̂ ]�e, (39)

which is a simple first-order differential equation with inho-
mogeneity [κ(t) : σ̂ ]�e. Assuming an equilibrium distribution
in the infinite past, (39) is solved by

δ�(t) =
∫ t

−∞
dt1 e

∫ t
t1
ds �(s)

+ [κ(t1) : σ̂ ]�e, (40)

as can be verified by either variation of parameters or
the method of Greens functions. The full nonequilibrium
distribution function is given by substitution of (40) into
(36). The nonequilibrium average of an arbitrary function of
the particle coordinates f ({rN }), which need not be a scalar
quantity, is, thus, given by

〈f 〉ne = 〈f 〉 +
∫
d�

∫ t

−∞
dt1 f e

∫ t
t1
ds �(s)

+ [κ(t1) : σ̂ ]�e,

(41)

where the integral over � is a phase-space integral over all
particle coordinates and 〈·〉 denotes an equilibrium average.
The final result, central to the present theoretical development,
is obtained by partial integration

〈f 〉ne = 〈f 〉 +
∫ t

−∞
dt1

〈
κ(t1) : σ̂ e

∫ t
t1
ds �†(s)

− f
〉
. (42)

The time development of the observable f is, thus, generated
by the adjoint operator.

As the test function f is arbitrary, it may be removed
to provide a formal operator expression for the distribution
function

�(t) = �e +
∫ t

−∞
dt1�e κ(t1) : σ̂ e

∫ t
t1
ds �†(s)

− . (43)

This expression is equivalent to (34) and implies that the
function to be averaged should be multiplied by (43) from the
left and integrated over the particle coordinates. Equation (43)
is the central result of the integration through transients
formalism and we will demonstrate that this provides a very

convenient starting point for analysis of the nonequilibrium
dynamics of colloidal suspensions. We note that analogous
expressions for the nonequilibrium distribution function have
been considered by Evans and Morriss [27] and Chong and
Kim [29], based on the thermostatted SLLOD equations of
motion. A fundamental advantage of (43) over (34) is that
it enables nonequilibrium averages to be expressed in terms
of equilibrium averages, under the sole assumption that the
system was in equilibrium in the infinite past. This leads to
a Dyson-like representation of the dynamics, reminiscent of
time-dependent perturbation theory in quantum mechanics.
Within our formalism a range of nonergodic quiescent states
can be generated from this initial state by imposing various
flow histories. This includes the typical experimental protocol
for which strong preshear is applied in order to erase memory
and obtain a reproducible initial state from which the system
age may be measured.

B. Exact projection

A potential pitfall of applying (43) arises from the existence
of conservation laws which lead to zero eigenvalues of �†
and which could, in principle, prevent convergence of the
time integral. In the following we will construct an exact
reformulation of (42) in which slow fluctuations are explicitly
projected out, ensuring convergence of the integral for all
values of q and, thus, preparing the ground for subsequent
approximations.

For the Brownian dynamics under consideration only the
particle number is conserved, ∂tρq=0 = �†(t)ρq=0 = 0, which
suggests a possible divergence in the hydrodynamic limit when
the arbitrary test function in (42) is chosen to be a density
fluctuation, f = ρq. Fortunately, this poses no difficulty, as
the average in the integrand vanishes for all wave vectors,

〈
κ(t) : σ̂ e

∫ t
t1
ds �†(s)

− ρq

〉
= 0, (44)

which ensures that density fluctuations do not couple linearly
to the nonequilibrium part of the distribution function. The
fact that (44) holds at q = 0 follows directly from inserting
ρq=0 = N ,

〈
κ(t) : σ̂ e

∫ t
t1
ds �†(s)

− N
〉
= N〈κ(t) : σ̂ 〉 = 0, (45)

where the second equality relies on the condition Tr κ(t) = 0.
For nonzero q the vanishing of the average in (44) is a conse-
quence of translational invariance. Shifting all coordinates by
a constant vector r′

i = ri + a and applying (24) leads to

〈
κ(t) : σ̂ e

∫ t
t1
ds �†(�′,s)

− ρq

〉
= exp

[ − iq · e−
∫ t
t ′ ds κ(s)

−
]

×
〈
κ(t) : σ̂ e

∫ t
t1
ds �†(�,s)

− ρq

〉
. (46)

To prevent violation of translational invariance the average
must be identically zero. Equation (44) is, thus, proven.

We now introduce the density projector P and complement
Q

P =
∑

k

|ρq〉 1

NSq
〈ρ∗

q | , Q = 1 − P , (47)
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where Sq is the static structure factor Sq = 〈ρ∗
q ρq〉/N . In

(47) we have introduced a bra-ket notation for wave-vector-
dependent fluctuations. The scalar product of two arbitrary
variables is defined by an equilibrium average

〈f ∗
q | gq〉 ≡

∫
d� �ef

∗
q (�)gq(�). (48)

The projectors (47) are both idempotent and orthogonal

P 2 = P, Q2 = Q, QP = 0, (49)

and, by construction, satisfy

P |ρq〉 = |ρq〉 Q|ρq〉 = 0. (50)

A direct consequence of (44) is that our central result (42) may
be exactly rewritten as

〈f 〉ne = 〈f 〉 +
∫ t

−∞
dt1

〈
κ(t1) : σ̂ Qe

∫ t
t1
ds �†(s)

− Qf
〉
, (51)

where we have again used 〈κ(t) : σ̂ 〉 = 0. To proceed further
we consider a time-dependent generalization of a standard
operator identity (see, e.g., Ref. [30] for the standard result)

e

∫ t
t1
ds �†(s)

− = e

∫ t
t1
ds Q�†(s)

− +
∫ t

t1

ds ′ e
∫ s′
t1
ds �†(s)

− P �†(s ′)

× e
∫ t
s′ ds Q�

†(s)
− , (52)

which can easily be verified by differentiation (applying the
rules from Appendix A). Substitution of this identity into (51)
and using (44) eliminates the complicated second term in (52).
Finally, exploiting the idempotency of Q enables us to write

e

∫ t
t1
ds Q�†(s)

− Q = e

∫ t
t1
ds Q�†(s)Q

− Q, (53)

which leads to our final result,

〈f 〉ne = 〈f 〉 +
∫ t

−∞
dt1

〈
κ(t1) : σ̂ Qe

∫ t
t1
ds Q�†(s)Q

− Qf
〉
. (54)

The projected expression (54) is formally equivalent to (42).
The advantage of this reformulation is that the absence of linear
coupling to density fluctuations is explicit in the projected time
evolution operator, which ensures that approximations to the
equilibrium average in (42) will not introduce spurious linear
couplings. It should be noted that these considerations rely
on the incompressibility condition Tr κ = 0, the relaxation of
which would indeed lead to a finite linear coupling for some
compressible flows.

V. CONSTITUTIVE EQUATION

A. Generalized Green-Kubo formula

In order to address the rheology of colloidal suspensions, we
now consider application of (43) to calculation of the macro-
scopic stress tensor. Replacing f in (42) by the fluctuating
stress tensor elements (38) yields a formally exact constitutive
equation,

σ (t) = 1

V

∫ t

−∞
dt1

〈
κ(t1) : σ̂ e

∫ t
t1
ds �†(s)

− σ̂
〉
. (55)

The stress tensor is, thus, a nonlinear functional of the velocity
gradient tensor as κ(t) appears in the adjoint Smoluchowski

operator. Equation (55) thus goes beyond the standard Green-
Kubo formulas of linear response theory and makes possible
a theoretical study of nonlinear rheology.

The general result (55) shows that for arbitrary time-
dependent flow the integrand must depend on two time
arguments rather than a simple time difference. To illustrate
this point, consider the special case of simple shear flow
(καβ(t) = γ̇ (t)δxαδyβ , where γ̇ (t) is the shear rate). The shear
stress is given by

σxy(t) =
∫ t

−∞
dt1 γ̇ (t1)

[
1

V

〈
σ̂xye

∫ t
t1
ds �†(s)

− σ̂xy

〉]

≡
∫ t

−∞
dt1 γ̇ (t1)G(t,t1; [κ]), (56)

where the second equality serves to define the nonlinear
shear modulus, which is a functional of the velocity gradient
tensor. The lack of time translational invariance demonstrated
by G(t,t ′; [κ]) is a general feature of two-time correlation
functions in systems under time-dependent shear and is
unavoidable if one wishes to go beyond linear response
[31]. Time translational invariance can be recovered only by
replacing in (56) the full evolution operator �†(t) with the
time-independent equilibrium operator. For notational con-
venience, we will henceforth employ G(t,t ′) ≡ G(t,t ′; [κ]),
omitting explicit reference to the functional dependence of the
modulus on the velocity gradient.

B. Mode-coupling approximation

The exact generalized Green-Kubo expression for the stress
tensor (55) requires approximation before explicit calculations
can be performed. We begin by exactly re-expressing (55) in
terms of the projected dynamics (54)

σ (t) = 1

V

∫ t

−∞
dt1

〈
κ(t1) : σ̂ Qe

∫ t
t1
ds Q�†(s)Q

− Q σ̂
〉
, (57)

which will be approximated by considering the overlap of
stress fluctuations with the simplest relevant slow fluctuations.
Due to the projector Q in (57) the lowest nonzero order in
fluctuation amplitude is taken to be ρkρp, where k and p are
two distinct wave vectors. We thus define a projection operator
onto density pairs,

P2 =
∑
k>p

|ρkρp〉
1

N2SkSp
〈ρ∗

kρ
∗
p|, (58)

which we assume will capture the dominant slow fluctuations.
It should be pointed out that this projection operator is only
approximate, as we have employed the Gaussian ansatz

〈ρ∗
kρ

∗
pρkρp〉 ≈ 〈ρ∗

kρk〉〈ρ∗
pρp〉 = N2SkSp (59)

in the denominator [32]. Although the approximate projector
(58) is not perfectly idempotent, it has the advantage that
the normalization is expressed in terms of easily calculable
equilibrium structure factors. Projecting onto density pairs

ht
tp

://
do

c.
re

ro
.c

h



yields an approximation to the stress

σ (t) = 1

V

∫ t

−∞
dt1

〈
κ(t1) : σ̂ QP2 e

∫ t
t1
ds Q�†(s)Q

− P2Q σ̂
〉
,

=
∑
k > p

k′ > p′

1

VN4

∫ t

−∞
dt1

V
(1)

k′p′V
(2)

kp

Sk′Sp′SkSp

×
〈
ρ∗

k′ρ
∗
p′ e

∫ t
t1
ds Q�†(s)Q

− ρkρp

〉
, (60)

where the vertex functions are given by

V
(1)

k′p′ = 〈κ(t1) : σ̂ Qρk′ρp′ 〉 (61)

V
(2)

kp = 〈ρ∗
kρ

∗
pQ σ̂ 〉. (62)

The second vertex is a tensor, whereas the first is a scalar
because of the contraction with the velocity gradient. A
straightforward calculation enables the vertices to be expressed
in terms of the equilibrium static structure factor

V
(1)

k′p′ = κ(t1) : k′p′ 1

k

dSk′

dk′ δk′,−p′ (63)

V
(2)

k′p′ = kp
1

k

dSk

dk
δk,−p, (64)

where kp indicates a dyadic product. The wave-vector restric-
tions imposed by the Kronecker δs appearing in (63) and (64)
reduce the fourfold sum in (60) to a double sum. We are, thus,
led to consider the four-point correlator,

〈
ρ∗

k′ρ
∗
−k′ e

∫ t
t1
ds Q�†(s)Q

− ρkρ−k

〉
. (65)

In the spirit of quiescent mode-coupling theory we approxi-
mate the unknown four-point density correlator by a product
of pair correlators and replace the Q-projected dynamics by
the full dynamics

〈
ρ∗

k′ρ
∗
−k′ e

∫ t
t1
ds Q�†(s)Q

− ρkρ−k

〉

≈
〈
ρ∗

k′ e

∫ t
t1
ds �†(s)

− ρk

〉〈
ρ∗

k′ e

∫ t
t1
ds �†(s)

− ρk

〉
. (66)

For quiescent states, this approximate step is well established
and amounts to assuming that the density fluctuations are
Gaussian random variables [33]. We assume here that this
approximation remains valid under flow.

The essential observation at this point of the calculation
is that the wave vectors k and k′ appearing in (60) are not
independent. The static structure factor and, consequently,
the vertices (63) and (64) are clearly invariant with respect
to spatial translation. In order for the stress (60) to remain
translationally invariant we must, therefore, impose that the
mode-coupling factorization of the four-point correlator (66)
also remain invariant. It is this requirement which couples
the wave vectors k and k′. Shifting all particle coordinates
by a constant vector and application of (24) reveals that the
the right-hand side of (66) is translationally invariant only if
k′ = k(t,t ′), where the reverse-advected wave vector is given
by (26). This identification leads to the appearance of k(t,t ′)
at several places within (60) and, thus, generates a highly
nonlinear functional dependence of the stress on the velocity
gradient tensor.

Substitution of (63), (64), and (66) into (60), using the
identification k′ = k(t,t ′) and replacing the remaining discrete
wave-vector sum by an integral, yields

σ (t) =
∫ t

−∞
dt ′

∫
dk

16π3

[
k(t,t ′) · κ(t ′) · k(t,t ′)

kk(t,t ′)

]

× kk
S ′
kS

′
k(t,t ′)

S2
k

�2
k(t,t ′)(t,t

′), (67)

where we have defined the transient density correlator

�k(t,t ′) = 1

NSk

〈
ρ∗

k e

∫ t
t ′ ds �

†(s)
− ρk̄(t,t ′)

〉
, (68)

which remains to be determined. Note that the forward-
advected wave vector appears naturally in (68) as a result of

�k(t,t ′)(t,t
′) =

〈
ρ∗

k(t,t ′)e

∫ t
t ′ ds �

†(s)
− ρk

〉
NSk(t,t ′)

. (69)

The definition in (68) will prove useful later [in Eq. (79)],
when the advection of the wave vector is included into a single
time evolution operator. The influence of external flow enters
(67) both explicity, via the velocity gradient tensor in the
prefactor, and implicitly, through the reverse-advected wave
vector. The transient correlator captures the slow structural
relaxation of dense suspensions, thus rendering (67) a useful
tool for the study of arrested states.

Before proceeding to develop a theory for the transient
correlator, it is useful to, first, rearrange (67) into an alternative
form. To this end, we introduce the Finger tensor [34], a
standard deformation measure from elasticity theory,

B(t,t ′) = E(t,t ′)ET (t,t ′), (70)

where the deformation tensor is given by (32). The Finger
tensor describes the stretching (but not rotation) of vectors
embedded in the material. If we consider the quadratic form
k · B(t,t ′) · k and take a derivative with respect to t ′, we obtain

∂t ′(k · B(t,t ′) · k) = k(t,t ′) · [ κ(t) + κT (t ′)] · k(t,t ′)
= 2 k(t,t ′) · κ(t) · k(t,t ′), (71)

where we have used the definition of the velocity gradient
(31). Using (71) we can express our constitutive equation in
the following alternative form

σ (t) = −
∫ t

−∞
dt ′

∫
dk

32π3

[
∂

∂t ′
(k · B(t,t ′) · k)

]

× kk
k

[
S ′
kS

′
k(t,t ′)

k(t,t ′)S2
k

]
�2

k(t,t ′)(t,t
′). (72)

The expression (72) provided the starting point for the
development of a simpler “schematic” constitutive equation
in Ref. [19].

From (72) it can be seen that the stress tensor at any
given time is built by summing the contributions from all
possible Fourier modes. Each of these individual contributions
is obtained by integrating up the strain measure B(t,t ′) over
the entire deformation history, weighted by a decaying, wave-
vector-dependent memory function. It is, thus, clear that strains
occurring much further in the past than the longest relaxation
time of �k(t,t ′) cannot contribute to the integral; such distant
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strain increments have been forgotten. Moreover, physical
intuition suggests that stress contributions at differing wave
vectors should be coupled, as the physical mechanisms driving
relaxation on different length scales are not independent
(a fact ignored in many empirical constitutive equations).
Within the mode-coupling approximations to be developed
below, this coupling becomes manifest in the nonlinear
functional dependence of the memory function on the transient
correlator; the equation of motion for�k(t,t ′) is nonlocal in k
space.

VI. EQUATION OF MOTION

In order to close our constitutive theory, we require an
equation of motion for the transient density correlator. The
fundamental approximations to be applied are very much in
the spirit of standard quiescent mode-coupling theory; how-
ever, the presence of external flow necessitates considerable
preparatory manipulation of formal expressions, not required
in quiescent mode coupling, before the theory arrives in a form
convenient for making closure approximations. The first step
on this path is to identify the operators which advect the wave
vector of a density fluctuation (either forwards or backward)
and, thus, capture the purely affine component of the particle
motion.

A. Advection operators

It is a straightforward exercise to show that a density
fluctuation at advected wave vector k̄(t,t ′) can be generated
from one at k using the exponential advection operator

e
− ∫ t

t ′ ds δ�
†(s)

+ |ρk〉 = |ρk̄(t,t ′)〉 , (73)

where the flow term in the adjoint Smoluchowski operator is
given by

δ�†(t) =
∑
i

ri · κT (t) · ∂ i . (74)

The advection operator describes the purely affine time
evolution of fluctuations which would occur in the absence
of both Brownian motion and interparticle interactions. It is
also useful to identify an analogous advection operator which
acts on a density fluctuation to its left

〈 ρ∗
k | e

∫ t
t ′ ds δ�

†
(s)

− = 〈 ρ ∗̄
k(t,t ′)| , (75)

where the operator in the exponent is given by

δ�†(t) =
∑
i

ri · κT (t) · (∂ i + Fi). (76)

The force term Fi in (76) arises as a consequence of the
equilibrium distribution function in our definition of the scalar
product (48). The operations inverse to (73) and (75) which
generate fluctuations at reverse-advected wave vectors are
given by

e

∫ t
t ′ ds δ�

†(s)
− |ρk〉 = |ρk(t,t ′)〉 , (77)

〈 ρ∗
k | e−

∫ t
t ′ ds δ�

†
(s)

+ = 〈 ρ∗
k(t,t ′)| , (78)

as can be determined from the inverse relations (A3).

B. Generalized diffusion kernel

Using (73), the transient density correlator (68) can be
rewritten as

�k(t,t ′) = 1

NSk
〈 ρ∗

k U (t,t ′)ρk〉, (79)

where we have defined the propagator U (t,t ′) as a product of
two time-evolution operators

U (t,t ′) ≡ e

∫ t
t ′ ds �

†(s)
− e

− ∫ t
t ′ ds δ�

†(s)
+ . (80)

In order to better understand the properties ofU (t,t ′) it is useful
to express it in terms of a single exponential. Differentiation
of (80) with respect to t and using (A3) yields

∂

∂t
U (t,t ′) = U (t,t ′)

[
e

∫ t
t ′ ds δ�

†(s)
− �†

e e
− ∫ t

t ′ ds δ�
†(s)

+
]

≡ U (t,t ′)�†
nh(t,t ′), (81)

where the subscript on �†
nh(t,t ′) indicates that this operator is

non-Hermitian. The formal solution of (81) is given by

U (t,t ′) = e

∫ t
t ′ ds �

†
nh(s,t ′)

− . (82)

Our aim to express the transient correlator (79) in a form
suitable for mode-coupling approximation is something which
can be achieved only with a certain degree of foresight,
combined with experience regarding the structure of the
quiescent mode-coupling theory. This has the unavoidable
consequence that the motivation behind some of our formal
manipulations can be fully appreciated only in retrospect. We
will attempt to highlight these potentially obscure steps when
they occur and to motivate them as effectively as possible.

Within the quiescent mode-coupling theory the Hermiticity
of the equilibrium Smoluchowski operator leads to a positive
semidefinite “initial decay rate,” �k ≡ −〈ρ∗

k�
†
eρk〉/NSk , de-

termining the short-time dynamics of the transient correlator
[see Eq. (89) below]. Unfortunately, the operator �†

nh(t,t ′)
appearing in (82) does not retain this desirable feature and, if
not treated carefully, can lead to a time-dependent initial decay
rate �k(t,t ′) which changes sign as a function of accumulated
strain. The resulting zeros of �k(t,t ′) cause divergences in the
memory function mk(t,s,t ′) [see the denominator of (103)]
which destroy the numerical stability of the theory. These
considerations motivate us to seek a reformulation of the
propagator (80) for which the Hermitian operator

�†
a(t,t

′) = e

∫ t
t ′ ds δ�

†(s)
− �†

e e
− ∫ t

t ′ ds δ�
†(s)

+ (83)

becomes responsible for generating the initial decay rate of the
theory. The operator (83) possesses the appealing feature that
the average 〈ρ∗

k�
†
a(t,t ′)ρk〉 has the same form as that obtained

from the equilibrium adjoint Smoluchowski operator, except
that wave vectors are replaced by their advected counterparts.
Positivity of the initial decay rate is, thus, ensured from the
outset.
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The operator �†
a(t,t ′) can be brought into the game by

defining the time-dependent projection operator P (t,t ′) and
complement Q(t,t ′)

P (t,t ′) =
∑

k

|ρk̄(t,t ′)〉
1

NSk̄(t,t ′)
〈ρ ∗̄

k(t,t ′)|, (84)

Q(t,t ′) = 1 − P (t,t ′), (85)

and employing the following exact operator identity to rewrite
the propagator

e

∫ t
t ′ ds �

†
nh(s,t ′)

− = e

∫ t
t ′ ds G(s,t ′)

− +
∫ t

t ′
ds e

∫ s
t ′ ds

′�†
nh(s ′,t ′)

−

×H(s,t ′) e
∫ t
s
ds ′G(s ′,t ′)

− , (86)

where the operators G(t,t ′) and H(t,t ′) are given by

G(t,t ′) = e

∫ t
t ′ ds δ�

†(s)
− Q(t,t ′)�†

e e
− ∫ t

t ′ ds δ�
†(s)

+ , (87)

H(t,t ′) = e

∫ t
t ′ ds δ�

†(s)
− P (t,t ′)�†

e e
− ∫ t

t ′ ds δ�
†(s)

+ . (88)

The identity (86) may be verified by differentiation and, despite
its complex structure, is simply a further time-dependent
generalization of (52) employed earlier. Note that the advec-
tion operator δ�†(s), which is needed to build our desired
Hermitian operator �†

a(t,t ′), enters the calculation via the
advected density fluctuation on the right of the projector (84).

We next take the derivative of (86) with respect to t

and use the lengthy expression obtained to calculate matrix
elements between density fluctuations 〈 ρ∗

k | · · · |ρk〉/NSk . This
calculation yields an equation of motion for the transient
density correlator featuring a generalized diffusion kernel

∂

∂t
�k(t,t ′) + �k(t,t ′)�k(t,t ′) +

∫ t

t ′
ds Mk(t,s,t ′)�k(s,t ′)

= �k(t,t ′). (89)

Because matrix elements are taken with respect to a density
fluctuation at a single wave vector, translational invariance
eliminates the wave-vector sum appearing in (84).

The initial decay rate �k(t,t ′) depends on the Hermitian
operator �†

a(t,t ′) and can be explicitly evaluated in terms of
the advected wave vector and static structure factor

�k(t,t ′) = −〈ρ∗
k�

†
a(t,t ′)ρk〉

NSk̄(t,t ′)
= k̄2(t,t ′)
Sk̄(t,t ′)

. (90)

The initial decay rate takes the same functional form as in
equilibrium, albeit with the static wave vector replaced by the
advected one. For noninteracting particles only the first two
terms in (89) survive and we obtain the exact solution for the
correlator in this case, incorporating the phenomena of Taylor
dispersion (enhanced diffusion in the direction of flow) [35].

The generalized diffusion kernel entering (89) is given by
the formal expression

Mk(t,s,t ′) = −〈B∗
k(s,t ′) Ũ (t,s,t ′)Ak(t,t ′)〉

NSk̄(s,t ′)
, (91)

where we have defined several new operators in an effort to
streamline the notation

Ũ (t,s,t ′) = e

∫ t
s
ds ′G(s ′,t ′)

− , (92)

B∗
k(t,t ′) = ρ∗

k�
†
a(t,t

′), (93)

Ak(t,t ′) = G(t,t ′)ρk. (94)

A striking feature of (91) is that the diffusion kernel is
a function of three time arguments. We recall that for
quiescent systems the memory function depends on only a
time difference [32], whereas for systems under steady shear
it depends on two time arguments [16]. The former property
is a consequence of the time translational invariance of the
quiescent state (ageing of arrested states being neglected
within MCT), whereas the latter property is formal recognition
of the existence of an absolute reference time, namely the time
at which the flow was switched on. In practice, however, the
residual transient may be vanishingly small for the steady
states of interest. The three-time argument memory function
(91) may be interpreted as describing the decay of memory
between times s and t , incorporating the coupling to the stress
which is still relaxing from the strain accumulated between
times t ′ and t .

The final term in the equation of motion for the transient
correlator (89) is the “remainder” term on the right-hand side,
given by

�k(t,t ′) = 1

NSk
〈ρ∗

kŨ (t,t ′,t ′)G(t,t ′)ρk〉. (95)

We know rather little about the properties of this term and the
fact that it remains finite represents a primary drawback of the
the present approach. (Below we will need to approximate it by
zero.) Its existence stems from our use of the time-dependent
projection operator (85) which only eliminates linear coupling
to the density at t = t ′, leading to �k(t,t) = 0, but not at
differing values of the time arguments.

C. Generalized friction kernel

Equation (89) represents an exact equation of motion for
the transient density correlator in terms of a generalized
diffusion kernel. However, experience with quiescent mode-
coupling theory has shown that it is difficult to accurately
approximate a diffusion kernel and that far better results
can be obtained when starting from an equation of motion
involving a friction kernel [15]. We thus seek to convert
the generalized diffusion kernel Mk(t,s,t ′) to a generalized
friction kernel mk(t,s,t ′). Following standard mode-coupling
arguments, the transformation from a diffusion to a friction
kernel is achieved by splitting the time-evolution operator
entering the diffusion kernel, Ũ (t,s,t ′) in the present case,
into “reducible” and “irreducible” components. As with our
previous formal manipulations, foresight is required in making
this step. The specific choice of how to split the time-evolution
operator is made strategically, with a view to obtain an equation
of the form (102) which, together with (89) can then be
conveniently solved to yield (106), the desired equation of
motion.
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The first step is to take the time derivative of Ũ (t,s,t ′).
Using (92), this yields

∂

∂t
Ũ (t,s,t ′) = Ũ (t,s,t ′)G(t,t ′). (96)

We next define a non-Hermitian, time-dependent projection
operator,

P̃ (t,t ′) =
∑

k

|ρk〉
1

〈ρ∗
k�

†
a(t,t ′)ρk〉

〈ρ∗
k�

†
a(t,t

′)|, (97)

with complement Q̃(t,t ′) = 1 − P̃ (t,t ′), and use this to split
G(t,t ′) into two contributions,

∂

∂t
Ũ (t,s,t ′) = Ũ (t,s,t ′)G(t,t ′)[Q̃(t,t ′) + P̃ (t,t ′)]

= Ũ (t,s,t ′)G irr(t,t ′) + Ũ (t,s,t ′)Gred(t,t ′). (98)

The irreducible operator is simply defined by G irr(t,t ′) =
G(t,t ′)Q̃(t,t ′), and nothing more can be done with it, whereas
the reducible operator can be expressed in terms of previously
encountered quantities,

Gred(t,t ′) = |Ak(t,t ′)〉 1

Sk�k(t,t ′)
〈B∗

k(t,t ′)|. (99)

Treating the term Ũ (t,s,t ′)Gred(t,t ′) appearing in (98) as an
inhomogeneity leads to the formal solution

Ũ (t,s,t ′) = U irr(t,s,t ′) +
∫ t

s

dt ′′ Ũ (t ′′,s,t ′)

×Gred(t ′′,t ′)U irr(t,t ′′,t ′),

where the irreducible time evolution is given by

U irr(t,s,t ′) = e

∫ t
s
ds ′Girr(s ′,t ′)

− , (101)

which is the solution of the corresponding homogeneous
equation. Using (93) and (94) to take matrix elements of
(100), 〈B∗

k(s ′,t ′)| · · · |Ak(t,t ′)〉, and using (99) thus leads to an
important equation relating the diffusion and friction kernels

Mk(t,s,t ′) = −�k(s,t ′)mk(t,s,t ′)�k(t,t ′)

−
∫ t

s

dt ′′Mk(t ′′,s,t ′)mk(t,t ′′,t ′)�k(t,t ′). (102)

The generalized friction kernel is given by

mk(t,s,t ′) = 〈B∗
k(s,t ′)U irr(t,s,t ′)Ak(t,t ′)〉
NSk̄(s,t ′)�k(s,t ′)�k(t,t ′)

, (103)

which involves the irreducible dynamics. At this stage in the
calculation the importance of enforcing a positive definite
initial decay rate becomes clearer. Alternative formulations for
which advection can cause �k(t,t ′) to change sign for some
values of t and t ′ will inevitably lead to undesirable singu-
larities in the memory kernel (103). While such singularities
could, in principle, be integrable and, thus, remain physical,
they would at the very least prove inconvenient for numerical
implementations of the theory.

We have now almost arrived at our goal to reformulate
the equation of motion. The final step is to combine (89) with
(102), with the former expressed as an inhomogeneous integral

equation,

�k(t,t ′) = −1

�k(t,t ′)

∫ t

t ′
ds Mk(t,s,t ′)�k(s,t ′) + gk(t,t ′).

(104)

This equation can be viewed as a Volterra equation of the
second kind [36] with an inhomogeneity given by

gk(t,t ′) = −1

�k(t,t ′)

[
∂

∂t
�k(t,t ′) −�k(t,t ′)

]
. (105)

The solution of this equation follows directly from the theory
of Volterra equations (see Appendix D) and yields the final
form for the equation of motion

∂

∂t
�k(t,t ′) + �k(t,t ′)

[
�k(t,t ′)

+
∫ t

t ′
ds mk(t,s,t ′)

∂

∂s
�k(s,t ′)

]
= �̃k(t,t ′), (106)

where the modified remainder term �̃k(t,t ′) is given in terms
of previously defined quantities,

�̃k(t,t ′) = �k(t,t ′) + �k(t,t ′)
∫ t

t ′
ds mk(t,s,t ′)�k(s,t ′).

(107)

Although the integral expression (107) appears to be rather
intractable, it can be simplified to a single equilibrium average.
Substituting the formal solution (100) into our expression for
the remainder term (95) recovers (107) with the modified
remainder identified as

�̃k(t,t ′) = 1

NSk
〈ρ∗

kU
irr(t,t ′,t ′)G(t,t ′)ρk〉, (108)

by inspection. The time evolution of �̃k(t,t ′) appearing in the
equation of motion for the correlator (106) is, thus, shown to
be determined by the irreducible dynamics.

D. Closure approximation

The equation of motion (106) we have obtained is formally
exact, but still contains two unknown quantities, the general-
ized friction kernelmk(t,s,t ′) and the remainder term �̃k(t,t ′),
both of which require approximation to arrive at a closed
theory. This final stage in our development of a constitutive
theory consists of two distinct steps. The first of these is
specific to systems under external flow and involves the neglect
of certain “strain energy” terms, which, it is hoped, are of
minor importance in determining the relaxation of the transient
correlator. Our choice to neglect these terms, which do not
arise in quiescent mode-coupling theory, represents the only
point in our development at which an approximation is made
which lies beyond the established canon of mode-coupling
projections and Gaussian factorizations. Once accepted, this
new approximation yields directly an appealingly symmetric
form for the friction kernel (103) and causes the remainder term
(108) to vanish identically. The second and final step is then
a rather standard projection of the friction kernel onto density
pairs and factorization of the resulting four-point average.
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We consider first the remainder term (108). As described
in detail in Appendix E, making the assumption that the two
strain-energy terms introduced there,

�(t,t ′) ≡
∫ t

t ′
ds e

− ∫ t
s
ds ′ δ�†(s ′)

+ κT (s) : σ̂ e

∫ t
s
ds ′ δ�†(s ′)

− ≈ 0

(109)

�(t,t ′) ≡
∫ t

t ′
ds e

− ∫ t
s
ds ′ δ�†(s ′)

+ κT (s) : σ̂ e

∫ t
s
ds ′ δ�†(s ′)

− ≈ 0,

(110)

both vanish, gives rise to the simplifications

G(t,t ′) ≈ GQ(t,t ′) (111)

U irr(t,s,t ′) ≈ U irr
Q (t,s,t ′), (112)

where GQ(t,t ′) and U irr
Q (t,s,t ′) are given by (E8) and (E10),

respectively. We thus find that the remainder term vanishes
identically,

�̃k(t,t ′) ≈ 1

NSk

〈
ρ∗

kU
irr
Q (t,t ′,t ′)GQ(t,t ′)ρk

〉 = 0, (113)

as both operators in the average are orthogonal to linear density
fluctuations.

Our assumption that the strain-energy terms (109) and (110)
vanish is certainly an uncontrolled approximation, but may be
partially motivated by considering their dependence on strain.
For the case of steady flow [16], both � terms increase in
proportion to the strain accumulated since startup and thus
have an influence which depends on whether the correlator has
relaxed completely for small strain values. For glassy states our
neglect of the � terms is thus equivalent to requiring that the
yield strain remain small, which is consistent with simulation
results [18,37,38]. In any case, if the yield strain were found to
be large, then the implicit assumption of a harmonic free energy
functional underpinnning the entire mode-coupling approach
would be invalidated, such that the new strain-energy terms
would be among the least of our worries.

We turn now to the friction kernel (103). Using the
previously derived relations (73), (75), (83), (87), (93), and
(94) we write the numerator in the following, somewhat more
explicit, form

〈B∗
k(s,t ′)U irr(t,s,t ′)Ak(t,t ′)〉
=

〈
ρ ∗̄

k(s,t ′)�
†
ee

− ∫ s
t ′ ds

′ δ�†(s ′)
+ U irr(t,s,t ′)e

∫ t
t ′ ds δ�

†(s)
−

×Q(t,t ′)�†
eρk̄(t,t ′)

〉
. (114)

Approximation (110) enables us to replace δ�†(s) in the
leftmost advection operator by δ�†(s) [see (E2)]

e
− ∫ s

t ′ ds
′ δ�†(s ′)

+ ≈ e
− ∫ s

t ′ ds
′ δ�†(s ′)

+ , (115)

which, together with (112), can be used to cast the numerator
of the friction kernel, Eq. (103), in the more symmetrical form,

〈
ρ ∗̄

k(s,t ′)�
†
e Q(s,t ′) e

− ∫ s
t ′ ds

′ δ�†(s ′)
+ U irr

Q (t,s,t ′)

× e
∫ t
t ′ ds δ�

†(s)
− Q(t,t ′)�†

e ρk̄(t,t ′)

〉
. (116)

The projected irreducible propagator U irr
Q (t,s,t ′) is given by

(E10) and acts in the space perpendicular to linear density
fluctuations. It is this fact which enables us to insert, without
incurring further approximation, the extra projector Q(t,t ′)
on the left of the irreducible propagator. The quantities
Q(t,t ′)�†

e ρk̄(t,t ′) appearing on either side of the propagator
in (116) are fluctuating forces which do not couple to linear
density fluctuations.

We next introduce the time-dependent projection operator
onto density pairs

P2(t,t ′) =
∑
q>p

| ρq̄(t,t ′)ρp̄(t,t ′)〉〈ρ∗
q̄(t,t ′)ρ

∗
p̄(t,t ′)|

N2Sq̄(t,t ′)Sp̄(t,t ′)
, (117)

which is simply (58) evaluated at the advected wave vector
and therefore subject to the same Gaussian approximation in
the denominator. The numerator (116) is thus approximated
by 〈

ρ ∗̄
k(s,t ′)�

†
e Q(s,t ′)P2(s,t ′) e

− ∫ s
t ′ ds

′ δ�†(s ′)
+ U irr

Q (t,s,t ′)

× e
∫ t
t ′ ds δ�

†(s)
− P2(t,t ′)Q(t,t ′)�†

e ρk̄(t,t ′)

〉
,

≈
∑
q > p

q′ > p′

V
(1)

kqp(s,t ′)V (2)
kq′p′(t,t ′)

N2

〈
ρ∗

q̄(s,t ′)ρ
∗
p̄(s,t ′)

× e−
∫ s
t ′ ds

′ δ�†(s ′)
+ U irr

Q (t,s,t ′) e
∫ t
t ′ ds δ�

†(s)
− ρq̄′(t,t ′)ρp̄′(t,t ′)

〉
,

(118)

where the vertex functions are given by

V
(1)

kqp(s,t ′) =
〈
ρ ∗̄

k(s,t ′)�
†
e Q(s,t ′)ρq̄(s,t ′)ρp̄(s,t ′)

〉
NSq̄(s,t ′)Sp̄(s,t ′)

, (119)

V
(2)

kq′p′(t,t ′) =
〈
ρ ∗̄

q′(t,t ′)ρ
∗̄
p′(t,t ′)Q(t,t ′)�†

e ρk̄(t,t ′)

〉
NSq̄ ′(t,t ′)Sp̄′(t,t ′)

. (120)

Employing the factorization approximation for the triplet static
structure factor S(3)

kqp ≈ SkSqSp enables the vertices to be
expressed in terms of known two-point static correlations

V
(1)

kqp(s,t ′) = k̄(s,t ′) · [q̄(s,t ′)cq̄(s,t ′) + p̄(s,t ′)cp̄(s,t ′)]ρ δk̄,q̄+p̄,

(121)

V
(2)

kq′p′(t,t ′) = k̄′(t,t ′) · [q̄′(t,t ′)cq̄ ′(t,t ′) + p̄′(t,t ′)cp̄′(t,t ′)]

× ρ δk̄′,q̄′+p̄′ , (122)

where ρ = N/V is the particle number density and cq = (1 −
1/Sq)/ρ is the Ornstein-Zernike direct correlation function.
The four-point correlator entering (118) is approximated in
the spirit of quiescent mode-coupling theory by factorizing
and replacing the Q-projected irreducible dynamics by the
full dynamics,〈
ρ∗

q̄(s,t ′)ρ
∗
p̄(s,t ′)e

− ∫ s
t ′ ds

′ δ�†(s ′)
+ U irr

Q (t,s,t ′)e
∫ t
t ′ ds δ�

†(s)
− ρq̄′(t,t ′)ρp̄′(t,t ′)

〉

≈ N2Sq̄(s,t ′)Sp̄(s,t ′)�k̄(s,t ′)(t,s)�p̄(s,t ′)(t,s)δq,q′δk,k′ , (123)

where the Kronecker δ functions enforce translational invari-
ance. Using (118) together with (121), (122), and (123) to
approximate the numerator in (103) and employing the explicit

ht
tp

://
do

c.
re

ro
.c

h



expression (90) for the initial decay rate in the denominator
thus yields our final mode-coupling approximation to the
memory function,

mk(t,s,t ′) = ρ

16π3

∫
dq
Sk̄(t,t ′)Sq̄(s,t ′)Sp̄(s,t ′)

k̄2(s,t ′)k̄2(t,t ′)
×Vkqp(s,t ′)Vkqp(t,t ′)�q̄(s,t ′)(t,s)�p̄(s,t ′)(t,s).

(124)

The wave-vector restrictions enforced by the Kronecker δ
functions appearing in both the vertices and the mode-coupling
factorization of the four-point correlation function reduce the
fourfold sum in (118) to a single sum over q [which in (124)
has been replaced by an integral] and leads to a coupling of
the two “internal” wave vectors q and p via the condition
p = q − k.

We have thus arrived at a closed constitutive equation for
the rheology of colloidal suspensions which requires only the
number density ρ, the static structure factor Sq , and velocity
gradient tensor κ(t) as input. In order to calculate the stress
tensor one must first solve the nonlinear integrodifferential
equation (106) for the transient density correlator using the
approximation �̃k(t,t ′) = 0 and the approximate memory
function (124) with vertex functions (121) and (122). The
choice of flow enters via the advected wave vectors. The
transient correlator thus obtained is then substituted into
the constitutive equation (72) and integrated. There are no
adjustable parameters in our theory as such, although we accept
that the approximations we have made are not the only ones
possible. (In that sense, our theory is one of a larger family
that could be specified by adjusting parameters that remain,
at this stage, unidentified.) In the absence of flow the theory
for the transient correlator reduces to the familiar quiescent
mode-coupling theory [32].

E. Linear response

It is informative to consider the slow-flow limit of the
constitutive equation (72) for which the stress response
becomes linear in the velocity gradient tensor. To obtain
the linear response expression we, first, neglect the strain
dependence of the transient correlator and replace advected
wave vectors by their nonadvected counterparts, wherever
these appear explicitly. We thus obtain

σ (t) = −
∫ t

−∞
dt ′

∫
kk dk
32π3

k · ∂B(t,t ′)
∂t ′

· k
[
S ′
k�

2
k(t − t ′)
kSk

]2

,

(125)

where the quiescent correlator depends only on a time
difference. We next expand the Finger tensor to linear order in
the velocity gradient tensor,

B(t,t ′) = e

∫ t
t ′ ds κ(s)

+ e

∫ t
t ′ ds κT (s)

− ≈ 1 + 2
∫ t

t ′
ds κ(s), (126)

where κ = (κ + κT )/2 is the symmetrized velocity gradient
tensor. Substitution of (126) into (125) thus yields the desired

linear response result,

σ l(t) =
∫ t

−∞
dt ′

∫
dk{(k · κ(t ′) · k)kk}

[
S ′
k�k(t − t ′)
16π3kSk

]
.

(127)

The required quiescent correlator is obtained from solution of
the κ(t) → 0 limit of the equation of motion (106)

∂

∂t
�k(t) + �k

[
�k(t) +

∫ t

0
ds mk(t − s) ∂

∂s
�k(s)

]
= 0,

with initial decay rate �k = k2/Sk and memory function

mk(t) = ρ

∫
dq
SkSqSp

16π3k4
V 2

kqp�q(t)�p(t), (128)

where the vertex function is given by Vkqp = k · (qcq + pcp).
The anisotropic part of the integrand appearing in (127)

is contained within the factor {·}. The angular k integrals
can, therefore, easily be performed for a given κ(t) and it
follows that for a given steady flow rate γ̇ the Trouton ratio
of extensional viscosity ηe ≡ (σxx − σyy)/γ̇ to shear viscosity
ηs ≡ σxy/γ̇ takes the values 4 and 3 when the extensional flow
is planar and uniaxial, respectively. These simple geometrical
ratios are in compliance with Trouton’s rules, familiar to
continuum rheologists.

The elastic limit can be accessed by partial integration of
(127) and yields Hooke’s law for an incompressible isotropic
elastic body,

σ (t) = 2G∞ε(t). (129)

The infinitesimal accumulated strain is given by

ε(t) =
∫ t

−∞
ds κ(s), (130)

and the single elastic constant predicted by the theory is given
by the standard mode-coupling expression for the plateau value
of the shear modulus [2]

G∞ = 1

60π2

∫
dk k4

(
S ′
k

Sk

)2

�2
k(t → ∞). (131)

For arrested states we recall that the long time limit of the
correlator �k(t → ∞) remains finite and serves as an order
parameter for the transition from a fluid to a glass or gel. We
note that the present theory makes no prediction for the bulk
modulus, as the assumed compressible flow satisfies Tr ε = 0.

F. Material objectivity

The “principle of material objectivity” expresses the re-
quirement that the constitutive relationship between stress and
strain tensors should be invariant with respect to rotation of
either the material body or the observer, thus preventing an
unphysical dependence of the stress on the state of rotation.
Material objectivity is an approximate symmetry, based on
the neglect of inertial effects on the microscopic level (i.e.,
the influence of centrifugal and coriolis forces on particle
trajectories). Nevertheless, many soft materials display this
symmetry to an excellent level of approximation. The over-
damped Smoluchowski dynamics underlying our treatment
excludes inertial effects from the outset and, providing that
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our approximations preserve this, our set of equations (72),
(106), and (124) should be material objective.

Material objectivity can be explicity confirmed by using
(26) and (27) to eliminate the advected wave vectors in favor of
the deformation tensors E(t,t ′) and B(t,t ′). When the system
is subject to a time-dependent rotation R(t) the deformation
gradient and Finger tensors transform as [25]

Ê(t,t ′) = R(t)E(t,t ′)RT (t ′), (132)

B̂(t,t ′) = R(t)B(t,t ′)RT (t), (133)

where the hat denotes a tensor in the rotated frame. Material
objectivity is verified if the rotated stress tensor is found to be
given by

σ̂ (t) = R(t)σ (t)RT (t). (134)

A rather tedious but straightforward calculation shows that in-
sertion of the rotated deformation tensors into our constitutive
equation indeed leads to the relation (134).

VII. DISTORTED STRUCTURE FACTOR

In order to calculate the distorted structure factor Sk(t) we
use the general integration-through-transients formula with
Q-projected dynamics (54) to calculate the average of a
normalized product of two density fluctuations,

Sk(t) = 1

N
〈ρ∗

kρk〉

+ 1

N

∫ t

−∞
dt ′

〈
κ(t ′) : σ̂Qe

∫ t
t ′ ds Q�

†(s)Q
− Qρ∗

kρk

〉
. (135)

In order to arrive at a closed expression for Sk, we approx-
imate the average in the integrand using the time-dependent
projection operator (117)〈
κ(t ′) : σ̂ Qe

∫ t
t ′ ds Q�

†(s)Q
− Qρ∗

kρk

〉

≈
〈
κ(t ′) : σ̂ QP2(t,t ′)e

∫ t
t ′ ds Q�

†(s)Q
− P2(t,t ′)Qρ∗

kρk

〉
. (136)

The vertex function appearing to the left of the propagator
is given by (61), albeit with advected wave vectors replacing
static ones, whereas the vertex appearing on the right consists
of two terms. The first of these terms is identical to (62), again
with advected wave vectors replacing their static counterparts,
whereas the second term is an isotropic contribution which we
choose to neglect. Our choice to ignore this term is primarily
motivated by the fact that it seems to be quantitatively small in
comparison with the other terms [16]. (We note, however,
that the relative smallness of the isotropic term has been
judged on the basis of calculations performed within the
grand-canonical ensemble [39] which are not fully consistent
with the requirement of fixedN imposed by the Smoluchowski
equation.) If we nevertheless choose to ignore this additional
isotropic contribution and perform a factorization of the
dynamical four-point correlation function, we arrive at the
result

Sk(t) = Sk +
∫ t

−∞
dt ′

[
k(t,t ′) · κ(t ′) · k(t,t ′)

k(t,t ′)

]

× S ′
k(t,t ′)�

2
k(t,t ′)(t,t

′). (137)

Simple application of the chain-rule enables us to then further
simplify this expression to arrive at the final form,

Sk(t ; κ) = Sk −
∫ t

−∞
dt ′
∂Sk(t,t ′)

∂t ′
�2

k(t,t ′)(t,t
′). (138)

This result has the appealing interpretation that in order to
calculate the nonequilibrium flow-distorted structure factor,
one has to simply integrate the affinely advected equilibrium
static structure factor over the flow history, weighted by the
transient correlator encoding the structural relaxation of the
system. We should also note that (138) makes clear
the difference in philosophy between our approach and that
of Miyazaki et al. [37]. In Ref. [37] the distorted stucture
factor is employed as an input to the theory. In contrast, we
input the equilibrium static structure factor, which serves as
proxy for the potential interactions and generate the structural
distortion as an output.

A notable aspect of our result (138) is that we can make
a direct connection between the distorted structure factor and
our constitutive equation (72). By inspection, we find that
substitution of (138) into the expression

σ (t) = − ρ

16π3

∫
dk

kk
k
c′kSk(t) (139)

recovers (72) exactly. For the case of shear flow, (139)
coincides with a result of Frerickson and Larson for copoly-
mers [40], in some sense reflecting the Gaussian statistics
underlying both approaches.

From (139) it can be seen that our choice to ignore the
isotropic term appearing in (138) corresponds to neglecting an
isotropic contribution to the stress tensor. While the uncertainty
regarding this term thus prevents us from predicting with
confidence the system pressure, it has no consequence with
regards to the of-diagonal stress tensor elements (shear
stresses) or the normal stress differences which are, after
all, the quantities of most direct rheological significance.
Moreover, for incompressible systems the yielding behavior
of arrested states, as described by the yield stress surface [19],
is invariant with respect to isotropic pressure. The nonequilib-
rium pressure becomes relevant when addressing flow-induced
particle migration and shear banding [41]. Finally, we note
that the known ensemble dependence of the linear-response
Green-Kubo result for the bulk viscosity of compressible
fluids [42] provides circumstantial evidence supporting our
choice to suppress the isotropic contribution to (138). It seems
likely that the choice of ensemble will be important when
employing Green-Kubo-type formulas to calculate diagonal
elements of the stress tensor.

VIII. DISCUSSION

We have presented a detailed derivation of our recently
proposed constitutive equation for the rheology of dense
colloidal suspensions [4]. Our theory captures the slow
structural relaxation arising from potential interactions (the
“cage effect”) by encoding these in the decay of the transient
density correlator �k(t). External flow leads to the affine
advection of density fluctuations which competes with particle
caging and tends to accelerate the loss of memory. It is this
competition of time scales which is ultimately responsible for
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the observed transition between a shear thinning viscoelastic
fluid and a yielding glass as a function of the coupling strength.
The integration-through-transients formalism presented here
provides a means to calculate stationary averages, correlations,
and response functions [16,43] under arbitrary time-dependent
flow.

Our consitutive equation (72) has been simplified in
Ref. [19] to a schematic level and solution of the resulting
equation for a number of special cases has proved rather suc-
cessful in capturing qualitative aspects of the stress response in
a robust fashion. So far, schematic calculations have been per-
formed for steady flows [19], oscillatory shear [31], step strains
[19,44], and superposed shear and extensional flows [45].
Of particular note is that the schematic constitutive equation
predicts a dynamic yield stress surface of von Mises form [46]
together with small corrections related to the first normal stress
difference. If the schematic model is indeed a faithful represen-
tative of the phenomenology presented by the full microscopic
expression (72), as currently seems to be the case, then these
findings suggest that (72) provides a possible route to calcu-
lating the yield stress surface from first-principles theory. In
particular, the details of the yield surface could then be related
directly to the potential interactions between the particles.

A clear drawback of the present approach is the neglect
of hydrodynamic interactions between the colloids. To a
certain extent, this may be defensible within the range of flow
rates for which the basic assumptions of the theory remain
valid, namely Peclet numbers Pe ≡ γ̇ d2/D0 less than around
unity. Within this regime a simple modification of the bare
diffusion coefficient may restore much of the quantitative
error displayed by our Brownian dynamics-based expressions
when attempting to compare with experiment. However, such
superficial incorporation of hydrodynamics will not affect the
yield stress values predicted by the theory (occurring in the
limit γ̇ → 0) and may, thus, provide an incomplete picture.
A more comprehensive method by which hydrodynamics can
be included into mode-coupling-type theories is thus desirable
(perhaps along the lines of Refs. [47,48]), but care should
be taken that modifications of the theory do not destroy the
successful description of the hard-sphere glass transition.

Possibly the most questionable aspect of the present closure
approximation is our reliance on the approximation� = � =
0 (109) and (110), which constitutes a neglect of certain
stress-induced couplings, to arrive at a closed equation of
motion for the transient density correlator. Other than the
fact that they increase linearly with the accumulated strain,
we know rather little about these flow-induced terms and one
cannot draw on experience from the quiescent theory to assess
their importance. The central nature of such an uncontrolled
approximation within the present formulation could serve as
motivation to seek an alternative formalism in which they do
not occur [perhaps employing an operator other than (83).]
In any case, if the yield strain were found to be large, then
the implicit assumption of a harmonic free energy functional,
which underpins the entire mode-coupling approach, would
need correction by higher-order terms; it seems reasonable to
hope that �̃k(t,t ′) can be neglected on the same basis. Some
further arguments for neglecting �̃k(t,t ′), made in the context
of steady shear flows but not specific to that case, are made
in Ref. [16]. However, further work to understand the origin

of this term and, if possible, to better justify its elimination
would certainly be desirable.
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APPENDIX A: TIME-ORDERED EXPONENTIALS

The positively time-ordered exponential function of an
arbitrary time-dependent operator A(t) is defined by the series
expansion [49,50]

e

∫ t2
t1
dsA(s)

+ = 1 +
∫ t2

t1

ds1A(s1) +
∫ t2

t1

ds1

∫ s1

t1

ds2A(s1)A(s2)

+
∫ t2

t1

ds1

∫ s1

t1

ds2

∫ s3

t1

ds3A(s1)A(s2)A(s3) + · · · .
(A1)

The negatively ordered exponential is similarly defined by

e

∫ t2
t1
dsA(s)

− = 1 +
∫ t2

t1

ds1A(s1) +
∫ t2

t1

ds1

∫ s1

t1

ds2A(s2)A(s1)

+
∫ t2

t1

ds1

∫ s1

t1

ds2

∫ s3

t1

ds3A(s3)A(s2)A(s1)+ · · · .
(A2)

By multiplying out the series expansions in (A1) and (A2) the
following identities can be proven

e
± ∫ t2

t1
dsA(s)

+ e
∓ ∫ t2

t1
dsA(s)

− = 1, (A3)

e
± ∫ t2

t1
dsA(s)

− e
∓ ∫ t2

t1
dsA(s)

+ = 1, (A4)

where care must be taken that causality is respected within
the multiple integrals. These results are consistent with the
expressions (32) and (33) for the deformation gradient and
inverse, respectively. Using the series expansions (A1) and
(A2) the following useful results for the derivatives of time-
ordered exponential functions are easily proven

∂

∂t2

[
e

∫ t2
t1
dsA(s)

+
]

= A(t2)
[
e

∫ t2
t1
dsA(s)

+
]
, (A5)

∂

∂t1

[
e

∫ t2
t1
dsA(s)

+
]

= −
[
e

∫ t2
t1
dsA(s)

+
]
A(t1), (A6)

∂

∂t2

[
e

∫ t2
t1
dsA(s)

−
]

=
[
e

∫ t2
t1
dsA(s)

−
]
A(t2), (A7)

∂

∂t1

[
e

∫ t2
t1
dsA(s)

−
]

= −A(t1)
[
e

∫ t2
t1
dsA(s)

−
]
. (A8)

Finally, we note that the adjoint operation satisfies[
e

∫ t2
t1
dsA(s)

+
]†

= e

∫ t2
t1
dsA†(s)

− , (A9)

[
e

∫ t2
t1
dsA(s)

−
]†

= e

∫ t2
t1
dsA†(s)

+ . (A10)
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APPENDIX B: OPERATOR IDENTITY

The following operator identity has proved useful in ana-
lyzing the translational invariance of the two-time correlation
functions:

e

∫ t2
t1
ds[A(s)+B(s)]

−

= exp−

[ ∫ t2

t1

ds A(s)

]

× exp−

[ ∫ t2

t1

ds e
− ∫ t2

s
ds ′A(s ′)

+ B(s) e
∫ t2
s
ds ′A(s ′)

−

]
, (B1)

where A(t) and B(t) are two arbitrary time-dependent opera-
tors. The proof proceeds by, first, defining the operator

U+(t2,t1) = e

∫ t2
t1
ds[A(s)+B(s)]

−

=
∞∑
n=0

∫ t2

t1

ds1 · · ·
∫ sn−1

t1

dsn[A(sn) + B(sn)]

× · · · [A(s1) + B(s1)], (B2)

where it is understood that the n = 0 term is unity. The
derivative is thus given by

∂

∂t2
U+(t2,t1) = U+(t2,t1)[A(t2) + B(t2)]. (B3)

We now define a new operator,

Ũ (t2,t1) = e

∫ t2
t1
ds c(t2,s)

−

=
∞∑
n=0

∫ t2

t1

ds1 · · ·
∫ sn−1

t1

dsnc(t2,sn) · · · c(t2,s1), (B4)

where c(t2,s) is at present an arbitrary function. The derivative
of this new operator is given by

∂

∂t2
Ũ (t2,t1) = Ũ (t2,t1)c(t2,t2)

+
∞∑
n=0

∫ t2

t1

ds1 · · ·
∫ sn−1

t1

dsn[c
′(t2,sn) · · · c(t2,s1)

+ c(t2,sn) c′(t2,sn−1) · · · c(t2,s1)

+ · · · c(t2,sn) · · · c′(t2,s2) c(t2,s1)

+ c(t2,sn) · · · c′(t2,s1)]. (B5)

Defining c(t2,s) (up to boundary conditions) in the following
way,

∂

∂t2
c(t2,s) = c(t2,s)A(t2) − A(t2)c(t2,s), (B6)

leads to many convenient cancellations when substituted into
(B5), resulting in

∂

∂t2
Ũ (t2,t1) = Ũ (t2,t1)c(t2,t2)

+ Ũ (t2,t1)A(t2) − A(t2)Ũ (t2,t1). (B7)

Choosing the boundary condition c(t2,t2) = B(t2) yields

∂

∂t2
Ũ (t2,t1) + A(t2)Ũ (t2,t1) = Ũ (t2,t1)(A(t2) + B(t2)).

(B8)

Multiplying (B8) on the right with a negatively ordered
exponential yields

∂

∂t2

[
e

∫ t2
t1
dsA(s)

− Ũ (t2,t1)
]

=
[
e

∫ t2
t1
dsA(s)

− Ũ (t2,t1)
]
[A(t2) + B(t2)].

(B9)

Comparison of (B3) with (B10) allows the identification

U+(t2,t1) = e

∫ t2
t1
dsA(s)

− Ũ (t2,t1). (B10)

Using (B2) and (B4) to write U+ and Ũ as exponentials thus
yields

e

∫ t2
t1
ds [A(s)+B(s)]

− = e

∫ t2
t1
ds A(s)

− e

∫ t2
t1
ds c(t2,s)

− . (B11)

Finally, we require an explicit form for c(t2,s). Using our
chosen boundary condition c(t2,t2) = B(t2) enables solution
of (B6)

c(t2,s) = e
− ∫ t2

t1
ds ′A(s ′)

+ B(s)e
∫ t2
t1
ds ′A(s ′)

− , (B12)

as can be verified by substitution of (B12) into (B6). Substitu-
tion of (B12) into (B11) thus yields the desired result (B1).

APPENDIX C: HADAMARD LEMMA

For noncommuting, time-independent operators X and Y
there exists a well-known identity (the Hadamard lemma),

eXYe−X = Y + [X,Y ] + 1

2!
[X,[X,Y ]]

+ 1

3!
[X,[X,[X,Y ]]] + · · · , (C1)

where [X,Y ] is the commutator. Proof follows from defining
the function f (s) = esXYe−sX, Taylor expanding about s = 0
and then setting s = 1. (C1) can be particularly useful in cases
for which the sequence of nested commutators truncates at a
low order or when the infinite series can be resummed into a
closed form.

When employing the operator identity (B1) a structure
analogous to the left-hand side of (C1) arises naturally in one
of the factorized exponential functions. We are, thus, motivated
to find a continuous version of the Hadamard lemma, which
may be useful in simplifying (B1) for certain special cases.
For arbitrary time-dependent operators A(t) and B(t), we find
the following nested commutator expansion,

e
− ∫ t

s
ds ′A(s ′)

+ B(s) e
∫ t
s
ds ′A(s ′)

−

= B(s) −
∫ t

s

ds1 [A(s1),B(s)]

+
∫ t

s

ds1

∫ s1

s

ds2 [A(s1),[A(s2),B(s)]]

−
∫ t

s

ds1

∫ s1

s

ds2

∫ s2

s

ds3 [A(s1),[A(s2),[A(s3),B(s)]]]

+ · · · , (C2)

which is a continuum version of (C1). The proof proceeds by,
first, defining the operator

F (t,s) = e
− ∫ t

s
ds ′A(s ′)

+ B(s) e
∫ t
s
ds ′A(s ′)

− . (C3)

ht
tp

://
do

c.
re

ro
.c

h



Differentiation with respect to t leads to

∂F (t,s)

∂t
= −A(t)F (t,s) + F (t,s)A(t), (C4)

where we have used (A5) and (A7). Integration of (C4) from
s to t yields a recursion relation

F (t,s) = B(s) −
∫ t

s

ds1[A(s1)F (s1,s) − F (s1,s)A(s1)],

(C5)

where we have made the identification F (s,s) = B(t).
Straightforward iteration of (C5) directly generates the series
(C2).

APPENDIX D: VOLTERRA EQUATION

A Volterra integral equation of the second kind for the
function �k(t,t ′) can be written the following form [36]:

�k(t,t ′) = gk(t,t ′) +
∫ t

t ′
ds Kk(t,s,t ′)�k(s,t ′). (D1)

The wave-vector subscripts are irrelevant in the formal solution
of this temporal integral equation but are, nevertheless,
included here to facilitate comparison with the equations
appearing in the main text. Subject to certain reasonable
conditions on both the kernel Kk(t,s,t ′) and inhomogeneity
gk(t,t ′), the solution is given by

�k(t,t ′) = gk(t,t ′) −
∫ t

t ′
ds Rk(t,s,t ′) gk(s,t ′), (D2)

where the resolvent kernel R(t,s,t ′) satisfies the following
linear integral equation

Rk(t,s,t ′) = −Kk(t,s,t ′) +
∫ t

s

ds ′Kk(s ′,s,t ′)Rk(t,s ′,t ′).

(D3)

These results can be used to solve directly the inhomogeneous
equation (104). Comparing (104) with (D1) enables the
identification

Kk(t,s,t ′) = −Mk(t,s,t ′)/�k(t,t ′). (D4)

Substitution of (D4) into (D3) and comparison of the resulting
equation with (102) identifies the resolvent kernel

Rk(t,s,t ′) = −mk(t,s,t ′)�k(s,t ′). (D5)

Substitution of (D5) into (D2) yields the solution (106).

APPENDIX E: SIMPLIFYING THE FRICTION KERNEL

When attempting to simplify the friction kernel entering
(106) it is useful to convert advection operators involving
δ�†(t) to analogous quantities involving δ�†(t). This can be
achieved using the identities

e

∫ t
t ′ ds δ�

†(s)
− = e

∫ t
t ′ ds δ�

†(s)
− [1 +�(t,t ′)], (E1)

e
− ∫ t

t ′ ds δ�
†(s)

+ = [1 +�(t,t ′)]e
− ∫ t

t ′ ds δ�
†(s)

+ , (E2)

where we have introduced the two operators

�(t,t ′) =
∫ t

t ′
ds e

− ∫ t
s
ds ′ δ�†(s ′)

+ κT (s) : σ̂ e

∫ t
s
ds ′ δ�†(s ′)

− , (E3)

�(t,t ′) =
∫ t

t ′
ds e

− ∫ t
s
ds ′ δ�†(s ′)

+ κT (s) : σ̂ e

∫ t
s
ds ′ δ�†(s ′)

− . (E4)

In the main text we will argue that both � and � can be set
to zero in the final approximation. Proof of (E1) follows from
considering the derivative

∂

∂t ′
[
e
− ∫ t

t ′ ds δ�
†(s)

+ e

∫ t
t ′ ds δ�

†(s)
−

]
= e

− ∫ t
t ′ ds δ�

†(s)
+ [δ�†(t) − δ�†(t)]

× e
∫ t
t ′ ds δ�

†(s)
− (E5)

and integration from t ′ to t . The proof of (E2) is analogous.
The identity (E1) is helpful in simplifying the irreducible

time evolution operator given by

G irr(t,t ′) = G(t,t ′)Q̃(t,t ′). (E6)

Using (E1) to replace the leftmost ordered exponential in (87)
yields a natural division into two terms,

G irr(t,t ′) = [GQ(t,t ′) + G�(t,t ′)]Q̃(t,t ′), (E7)

where

GQ(t,t ′) = e

∫ t
t ′ ds δ�

†(s)
− Q(t,t ′)�†

e e
− ∫ t

t ′ ds δ�
†(s)

+ , (E8)

G�(t,t ′) = e

∫ t
t ′ ds δ�

†(s)
− �(t,t ′)Q(t,t ′)�†

e e
− ∫ t

t ′ ds δ�
†(s)

+ . (E9)

The purpose of this manipulation is that under the assumption
that �(t,t ′) vanishes we obtain G irr(t,t ′) ≈ GQ(t,t ′)Q̃(t,t ′),
which is an operator in the space perpendicular to linear density
fluctuations. This consideration then leads us to define the
propagator

U irr
Q (t,s,t ′) ≡ e

∫ t
s
ds ′ GQ(s ′,t ′)Q̃(s ′,t ′)

− , (E10)

which generates dynamics in the space perpendicular to linear
density fluctuations.
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[33] W. Götze and S. J. Sjögren, Rep. Prog. Phys. 55, 241 (1992).
[34] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics

(Oxford University Press, Oxford, UK, 1989).
[35] R. T. Foister and T. G. M. van de Ven, J. Fluid Mech. 96, 105

(1980).
[36] F. G. Tricomi, Integral Equations (Dover, London, 1985).
[37] K. Miyazaki, D. R. Reichman, and R. Yamamoto, Phys. Rev. E

70, 011501 (2004).
[38] F. Varnik, J. Chem. Phys. 125, 164514 (2006).
[39] O. Henrich, O. Pfeifroth, and M. Fuchs, J. Phys.: Condens.

Matter 19, 205132 (2007).
[40] G. H. Fredrickson and R. G. Larson, J. Chem. Phys. 86, 1553

(1987).
[41] R. Besseling, L. Isa, P. Ballesta, G. Petekidis, M. E. Cates, and

W. C. K. Poon, Phys. Rev. Lett. 105, 268301 (2010).
[42] R. Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965).
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