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In this work, we generalize the numerical approach to Gaudin models developed earlier by us [Faribault, El
Araby, Sträter, and Gritsev, Phys. Rev. B 83, 235124 (2011)] to degenerate systems, showing that their treatment
is surprisingly convenient from a numerical point of view. In fact, high degeneracies not only reduce the number
of relevant states in the Hilbert space by a non-negligible fraction, they also allow us to write the relevant
equations in the form of sparse matrix equations. Moreover, we introduce an inversion method based on a basis of
barycentric polynomials that leads to a more stable and efficient root extraction, which most importantly avoids
the necessity of working with arbitrary precision. As an example, we show the results of our procedure applied
to the Richardson model on a square lattice.

I. INTRODUCTION

Gaudin-type models represent a fertile basis for an
exact approach to the dynamics of quantum many-body
systems. These models do not require fine-tuning of the
Hamiltonian’s parameters to satisfy integrability conditions.
This is especially attractive from an applicational point of
view since these parameters can represent physical coupling
of the model. A particular example would be the central
spin Hamiltonian1 where the coupling constants between the
central spin and the individual surrounding spins are related
to the parameters of the Gaudin model in a simple way.
We are talking about a nondegenerate model when all these
couplings are different. Nondegenerate Gaudin-type models
have received considerable attention recently. Apart from
central spin physics, they are relevant to a mesoscopic BCS,2

Dicke model,3 Lipkin-Meshkov-Glick, and many other phys-
ical models.4 However, in many physical situations there are
natural degeneracies coming from the spectrum of the model.
Thus, in the BCS model the bare dispersion relation εd (k)
of paired fermions on a d-dimensional finite lattice defines
the coupling constants of the Gaudin model according to a
simple equation, εd (k) = εi . On a regular lattice, this equation
may have several solutions, and thus the spectrum of Gaudin
parameters εi is degenerate. The degeneracy depends on the
geometry of the lattice and is normally a number of the order
of 1.

Recently, we introduced a fruitful approach for solving
Bethe equations for the Gaudin models.5 The basic idea
is to use an equivalent reformulation of the complex cou-
pled Bethe ansatz (BA) equations in terms of an ordinary
differential equation (ODE), a method known as BA/ODE
correspondence.6 In the spirit of our previous work, here
we generalize our approach to degenerate systems. It was
previously shown7 that in certain nonequilibrium situations in
the nondegenerate Richardson model the number of relevant
eigenstates (those bringing a non-negligible contribution to the
wave function) can be small, drastically reducing the effective
Hilbert space. However, in more general situations, a large
number of eigenstates may be necessary, therefore making an
efficient solver desirable.

Degeneracies can play an important role in this respect
since the number of solutions to the Bethe equations is auto-
matically reduced compared to an equally large nondegenerate
system. Moreover, we show that the matrix equations involved
become supersparse for high degeneracies, leading to further
simplifications. This property allows us to improve the system
size without losing computational speed and study dynamics
of extremely large systems compared to the usual Bethe ansatz
solvable models’ size for nondegenerate systems.

In the end, we are looking for polynomial solutions to a
second-order differential equation [see Eq. (25)], a procedure
that is in every regard equivalent to the Heine-Stieltjes
polynomial approach discussed in Refs. 8 and 9, for example.
Here the differential equation depends on a nontrivial set of
parameters, which we first extract from the solutions of an
ensemble of quadratic algebraic equations according to the
procedure described in Secs. II–V. The first one summarizes
the results of our previous paper,5 while in the following we
explicitly derive all the relevant equations for the degenerate
case. The polynomial of interest can then be obtained using
a method based on the Lagrange polynomial basis, which is
explained in Sec. VI and can be used for either the degenerate
or the nondegenerate Gaudin model. The techniques discussed
are finally applied to the Richardson model on a square lattice
in Sec. VII.

II. FROM BETHE ANSATZ TO ORDINARY
DIFFERENTIAL EQUATIONS

This work deals with a set of quantum integrable models
that fall in the rational family of Gaudin models defined by the
following operator algebra:

[Sκ (λi),S
κ+1(λj )] = ig

Sκ+2(λi )−Sκ+2(λj )
λi−λj

,
(1)

[Sκ (λi),S
κ (λj )] = 0,κ = x,y,z.

For any realization of the rational Gaudin algebra, a set of
N commuting operators Ri can be defined, therefore allowing
the construction of exactly solvable Hamiltonians of the form∑

i ηiRi .
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The reduced BCS Hamiltonian on a regular lattice,

H =
∑
k,σ

εd (k)ĉ†k,σ ĉk,σ − g
∑
k,k′

ĉ†k,↑ĉ†−k,↓ĉ−k′,↓ĉk′,↑,

is a natural example of a degenerate model built according
to (1) and will be illustrated in Sec. VII. This paper’s aim is
to provide an efficient and numerically stable algorithm that
allows one to find exact eigenstates of this particular type
of model by exploiting its quantum integrability through the
algebraic Bethe ansatz.

In this formalism, by defining a pseudovacuum |0〉, one can
write exact eigenstates of the system in a remarkably compact
form defined by the repeated action of a Gaudin operator on

|{λ1, . . . ,λM}〉 ∝
∏

i

S+(λi)|0〉. (2)

Here S+(u) = Sx(u) + iSy(u) plays the role of a generalized
creation operator parametrized by a single complex variable u

whose explicit expression in terms of the fundamental opera-
tors defining a particular system will be model-dependent.4,5,10

In every case, the pseudovacuum |0〉 is defined as a lowest
weight vector such that S−(u)|0〉 = 0 for any value of u which
would be the Fock vacuum in the case of the reduced BCS
Hamiltonian. This set of general states becomes eigenstates
of the Hamiltonian provided the rapidities are solutions to
the set of nonlinear algebraic equations collectively known
as Bethe equations. Specializing to rational Gaudin models,
the general form of Bethe equations that we address is
given by

F (λi) =
∑
j �=i

1

λi − λj

, (3)

with

F (λk) = −
N∑

i=1

Ai

(εi − λk)
+ B

2g
λk + C

2g
. (4)

We will denote the ensemble of N distinct {εj } as “energy
levels,” g as the “coupling constant,” and N as the “total
number of levels” (for nondegenerate systems, N = N ,
otherwise degeneracies make N > N ). While the physical
nature of these parameters differs from model to model, in the
Richardson case discussed here these parameters do indeed
correspond, respectively, to single-particle energy levels and
coupling constant.

To each distinct energy εj we can associate a degeneracy
dj and a (pseudo)spin magnitude sj . The coefficients Aj are
then a product of those two values Aj = sj dj . In the remainder
of this paper, we deal only with degenerate spin-1/2 systems
and we therefore fix all sj = 1/2 and have Aj = dj/2. An
arbitrary spin would simply modify Aj in a way that is strictly
equivalent to a larger degeneracy. One should note here that
a degeneracy in the energy levels or a larger spin actually
differ since in the degenerate case the solutions to the Bethe
equations no longer form a complete basis of the Hilbert space.
However, the resulting subspace is orthogonal to the rest of the
Hilbert space, and therefore even for nonequilibrium problems,
provided the initial condition only involves this subspace, its
elements remain the only states required to study the unitary

time evolution. This work only addresses the numerical issues
associated with finding the particular subset of eigenstates
corresponding to solutions of Eq. (3) applied to the particular
pseudovacuum defined before.

Solutions of (3) are found by scanning from the starting
point g = 0 for which the solutions are known (λi → εk for
the Richardson model) and going to finite g via successive
steps. Rapidities λk can be real or pairs of complex conjugates;
the points in g at which two real rapidities form a complex
pair (or vice versa) can lead to numerical instabilities when
working directly with the λk themselves. In Ref. 11, an
algorithm that finds these points beforehand allowing one to
control the equations in the critical regions has been proposed.
Here, however, in order to avoid these difficulties, we simply
introduce the function

�(z) ≡
M∑

k=1

1

z − λk

= P ′(z)

P (z)
, (5)

where P (z) = ∏M
k=1(z − λk). The zeros of P (z) then corre-

spond to the roots λk of the Bethe equations (BA).
One can easily show that, whenever the set of rapidities λk

satisfies BA, the ODE

�′(z) + �2(z) −
N∑

α=1

2F (λα)

z − λα

= 0 (6)

is satisfied.
If we restrict our investigation to nondegenerate spin-1/2

systems, we would only need to solve the simple quadratic
equations

�2
j = g

∑
i �=j

�j − �i

εj − εi

+ �j, (7)

which are obtained by taking the limit z → εj of Eq. (6),
setting Ai = 1/2∀i and �j = g�(εj ).

Once a set {�j } solution to Eq. (7) is found, the corre-
sponding set of rapidities {λk} can be obtained by solving only
linear equations and running a standard root-finding algorithm.
While in previous publications5,12 it was suggested to use
elementary symmetric polynomials to build the linear system,
in Sec. VI we propose to use a different polynomial basis that
leads to much improved numerical stability.

III. DEGENERATE SYSTEMS

For the generalization to degenerate systems, we obtain
successive differential equations by taking the first nth deriva-
tives of Eq. (6). To do that, let us establish some notations
first. For each pair (εj ,Aj ), we then have to solve a system of
equations which contains the first dj th derivatives of (6) and
the first dj th derivatives of �j ; this of course has to be done
for all j .

The general form of the nth derivative of (6) is derived
in Appendix A. Equation (A12) for �

(n)
j = gn+1�(εj )(n) ≡
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gn+1 dn�(z)
dzn

∣∣∣
z=εj

reads

E (n)
j (g) = κ

(n)
j (g) +

n∑
k=0

(
n

k

)
�

(k)
j �

(n−k)
j

−
(

Bnεj

g
�

(n−1)
j + C�

(n)
j

)

+
(

1 − dj

n + 1

)
�

(n+1)
j = 0, (8)

with

κ
(n)
j (g) := −

N∑
i �=j

din!

(
gn+1 �i − �j

(εi − εj )n+1

−
n∑

k=1

gk 1

(n + 1 − k)!

�
(n+1−k)
j

(εi − εj )k

)
. (9)

The last term of (8) cancels for dj = n + 1. Thus, given a
set of pairs {(ε1,d1),(ε2,d2), . . . ,(εk,dk)}, we define a closed
set of quadratic algebraic equations by using, for each pair,
the corresponding set of equations: i.e., for dj = 1 we solve
equation E (0), which depends on �

(0)
j ; for dj = 2 we solve

(E (0),E (1)) in terms of (�(0)
j ,�

(1)
j ); and so on.

IV. WEAK-COUPLING LIMIT OF THE BA EQUATIONS

Once all the equations for �j and its derivatives are
set, the fact that they are nonlinear requires the use of an
iterative method. To do so, one always needs an initial guess,
which constitutes a good enough approximation to guarantee
convergence to the desired solution of the BA equations.
As previously mentioned, this will be achieved by slowly
increasing the coupling constant g, but to begin this process
we need to solve the Bethe equations in the weak-coupling
limit for a general degenerate system.

The original form of BA equations is

−
M∑
i �=k

2

λk − λi

+
N∑

i=1

di

λk − εi

+ B

g
λk + C

g
= 0, (10)

where N is the number of distinct energies εi .
We know already that for g = 0 the roots will simply

correspond to the values of the single energy states λk = εik

which are occupied [the (pseudo)spins which are flipped with
respect to the pseudovacuum]. Linearizing the system for weak
coupling by inserting the solution

λk = εj + g	k (11)

in (10), multiplying the obtained equation by g, and taking the
limit g → 0, the BA equations become

−
r∑

i �=k

2

	k − 	i

+ dj

	k

+ Bεj + C = 0, (12)

where r is the number of roots occupying the single energy εj

at g = 0.

It is now possible to introduce the polynomial f (x) =∏r
k=1(x − 	k), which has the property

lim
x→	k

f ′′

f ′ =
∑
i �=k

2

	k − 	i

. (13)

Thus Eq. (12) can be written in the form of a differential
equation (in the limit x → 	k),

djf
′ − xf ′′ + (Bεj + C)xf ′ = 0. (14)

The function F (x) = djf
′(x) − xf ′′(x) + (Bεj + C)xf ′(x) is

a polynomial of the same degree r as f (x) and with the
same roots. The two polynomial are thus proportional to each
other and the coefficient of proportionality is r (see Ref. 13).
Therefore, we have F (x) = rf (x) and the equation can be
written as follows:

xf ′′(x) − [dj + (Bεj + C)x]f ′(x) + rf (x) = 0. (15)

The known solutions of Eq. (15) for B = 0 and C = 1 (which
encompasses the central spin and Richardson models) are the
generalized Laguerre polynomials L

−1−dj

r (x). Therefore, for
weak coupling, the solutions to the BA equations correspond
to λk = εj + g	k with 	k roots of the Laguerre polynomials

L
−1−dj

r (x).

V. HOW TO PROCEED

In order to solve the sets of quadratic equations defined by
(8), we use a combination of the Taylor expansion to generate
an approximative solution at g + δg and Newton’s method to
refine this approximation. For both methods, we need to solve
a linear system of equations defined by the block-(N × N )
matrix,

S =

⎛
⎜⎜⎝

S11 · · · S1N

...
. . .

...

SN1 · · · SNN

⎞
⎟⎟⎠, (16)

in which each pair of indexes (i,j ) defines a matrix

Sij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂E (0)
i

∂�
(0)
j

· · · ∂E (0)
i

∂�
(dj −1)

j

...
. . .

...

∂E (di−1)
i

∂�
(0)
j

· · · ∂E (di−1)
i

∂�
(dj −1)

j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(17)

with matrix elements given by

∂E (n)
j

∂�
(p)
j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, p > n + 1,

1 − dj

n+1 , p = n + 1,∑
i �=j

din!gn−p+1

p!(εi−εj )n−p+1 + 2
( n

p

)
�

(n−p)
j , p < n,

−1 + ∑
i �=j g di

εi−εj
+ 2�

(0)
j , p = n,

(18)
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and for i �= j ,

∂E (n)
i

∂�
(p)
j

=
{

−djn! gn+1

(εj −εi )n+1 , p = 0,

0, p �= 0.
(19)

To have an idea of the structure of S, consider an N = 3 system
with dj = 3∀j . We would have

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

∗ ∗ 0

∗ ∗ ∗
∗ ∗ ∗

⎞
⎟⎠

⎛
⎜⎝

∗ 0 0

∗ 0 0

∗ 0 0

⎞
⎟⎠

⎛
⎜⎝

∗ 0 0

∗ 0 0

∗ 0 0

⎞
⎟⎠

⎛
⎜⎝

∗ 0 0

∗ 0 0

∗ 0 0

⎞
⎟⎠

⎛
⎜⎝

∗ ∗ 0

∗ ∗ ∗
∗ ∗ ∗

⎞
⎟⎠

⎛
⎜⎝

∗ 0 0

∗ 0 0

∗ 0 0

⎞
⎟⎠

⎛
⎝∗ 0 0

∗ 0 0
∗ 0 0

⎞
⎠

⎛
⎝∗ 0 0

∗ 0 0
∗ 0 0

⎞
⎠

⎛
⎝∗ ∗ 0

∗ ∗ ∗
∗ ∗ ∗

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which does contain a lot of zeros. It should be obvious that for
very large systems with high degeneracies, this sparse structure
of S will play an important role with respect to computation
time.

The Taylor expansion allows us to take larger steps by
taking into account the derivatives of �

(n)
j with respect to g.

For a step δg, the first guess will thus be given by

�
(n)
j (g + δg) ≈

l∑
k=0

(δg)k

k!

∂k�
(n)
j

∂gk
≡

l∑
k=0

(δg)k

k!
�

(n,k)
j , (20)

where we note
∂k�

(n)
j

∂gk ≡ �
(n,k)
j , the function �j differentiated

n times with respect to εj and k times with respect to g.
The g derivatives in (20) can be found by recursively solving

the linear system

A
v(k) = 
R(k),


v(k) = (
�

(0,k)
1 , . . . ,�

(d1−1,k)
1 , . . . ,�

(0,k)
N , . . . ,�

(dN −1,k)
N

)
, (21)


R(k) = (
R

(0,k)
1 , . . . ,R

(d1−1,k)
1 , . . . ,R

(0,k)
N , . . . ,R

(dN −1,k)
N

)
,

and the elements of vector 
R(k) are given by

R
(n,k)
j = −

k−1∑
s=1

(
k

s

) n∑
l=0

(
n

l

)
�

(l,s)
j �

(n−l,k−s)
j

+
N∑

i �=j

din!
k∑

s=1

(
k

s

)
s!

×
[(

n + 1
s

)
gn+1−s

�
(0,k−s)
i − �

(0,k−s)
j

(εi − εj )n+1

−
n∑

l=1

(
l

s

)
gl−s

�
(n−l+1,k−s)
j

(n − l + 1)!(εi − εj )l

]
. (22)

Since only the right-hand side of (22) depends on k, we
will only need to decompose matrix A once (using the usual
approaches for linear systems such as QR decomposition, LU
decomposition, inversion, etc.) and solve the linear system for
the new vector 
R(k) up to a fixed number of derivatives. After

the first guess is obtained, a typical Newton method can be
used to finally get an accurate solution.

VI. ROOT EXTRACTION

A. General setup

Having obtained solutions for the set of variables {�i}
previously defined, it remains necessary to extract the ac-
tual rapidities from this set. In fact, Slavnov’s determinant
formulas,14 which give compact representations for scalar
products and matrix elements, are still only defined in terms
of {λi}. In simple terms, one needs to find the roots of
the polynomial P (z) which ultimately correspond to a given
solution of the Bethe equations (3).

While this constitutes a standard root-finding problem,
the position of the roots in the complex plane can lead to
numerical difficulties. In previous papers,5,12 the monomial
expansion P (z) = ∑M

n=0 Pn({λi})zn was used. In this case,
the coefficients are simply given in terms of the elementary
symmetric polynomials of the set {λi}, which, in principle,
can be found by solving a linear system of equations.
For a nondegenerate model, one would use M equations
given by

P (εj )�(εj ) = P ′(εj ),
(23)

�(εj )
M∑

m=0

εm
j PM−m =

M∑
m=0

mεm−1
j PM−m.

However, as shown by Wilkinson’s numerical studies,15

expressing a polynomial in terms of its monomial expan-
sion can give rise to serious numerical problems. In fact,
the evaluation of the polynomial at a point z far from 0
becomes very sensitive to the finite numerical precision of
the coefficients at large powers. In the end, the numerical
error becomes rapidly sufficient to affect even the structure
(real versus complex-conjugate pairs) of the roots. In order
to circumvent that problem, we use an alternative repre-
sentation of the P (z) polynomial by decomposing it onto
the basis of Lagrange polynomials just like for polynomial
interpolation. Picking any grid of NG = M + 1 distinct points
zi and the corresponding values P (zi), one can exactly
write

P (z) = �(z)
NG∑
i=1

wiP (zi)

z − zi

≡ �(z)
NG∑
i=1

ui

z − zi

, (24)

where we defined �(z) ≡ ∏M+1
i=1 (z − zi), the barycentric

weights wi = 1∏M+1
j=1,j �=i(zi − zj )

, and ui ≡ wiP (zi). While

NG = M + 1 points is a minimal requirement to represent
a general polynomial of order M , here only M points are in
fact necessary since the zM coefficient is trivially 1.

From the Riccati ODE (6), it is simple to show that the
polynomial obeys the following second-order ODE:

P ′′(z) − F (z)P ′(z) + G(z)P (z) = 0 (25)
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with

F (z) = C

g
+ Bz

g
+

N∑
j=1

dj

z − εj

,

(26)

G(z) = MB

g
+

N∑
j=1

dj�(εj )

z − εj

.

Independently of the degeneracies dj , it becomes possible to
write a sufficiently large system of linear equations whose
solution fully specifies the polynomial P (z). Indeed, the first
two derivatives of the barycentric representation (24) are easily
shown to be given by

P (z)

�(z)
=

M+1∑
i=1

ui

z − zi

,

P ′(z)

�(z)
=

M+1∑
i �=j (=1)

ui

(z − zi)(z − zj )
, (27)

P ′′(z)

�(z)
=

M+1∑
i �=j �=k(=1)

ui

(z − zi)(z − zj )(z − zk)
.

Provided zi differs from every εj [so that F (zi) and G(zi)
remain finite], Eq. (25) evaluated at z = zi leads to the linear
(in the coefficients uj ) equation

∑
j �=k(�=i)

ui

(zi − zj )(zi − zk)
+ 2

M+1∑
j �=k(�=i)

uj

(zi − zj )(zi − zk)

−F (zi)

( ∑
j �=i

ui

(zi − zj )
+

∑
j �=i

uj

(zi − zj )

)
+ G(zi)ui = 0.

(28)

For a grid point zi = εi , one can use the simpler P ′(εi) =
�(εi)P (εi) and find the equation

M+1∑
j (�=i)

ui

(εi − zj )
+

M+1∑
j (�=i)

uj

(εi − zj )
= �(εi)ui. (29)

For any given grid {zi}, one can therefore obtain the
coefficients {ui} of the Lagrange basis representation simply
by solving a set of linear equations. With this set of coefficients,
we have a representation of the polynomial from which we
can extract its zeros using the standard Laguerre’s method
with deflation [i.e., dividing by (x − λ) whenever a root λ

is found]. In this representation, deflation is a very simple
task as well since it can be performed by shifting one grid
point, say z1, to the newfound root λ. In doing so, we simply
set u1 ≡ w1P (λ) = 0 since the polynomial has a root at that
point. At the other points, we have uj → uj

zj −z1

zj −λ
due to the

change in the barycentric weight wi . We can then reduce the
degree of the polynomial by 1 by simply removing the z1 → λ

point and repeat the procedure using the remaining NG − 1
grid points.

In this construction, we are free to choose the grid {zi}
as we please, and this fact can be exploited to ensure a
numerically stable calculation. Indeed, this representation of
the polynomial is heavily sensitive to numerical precision

only when evaluating the polynomial at points z which are
far from any grid point zi . Provided one can define a grid
which is close enough to the actual roots zi(g) ≈ λi(g), the
impact of finite numerical precision can be controlled. In any
case, the remaining error on the rapidities extracted from this
procedure can always be corrected by refining the values using
the original Bethe equations (3). One should understand that
an arbitrary set of zi cannot provide a numerically stable
extraction of the rapidities. However, contrary to any fixed
polynomial basis (such as the monomial expansion, for exam-
ple), the Lagrange basis always makes it possible to choose an
appropriate interpolation grid, which leads to a stable result.

B. Choosing the grid

Whenever one is interested in studying the system for a
wide variety of coupling strengths, the root extraction should
then be performed at a number of intermediate points in the
coupling strength scan. One could then simply define the grid
points (at g + 	g) as the roots found at the previous point
zi(g + 	g) = λi(g), which guarantees proximity of the grid
to the actual solution and should always lead to numerically
stable evaluation of the polynomial.

However, when studying a single given value of the cou-
pling strength, it is prohibitively time-consuming to perform
the root extraction at intermediate points, and one should
instead exploit our knowledge of the properties of any given
solution to the Bethe equations to define an appropriate set of
points zi(g) which mimics the positions of roots to be found.

At weak coupling, every rapidity is contained within
the bandwidth of the energy levels [ε1,εN ], with each root
corresponding to a given energy level. It is then a trivial task to
define a grid which is close to the roots. In the particular cases
treated here and shown in Figs. 2 and 3, we choose two different
sets of grid points. The first set is the one that provides solutions
to the BA at weak g. Here we use the linearized solution given
by Eq. (11) and substitute g → 0.1. In this way we ensure
proximity to the actual solution but at the same time avoid the
risk of having to evaluate P (z)

�(z) at z → zj . At some point in
the computation, the actual solution approaches the grid and
the evaluation of P (z)

�(z) leads to a loss of stability. Since this
occurs at a different point in g depending on the state and
the system size, we simply use the original BA equations
to determine how close the extracted roots are to the right
solution. When a criterion on the precision is no longer met, we
simply set the new grid to be equal to the rapidities calculated
at the previous point, keeping this grid for the remainder of
the calculation.

When interested only in performing the root extraction
at strong coupling, one can define an adequate grid without
having to find roots at intermediate values. In this strong-
coupling regime, we know that a subset of ndiv rapidities will
diverge while the remaining M − ndiv stay finite with real
parts contained within the previously mentioned bandwidth
(see Figs. 2 and 3 for examples). We therefore need a grid
defined by M − ndiv points zi within the bandwidth and ndiv

points that diverge in order to follow the diverging roots.
In Ref. 16 it was shown that for nondegenerate spin- 1

2
systems, provided M � N/2,17 the configuration of roots at
zero coupling is sufficient to determine the number ndiv of
roots that will diverge in the strong-coupling limit via a simple
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procedure. It simply relies on defining contiguous blocks of ↑
and ↓ spins. Starting from the highest energy level, the first
↑ block has size P1, the second P2..., while the contiguous
blocks of ↓ separating them have sizes H1,H2, . . . . With Nb

the total number of blocks, we have

ndiv = [
PNb

+ αNb−1 − min
(
PNb

+ αNb−1,HNb

)]
(30)

with the αi terms defined recursively as

α0 = 0,
(31)

αi = [Pi + αi−1 − min(Pi + αi−1,Hi)].

In the degenerate case, the procedure remains exactly the same.
We simply need to consider the degeneracies to be slightly
lifted and consider any rapidities λ = εi to flip the spin at the
“bottom” of the corresponding set of degenerate energies, as
in the example shown in Fig. 1.

◦ ◦ ◦◦ • • ◦◦ • • •• • ◦ ◦ •
ε1 ε2 ε3 ε4 ε5

FIG. 1. Graphical representation of the state {λ(g = 0)} =
{ε2,ε2,ε3,ε3,ε3,ε3,ε4,ε5} for a configuration with degeneracies {d1 =
4,d2 = 4,d3 = 4,d4 = 3,d5 = 1}. The black dots correspond to ↑
(spins flipped from the pseudovacuum). From the counting of blocks,
this particular state would have one diverging rapidity in the g → ∞
limit.

(32)

Remarkably, for a given ndiv, independently of the set of εi

and their degeneracies, we know13 that in the g → ∞ limit,
these rapidities tend to gLi , where Li are the ndiv roots of
the Laguerre polynomial L−1−N−2ndiv+2M

ndiv
. While one could

numerically evaluate the exact location of these roots Li , it is
sufficient to simply define a set of points that covers the known
support of these roots. Indeed, the real and imaginary parts of
the complete set {Li} all fall within an easily defined bounded
region of the complex plane,18

−N − 2ndiv + 2M � Re(Li) � −N + 2M − 2,
(33)

|Im(Li)| � 2
√

−ndiv(−N − 2ndiv + 2M).

One can then use ndiv points defined by real zi equally
spaced within the interval [ε1 + (−N − 2ndiv + 2M)g,ε1 +
(−N + 2M − 2)g] combined with M − ndiv points located
within the bandwidth. This choice proves sufficient to guaran-
tee a numerically stable evaluation of the polynomial P (z) in
both regions where the zeros (and therefore rapidities) are to
be found. One can then apply a refining procedure using the
original λ-dependent Bethe equations (3).

For any given Hamiltonian and any particular state, the
aforementioned ideas should suffice to build an adequate grid
at strong coupling. In this regime, the splitting of rapidities into
a diverging and finite block makes the choice of grid points
central to the stability of the algorithm. In any case, it should
also be possible to use the algorithm starting with any given
grid and reuse the obtained solution to define a new grid. This
would lead to an iterative process which, at first, evaluates
the rapidities with a fairly large numerical error due to a poor
choice of grid points. However, successive steps would see the
error reduced by a better and better choice of grid.

VII. REDUCED BCS ON A SQUARE LATTICE

In order to demonstrate the capabilities of this method,
we now apply it in order to find a few eigenstates
of a particular degenerate Gaudin model. The two-
dimensional Hubbard model can be written in Fourier

FIG. 2. (Color online) The top figures show the real and the
imaginary parts of the rapidities of the ground state with respect to
g; the black dots represent the points at which the roots are actually
computed. Step size is δg = 1/100 from 0 to 0.05 and δg = 1/30
from 0.05 to 1. The second and third figures from the top show the
real and imaginary parts of a small excitation and a large excitation,
respectively; the step size is δg = 1/100 from 0 to 0.1 and δg = 1/40
from 0.1 to 1 for the small excitation and δg = 1/100 from 0 to 0.05
and δg = 1/40 from 0.05 to 1 for the large excitation. Below that,
we show a focus around the critical region [where the rapidities
meet (separate) to become complex (real)] for the ground state and
the lowly excited state. Finally, we show the behavior of the highly
excited state’s rapidities on an extended region going from g = 0 to
20; step size is δg = 1/30.
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space as

H = −2t
∑

k,σ

(cos kx + cos ky)ĉ†
k,σ
ĉ
k,σ

− U

L2

∑

k1,
k2,
q

ĉ
†

k1,↑ĉ

†

k2,↓ĉ
k2−
q,↓ĉ
k1+
q,↑. (34)

If we restrict to 
k1 = −
k2 = 
k, we can write (34) in the form
of a reduced BCS model,

H = −2t
∑

k,σ

(cos kx + cos ky)ĉ†
k,σ
ĉ
k,σ

− U

L2

∑

k,
k′

ĉ
†

k,↑ĉ

†
−
k,↓ĉ−
k′,↓ĉ
k′,↑, (35)

which corresponds to the Richardson model19 with inter-
action parameter g = U

L2 and single-particle energies ε
k =
−2t(cos kx + cos ky). In the examples shown below, we set
t = 1 and define εj for a set of points (kx,ky) = 2π

L
(nx,ny)

with (nx,ny) = {0, . . . ,L}.
Figures 2 and 3 show the behavior of the rapidities for the

degenerate energies from (35) for the ground state and some
excited states of two different sized systems (L = 10 and 15).
In the L = 10 case, there are N = 19 distinct values of εj

with four distinct degeneracies d = {1,4,8,20}; in the L = 15
case, there are N = 36 distinct values of εj with two distinct
degeneracies d = {4,8}.

As one can see, the steps in g which can be taken while
maintaining stability can be quite large compared to the rate
of change of the rapidities with respect to g. Even in this
degenerate case, this allows a rapid scan in the coupling

FIG. 3. (Color online) Rapidities of the ground state and an
excited state. Step size is δg = 1/200 from 0 to 0.05 and δg = 1/50
from 0.05 to 1.

constant, opening the possibility of solving a large number
of eigenstates in a reasonable amount of computation time.

One should note that the step size could easily be increased
with increasing g without affecting the stability in any way. In
fact, the choice of the step size only depends on the behavior
of the �j functions and can in principle be fined-tuned in a
particular implementation (see Ref. 5 for more information).

VIII. CONCLUSION

In this work, we showed how one can exploit the ODE/BA
correspondence to design an efficient numerical approach for
finding solutions to the Bethe equations defining eigenstates of
Gaudin models when degeneracies are present. It ultimately
results in finding solutions to a set of quadratic equations
expressed in terms of new variables. Moreover, it turns
out that in such an approach, degeneracies or equivalently
(pseudo)spins of magnitude larger than 1

2 give rise to a sparse
matrix structure, making them actually simpler to treat than
an equally large nondegenerate system. Examples for the
reduced BCS Hamiltonian on a square lattice were shown,
demonstrating the efficiency of the method.

We also introduced a numerical technique to extract actual
rapidities from our intermediate variables. Because it is based
on the Lagrange polynomials barycentric interpolation, it of-
fers much better numerical stability than previous suggestions
based on a monomial expansion. All in all, the techniques
discussed here offer a remarkably fast and efficient algorithm
for systematically finding a solution to the Bethe equations.

The numerical stability and computation speed obtained via
this method open the possibility of studying nonequilibrium
dynamics of such systems. Since this method allows one to
compute a large number of eigenstates, when possible, it could
be combined with some truncation scheme allowing one to
reduce the effective Hilbert space (see Ref. 7 for such an
example). In more general settings, it can also allow one to use
a simple Monte Carlo approach which would sample a large
part of the Hilbert space.
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APPENDIX: DERIVATION OF E (n)

Deriving the equation for the nth derivative of

E(z) = �′(z) + �2(z) −
N∑

α=1

2F (λα)

z − λα

= 0 (A1)

is mostly a technical task, which this appendix addresses by
showing how to obtain the derivatives for the most general
F (λk). We are interested in

F (λk) = −
N∑

i=1

Ai

(εi − λk)
+ B

2g
λk + C

2g

≡ −
N∑

i=1

Ai

(εi − λk)
+ f (λk), (A2)
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where we defined f (λk) = 1
2g

(Bλk + C).
Inserting (A2) in Eq. (A1), we get

�′(z) + �2(z) −
M∑

α=1

2f (λα)

z − λα

+
M∑

α=1

N∑
i=1

2Ai

(z − λα)(εi − λα)
= 0. (A3)

The first three terms of (A3) are easily derived with the help
of the Leibniz relation,

(hg)(n) =
n∑

k=0

(
n

k

)
h(k)g(n−k). (A4)

We then focus here on the derivation of the last term.
Defining �(z)(n) as the nth derivative of the function �(z) =∑M

k=1
1

z−λk
with respect to z, we have

�(z)(n) = (−1)nn!
M∑

k=1

1

(z − λk)n+1
. (A5)

The nth derivative is then given by(
M∑

α=1

N∑
i=1

di

(z − λα)(εi − λα)

)(n)

= (−1)nn!
M∑

α=1

N∑
i=1

di

(εi − λα)(z − λα)n+1
≡ (∗). (A6)

To write (A6) in terms of �(εj ), one has to take the limit
z → εj . The term in the sum can then be expanded in the form

1

(εi − λα)(εj − λα)n+1

=
(

1

εi − λα

− 1

εj − λα

)
1

(εj − εi)n+1

−
n∑

k=1

1

(εj − εi)k(εj − λα)n−k+2
. (A7)

Inserting (A7) in (A6), we find

(∗) =
M∑

α=1

N∑
i=1

(−1)nn!

[(
1

εi − λα

− 1

εj − λα

)
1

(εj − εi)n+1

−
n∑

k=1

1

(εj − εi)k(εj − λα)n−k+2

]

= −
N∑

i=1

din!

(
�(εi) − �(εj )

(εi − εj )n+1

−
n∑

k=1

�(εj )(n−k+1)

(εi − εj )k
1

(n − k + 1)!

)
≡ (∗∗), (A8)

where the sum over α was substituted with the functions �(εj )
and their derivatives using Eq. (A5).

One only needs now to get rid of the divergence given by
the term i = j in the sum over i = 1, . . . ,N . Since we have

εi − εj → δ → 0, the fraction �(εi )−�(εj )
(εi−εj )n+1 can be written in

terms of a derivative of �. Therefore, writing �(εi + δ) in its
Taylor form,

�(εi + δ) ≈
n+1∑
k=0

δk

k!
�(εj )(k) = �(εj ) + δn+1

(n + 1)!
�(εj )(n+1)

+
n∑

k=1

δk

k!
�(εj )(k), (A9)

one finds, for the term i → j of (∗∗),

(∗∗)|i→j = −djn!

(
�(εj + δ) − �(εj )

δn+1

−
n∑

k=1

�(εj )(n−k+1)

δk

1

(n − k + 1)!

)

= −djn!

(
1

(n + 1)!
�(εj )(n+1)

+
n∑

k=1

δk−n−1

k!
�(εj )(k)

−
n∑

k=1

δ−k

(n − k + 1)!
�(εj )(n−k+1)

)

= − dj

n + 1
�(εj )(n+1), (A10)

where the second and the third terms cancel themselves since
they correspond to the same sum with reversed indices k =
1, . . . ,n → k̂ = n, . . . ,1 and k̂ → n − k + 1.

The third term of (A3) is finally given by

(∗) = −
N∑

i �=j

din!

(
�(εi) − �(εj )

(εi − εj )n+1

−
n∑

k=1

�(εj )(n−k+1)

(εi − εj )k
1

(n − k + 1)!

)

− dj

n + 1
�(εj )(n+1). (A11)

Thus, using the Leibniz equation (A4) and noting that
f (λα)(n) = 0∀n > 0, the nth derivative of (A3) in the limit
z → εj reads

E(εj )(n) =
(

1 − dj

n + 1

)
�(εj )(n+1)

+
n∑

k=0

(
n

k

)
�(εj )(k)�(εj )(n−k)

− 1

g

[
Bnεj�(εj )(n−1) + C�(εj )(n)

]

−
N∑

i �=j

din!

(
�(εi) − �(εj )

(εi − εj )n+1

−
n∑

k=1

�(εj )(n−k+1)

(εi − εj )k
1

(n − k + 1)!

)
. (A12)
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