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We present a theoretical technique for solving the quantum transport problem of a few photons through a
one-dimensional, strongly nonlinear waveguide. We specifically consider the situation where the evolution of
the optical field is governed by the quantum nonlinear Schrödinger equation. Although this kind of nonlinearity
is quite general, we focus on a realistic implementation involving cold atoms loaded in a hollow-core optical
fiber, where the atomic system provides a tunable nonlinearity that can be large even at a single-photon level.
In particular, we show that when the interaction between photons is effectively repulsive, the transmission of
multiphoton components of the field is suppressed. This leads to antibunching of the transmitted light and
indicates that the system acts as a single-photon switch. On the other hand, in the case of attractive interaction,
the system can exhibit either antibunching or bunching, which is in stark contrast to semiclassical calculations.
We show that the bunching behavior is related to the resonant excitation of bound states of photons inside the
system.

I. INTRODUCTION

Physical systems that enable single photons to interact
strongly with each other are extremely valuable for many
emerging applications. Such systems are expected to facilitate
the construction of single-photon switches and transistors
[1–3], networks for quantum information processing, the
realization of strongly correlated quantum systems using
light [4–7], and the investigation of novel new many-body
physics such as out of equilibrium behaviors. One potential
approach involves the use of high-finesse optical microcavities
containing a small number of resonant atoms that mediate the
interaction between photons [1,8]. Their nonlinear properties
are relatively straightforward to analyze or simulate because
they involve very few degrees of freedom (i.e., a single optical
mode) [9–12]. Recently, an alternative approach has been
suggested, involving the use of an ensemble of atoms coupled
to propagating photons in one-dimensional (1D), tightly
confining optical waveguides [13–19]. Here the nonlinearities
are enhanced due to the transverse confinement of photons near
the diffraction limit and the subsequent increase in the atom-
photon interaction strength. The propagation of an optical field
inside such a nonlinear medium (e.g., systems obeying the
quantum nonlinear Schrödinger equation) is expected to yield
much richer effects than the case of an optical cavity due
to the large number of spatial degrees of freedom available.
Simultaneously, however, these degrees of freedom make
analysis much more difficult and in part cause these systems to
remain relatively unexplored [7,20–23]. As we have recently
discussed in Ref. [24], the multimode, quantum nature of the
system plays an important role and results in phenomena that
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have no analog in either single-mode cavities or classical
nonlinear optics. It is interesting to note that similar low-
dimensional, strongly interacting condensed-matter systems
are an active area of research, but most of this work is focused
on closed systems close to the ground state or in thermal
equilibrium [25–29]. On the other hand, as is seen here, the
relevant regime for photons often involves open systems and
driven dynamics. We note that such open driven systems have
not been considered in earlier studies of photonic nonlinear
Schrödinger equation systems [21,30–32].

In this article, we develop a technique to study the
quantum transport of a few photons inside a finite-length,
strongly nonlinear waveguide where the light propagation
is governed by the quantum nonlinear Schrödinger equation
(NLSE) and apply this technique to study the operation of this
system as a single-photon switch. In particular, we study the
transmission and reflection properties of multiphoton fields
from the system as well as higher-order correlation functions
of these fields. We find that these correlations not only reflect
the switching behavior, but reveal some aspects of the rich
structure associated with the spatial degrees of freedom inside
the system, which allow photons to “organize” themselves. In
the regime where an effectively repulsive interaction between
photons is achieved, antibunching in the transmitted field
is observed because of the switching effect and is further
reinforced by the tendency of photons to repel each other. In
the attractive regime, either antibunching (due to switching)
or bunching can occur. We show that the latter phenomenon
is a clear signature of the creation of photonic bound states
in the medium. Although we focus on a particular realization
involving the propagation of light, our conclusions on quantum
transport properties are quite general and valid for any bosonic
system obeying the NLSE.

This article is organized as follows. In Sec. II, we describe
an atomic system whose interactions with an optical field
can be manipulated using quantum optical techniques such
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that the light propagation obeys the quantum NLSE. This
method relies upon electromagnetically induced transparency
(EIT) to achieve resonantly enhanced optical nonlinearities
with low propagation losses and the trapping of stationary
light pulses using spatially modulated control fields. Before
treating the nonlinear properties of the system, we first consider
the linear case in Sec. III, where it is shown that the light
trapping technique leads to a field buildup inside the medium
and a set of discrete transmission resonances, much like an
optical cavity. In Sec. IV, we then investigate the nonlinear
transport properties of the system such as reflectivity and
transmittivity in the semiclassical limit, where the NLSE
is treated as a simple complex differential equation. Here
we find that the presence of the nonlinearity causes the
transmission resonances to shift in an intensity-dependent way;
the system behaves as a low-power, nonlinear optical switch,
whose behavior does not depend on the sign of the nonlinear
interaction. In Sec. V, we present a full quantum formalism
to treat the NLSE transport problem in the few-photon limit.
Section VI is dedicated to analytical solutions of the NLSE
with open boundary conditions when the system is not driven.
In particular, we generalize the Bethe ansatz technique to find
the resonant modes of the system, which help to elucidate
the dynamics in the case of the driven system. The driven
system is studied in Sec. VII, where numerical solutions are
presented along with a detailed study of the different regimes
of behavior. In particular, we find that the correlation functions
for the transmitted light do depend on the sign of the nonlinear
interaction, in contrast to what the semiclassical calculations
would suggest. We conclude in Sec. VIII.

II. MODEL: PHOTONIC NLSE IN 1D WAVEGUIDE

In this section, we consider the propagation of light inside
an finite-length atomic medium under EIT conditions and
with a Kerr nonlinearity. We also describe a technique that
allows for these pulses of light to be trapped within the
medium using an effective Bragg grating formed by additional
counterpropagating optical control fields. We show that in the
limit of large optical depth the evolution of the system can be
described by a NLSE.

Following Ref. [7], we consider an ensemble of atoms
with the four-level internal structure shown in Fig. 1, which
interact with counterpropagating quantum fields with slowly
varying envelopes Ê± inside an optical waveguide. These
fields are coupled to a spin coherence between states |a〉
and |c〉 via two classical, counterpropagating control fields
with Rabi frequencies �± largely detuned from the |b〉 → |c〉
transition. The case where the fields propagate only in one
direction (say in the “+” direction) and where the detuning is
zero corresponds to the usual EIT system, where the atomic
medium becomes transparent to Ê+ and the group velocity can
be dramatically slowed due to coupling between the light and
spin wave (so-called “dark-state polaritons”) [33]. On the other
hand, the presence of counterpropagating control fields creates
an effective Bragg grating that causes the fields Ê± to scatter
into each other. This can modify the photonic density of states
and create a band gap for the quantum fields. This photonic
band gap prevents a pulse of light from propagating and can be
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FIG. 1. (Color online) (a) Four-level atomic system for creating
strong nonlinearity. Counterpropagating control fields modulate the
EIT for the forward- and backward-propagating probe, and the |c〉 →
|d〉 transition gives rise to a Kerr-type nonlinearity. (b) The light
is confined in the transverse direction due to the presence of the
waveguide and experiences an effective Bragg grating due to the
presence of the counterpropagating light.

used to effectively trap the light inside the waveguide [34,35].
The trapping phenomenon is crucial because it increases the
time over which photons can interact inside the medium. The
presence of an additional, far-detuned transition |c〉 → |d〉
that is coupled to Ê± leads to an intensity-dependent energy
shift of level |c〉, which translates into a Kerr-type optical
nonlinearity [36].

We now derive the evolution equations for the quantum
fields. We assume that all atoms are initially in their ground
states |a〉. To describe the quantum properties of the atomic
polarization, we define collective, slowly varying atomic
operators, averaged over small but macroscopic volumes
containing Nz � 1 particles at position z,

σ̂αβ(z,t) = 1

Nz

Nz∑
i=1

|αi〉〈βi |. (1)

The collective atomic operators obey the following commuta-
tion relations,

[σ̂αβ(z),σ̂μν(z′)] = 1

n0
δ(z − z′)[δβμσ̂αν(z) − δανσ̂μβ(z)],

(2)

where n0 is the linear density of atoms in the z direction as it is
assumed to be uniform. The forward and backward quantized
probe fields in the z direction obey bosonic commutation
relations (at equal time),

[Ê+(z),Ê †
+(z′)] = δ(z − z′). (3)



The Hamiltonian for this system in the rotating frame can be
written as

Ĥ = −n0

∫
[σ̂bc(z)(�+eikcz + �−e−ikcz) + H.c.]

+ g
√

2π [σ̂ba(z)(Ê+eik0z + Ê−e−ik0z) + H.c.]

+ g
√

2π [σ̂dc(z)(Ê+eik0z + Ê−e−ik0z) + H.c.]

+	1σ̂bb(z) + 	3σ̂cc(z) + (	2 + 	3)σ̂dd (z)dz, (4)

where g = μ
√

ωab

4πh̄ε0A
is the atom-field coupling strength, μ is

the atomic dipole matrix element, and A is the effective area
of the waveguide modes. For simplicity, we have assumed that
the transitions a-b and c-d have identical coupling strengths
g and have ignored transverse variation in the fields. The
terms 	i denote the light field-atomic transition detunings
as shown in Fig. 1(a). kc is the wave vector of the control
fields, while k0 = nbωab/c characterizes the fast-varying
component of the quantum field and nb is the background
refractive index. We define vg = c�2/2πg2n0 as the group
velocity that the quantum fields would have if they were not
trapped by the Bragg grating (we are specifically interested
in the situation where �+ = �− = �). Following Ref. [33],
we can define dark-state polariton operators that describe the
collective excitation of field and atomic spin wave, which in the
limit of slow group velocity η = c

2vg
� 1 are given by 
̂± �

g
√

2πn0

�±
Ê±. Note that the definition of the dark-state polariton

includes atomic polarization operators which guarantee the
bosonic commutation relations for the polaritons, for any
value of the group velocity as long as the total number of
excitations are small compared to the number of atoms [33]:
[
̂±(z),
̂†

±(z′)] = δ(z − z′). The definition of the polariton
operators specifies that the photon flux entering the system at
its boundary is equal to the rate that polaritons are created at the
boundary inside the system; that is, c〈Ê †

+Ê+〉 = vg〈
̂†
+
̂+〉. In

other words, excitations enter (and leave) the system as photons
with velocity c, but inside the waveguide they are immediately
converted into polariton excitations with group velocity vg .
Field correlations are also mapped in a similar fashion; in
particular, correlation functions that we calculate for polaritons
at the end of the waveguide z = L also hold for the photons
transmitted from the system. The total number of polaritons in
the system is given by Npol = ∫ 〈
̂†

+
̂+〉 + 〈
̂†
−
̂−〉dz.

The optical fields coupled to the atomic coherences of both
the a-b and c-d transitions are governed by Maxwell-Bloch
evolution equations,(

∂

∂t
± c

∂

∂z

)
Ê±(z,t) = ig

√
2πn0(σ̂ab + σ̂cd ). (5)

Similar to the photonic operators, the atomic coherences
can also be written in terms of slowly varying components,

σ̂ab = σ̂+
abe

ik0z + σ̂−
abe

−ik0z, (6)

σ̂cd = σ̂+
cde

ik0z + σ̂−
cde

−ik0z. (7)

We note that higher spatial orders of the coherence are thus
neglected. In practice, these higher orders are destroyed due to
atomic motion and collisions as atoms travel distances greater
than an optical wavelength during the typical time of the

experiment [37]. Alternatively, one can use dual-V atomic
systems that do not require this approximation [38].

In the weak excitation limit (σ̂aa � 1), the population in the
excited state |b〉 can be neglected, 〈σ̂bb〉 ≈ 0. In this limit, the
evolution of the atomic coherence is given by

˙̂σ
±
ab = (i	1 − �/2)σ̂±

ab + ig
√

2π Ê± + i�±σ̂ace
±i	kz,

(8)

where 	k = kc − k0 and � is the total spontaneous emission
rate of state b (for simplicity we also assume that state d has
an equal spontaneous emission rate). For the spin wave, we
have

˙̂σac = i	3σ̂ac + i(σ̂+
ab�

∗
+e−i	kz + σ̂−

ab�
∗
−ei	kz)

+ ig
√

2π (Ê †
+e−ik0z + Ê †

−e+ik0z)σ̂ad . (9)

In the adiabatic limit where g
√

2π〈σ̂acÊ±〉 � �, the coher-
ence σ̂ad can be approximated by

σ̂ad � g
√

2πσ̂ac

−	2 − 	3 − i �
2

(Ê+e+ik0z + Ê−e−ik0z). (10)

Therefore, the spin wave evolution can be written as

˙̂σac = i	3σ̂ac + i(σ̂+
ab�

∗
+e−i	kz + σ̂−

ab�
∗
−ei	kz)

+ 2πig2

−	2 − 	3 − i �
2

(Ê †
+Ê+ + Ê †

−Ê−)σ̂ac. (11)

Similarly, we can write the evolution equation for the atomic
polarization σ̂cd . We now consider the situation where �+ =
�− = �, such that the counterpropagating control fields form
a standing wave. In the adiabatic limit [33], and keeping all
terms up to third order in the quantum fields, substituting
these results into Eq. (5) and simplifying yields the following
evolution equations for the dark-state polariton operators,

(c∂z + ∂t )
̂+ = −ξ

2
(
̂+ − 
̂−) − η

2
∂t (
̂+ + 
̂−)

− i	n[(
̂†
+
̂+ + 
̂

†
−
̂−)(
̂+ + 
̂−)

+ (
̂†
+ + 
̂

†
−)(
̂+ + 
̂−)
̂+], (12)

(−c∂z + ∂t )
̂− = +ξ

2
(
̂+ − 
̂−) − η

2
∂t (
̂+ + 
̂−)

− i	n[(
̂†
+
̂+ + 
̂

†
−
̂−)(
̂+ + 
̂−)

+ (
̂†
+ + 
̂

†
−)(
̂+ + 
̂−)
̂−], (13)

where the linear dispersion is characterized by ξ = 2πg2n0

−i	1+�/2 .
The nonlinearity coefficient is given by the single photon ac-
Stark shift: 	n = πg2

2(	2+i�/2) . We note that the wave-vector
mismatch 	k has been compensated for by a small extra two-
photon detuning equal to (−	kc/η).

The above equations describe the evolution of two coupled
modes. It is convenient to rewrite these equations in terms of
the antisymmetric and symmetric combinations A = (
+ −

−)/

√
2 and S = (
+ + 
−)/

√
2. By subtracting Eqs. (12)

and (13), the time evolution of the antisymmetric mode takes
the form

c∂zS + ∂tA = −ξA − i2	nS
†SA. (14)



For large optical depths (i.e., ξ � 1), we then find that
the antisymmetric equation of motion can be simplified:
A � −(c/ξ )∂zS; that is, the antisymmetric mode adiabatically
follows the symmetric mode. In this limit, now by adding
Eqs. (12) and (13), the evolution of the whole system can be
described by a single NLSE,

η
∂

∂t
S − c2

ξ

∂2

∂z2
S + 4i	nS

†S2 = 0. (15)

Physically, the coupling between 
̂± induced by the Bragg
grating causes them to no longer behave independently, much
like the two counterpropagating components of an optical
cavity mode. We can write the above equation in dimensionless
units by introducing a characteristic length scale Lcoh =
c/|Im[ξ ]| = c(	2

1 + �2/4)/2πg2n0|	1| and time scale tcoh =
η/|Im[ξ ]| = (	2

1 + �2/4)/2�2|	1|. Lcoh corresponds to the
length over which the field acquires a π phase in the
propagation. The dimensionless NLSE then reads

i
∂S̃

∂τ
= − 1

2m

∂2S̃

∂z̃2
+ 2κS̃†S̃2, (16)

where for 	1 < 0, the effective mass is m = 1
2 (1 + i �

2|	1| )

and the nonlinearity coefficient is κ = 2	n

c
= πg2/c

	2+i�/2 . Note

that 
̃±(z,t) and S̃(z,t) are also in units of
√

L−1
coh, such

that [S̃+(z̃),S̃†
+(z̃′)] = δ(z̃ − z̃′). For simplicity, we omit tilde

superscripts in the following. We can also write the nonlinear
coefficient as κ = �1D

4(	2+i�/2) , where we have identified �1D =
4πg2/c as the spontaneous emission rate into the guided
modes (�1D��). We are primarily interested in the limit
|	1,2|�� such that m,κ are mostly real and the evolution
is dispersive. Note that in this notation, the antisymmetric
combination of forward and backward polaritons is given by
A � −i/2m∂zS � −i∂zS.

III. LINEAR CASE: STATIONARY LIGHT
ENHANCEMENT

In this section, we investigate the linear transmission
properties of the signal field as a function of its frequency.
The control field leads to a Bragg grating that couples the
forward and backward components of the signal field together.
We show that the system therefore acts as an effective cavity
whose finesse is determined by the optical density of the atomic
medium.

For the linear case (κ = 0), it is sufficient to treat the for-
ward and backward field operators as two complex numbers.
In the slow light regime (η � 1), the coupled mode equations
[Eqs. (12) and (13)] can be written in the Fourier domain, with
our dimensionless units, as

∂z�+ = i

2
δ(�+ + �−) + im(�+ − �−), (17)

−∂z�− = i

2
δ(�+ + �−) − im(�+ − �−), (18)

where 
+(z,τ ) = �+(z,δ)e−iδτ and 
−(z,τ ) =
�−(z,δ)e−iδτ and δ is the dimensionless two-photon detuning
δ = 	3tcoh. Note that the above equations reduce to the linear
limit of Eq. (16) and the large optical depth approximation is

not required to adibatically eliminate the antisymmetric mode
and replace it in the equation of motion of the symmetric
mode. We specify that a classical field �+(z = 0,δ) = α

enters the system at z = 0 with no input at the other end of
the system (z = d), �−(z = d,δ) = 0, as shown in Fig. 1(b).
We note that d = L/Lcoh is the length of the system in units
of the coherence length introduced earlier. For negligible
losses (|	1|��) and 	1 < 0, m � 1/2 and the profile of
forward-going polaritons inside the system look like

�+(z,δ)

α
= 2i

√
δ cos[(d − z)

√
δ] + (1 + δ) sin[(d − z)

√
δ]

2i
√

δ cos[d
√

δ] + (1 + δ) sin[d
√

δ]
.

(19)

Therefore, for a system with fixed length d, the transmission
coefficient varies with the frequency of the incident field, with
transmission resonances occurring at the values

√
δ0d = nπ (n

is an integer). At these resonances, the system transmittance is
equal to one (|�(d,δ)| = |�(0,δ)|) and a field buildup occurs
inside the medium with a bell-shaped profile, similar to a cavity
mode (see Fig. 2). The positions of these resonances (quadratic
in n) reflect the quadratic dispersion in Eq. (16). Note that in
real units, the positions of the resonances will depend on the
amplitude of the control field, since 	3 = δ

|	1|
2|�|2 . In the limit

of a coherent optically large system (d � 1), the intensity
amplification in the middle of the system is equal to (d/2π )2

for the first resonance. In other words, the Bragg scattering
creates a cavity with an effective finesse proportional to the
square of the coherent length of the system (F ∝ d2).

We now derive the width of the first transmission resonance.
For small variations δ0 ± δb around the resonance frequency,
we can write

�+(d)

�+(0)
= −1 − iπ

4δ
3/2
0

δb + π2

16δ3
0

δ2
b + O

(
δ3
b

)
. (20)

Therefore, the width of the resonances (say where it drops by
half) is given by

2δb � δ
3/2
0 =

(π

d

)3
. (21)

We have kept terms up to second order in δb, since the
first-order term does not give a decreasing correction to the
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FIG. 2. (Color online) Linear case. (a) Transmittivtiy as a function
of two-photon detuning. Transmission peaks are attenuated because
of linear loss on |a〉 → |b〉 transition which is plotted for three
different loss rates β = d�/	1. (b) When the system is tuned on
a transmission resonance (

√
δ0d = nπ ), the field inside the medium

is amplified.
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)2.

transmittance. While we have previously ignored absorption
(as determined by the real part of ξ ), we can estimate that
its effect is to attenuate the probe beam transmission by a
factor β = d�/|	1|. As is shown in Fig. 3, for large optical
densities, β can fully characterize the transmission coefficient
on resonance (δ = δ0). In particular, for a fixed β, the resonant
transmission is constant for any large optical density. In other
words, since the optical depth of the system is given by
dopt = d

|	1|
�

, the transmittivity of the system remains constant
for any dopt with the choice |	1| = �

√
dopt/β. In this case the

effective cavity finesse for the system becomes proportional to
the optical density, that is, F ∝ dopt.

The total number of polaritons in the system can be
estimated by

Npol =
∫ d

0
|�+(z)|2 + |�−(z)|2dz

= (d2 + π2)2

4dπ2
|�+(0)|2 � d3

4π2
|�+(0)|2. (22)

This again shows that the polaritons experience many round
trips inside the system before exiting. In particular, if we
define the average intensity inside the medium as |�ave

+ |2 =
Npol/d, then we readily observe that the intensity of the
polariton field is amplified inside the medium by the square
of the system size [|�ave

+ |2/|�+(0)|2 = (d/2π )2]; that is, the
finesse is proportional to the optical density (dopt).

The original proposal for observing an enhanced Kerr
nonlinearity with a four-level atomic system using EIT makes
use of an optical cavity to enhance the nonlinearity [9].
However, as pointed out in Ref. [11], the scheme suffers
from some inaccuracies in the effective Hamiltonian. More
specifically, in Ref. [9], the effective Hamiltonian was evalu-
ated at the center of the EIT transparency window. However,
in practice, EIT dramatically decreases the cavity linewidth
because of the large dispersion that accompanies the vanishing
absorption [39]; this causes photons at frequencies slightly
shifted from the central frequency to be switched out of the

cavity. This leads to an extremely small allowable bandwidth
for the incoming photons [11] and was neglected in the original
analysis. We emphasize that the analysis presented here takes
into account the dispersive properties of the medium, as we
have included the field dynamics up to second order in the
detuning from resonance (this accounts for the effective mass
of the photons in our system). We verify the consistency of
this derivation in Appendix A by solving the linear system
including full susceptibilities. It is shown that the results are
consistent near the two-photon resonance (i.e., frequencies
around δ = 0).

IV. SEMICLASSICAL NONLINEAR CASE

A. Dispersive regime

In this section, in contrast to the previous section, we
include the nonlinear term in the evolution equations to
investigate its effect in the semiclassical limit (where the
fields are still treated as complex numbers). In this picture,
the effect of nonlinearity causes the transmission peaks to
shift in frequency in an intensity-dependent way to the left or
right depending on the sign of the nonlinearity coefficient κ .
We show that when |κ|dopt � 1, the magnitude of the shift
is large even at intensities corresponding to that of a single
photon. In this regime, we expect that the system can act as a
single-photon switch and that signatures of quantum transport
will become apparent (the quantum treatment is described in
Sec. V).

Because of the self-phase modulation term in the evolution
equations [Eqs. (13)], the forward and backward fields acquire
a phase shift proportional to their intensity. Moreover, due to
the conjugate-phase modulation terms, each field undergoes an
extra phase shift proportional the intensity of the other field.
Classically, this yields a frequency shift in the transmission
spectrum when the nonlinearity is small. The shift in the trans-
mission peak can be approximated by 	δ � 2κ|�ave

+ |2, where

|�ave
+ |2 � d2

4π2 |�+(0)|2 is the average intensity of polaritons in
the system. Suppose that we want the nonlinearity to be strong
enough to shift the transmission peaks at least by half of their
widths, 	δ � 1

2δ3/2. Then, from Eq. (21) this condition can be
written as

|�cr
+(0)|2 =

(π

d

)5 1

|κ| . (23)

On the other hand, according to Eq. (23), we can write this
condition in terms of the critical number of polaritons inside
the system,

N cr
pol = π3

4d2κ
. (24)

Since the nonlinearity coefficient is given by the light shift
on the |c〉 → |d〉 transition, in the dispersive regime (	2 � �),
we have κ = 1

4
�1D

�
�
	2

. Thus, we expect to have substantial
nonlinearities at the level of one polariton (i.e., one incoming
photon), N cr.

pol = 1, if

d2 = π3 �

�1D

	2

�
, (25)

where �1D is the rate of spontaneous emission rate into the
guided modes. Strictly speaking, note that a single photon
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FIG. 4. (Color online) Due to nonlinearity, in the perturbative
limit, the transmission spectrum shifts for different intensities. The
integrated intensities inside the system are related to the number of
present field quanta. The optical depth for these calculations is chosen
to be dopt = 3000.

cannot actually have a nonlinear phase shift (as correctly
derived later using a fully quantum picture); however, we
can still use the results of this semiclassical calculation to
qualitatively understand the relevant physics.

We can also rewrite the above condition in terms of the
optical density (dopt = d 	1

�
) needed in the system. From

the linear case, we know that an optimal detuning, for a
transmission of 90%, should satisfy d �

	1
∼ 0.5. Then Eq. (25)

can be written as

dopt = 2π3 �

�1D

	2

�
. (26)

Taking for example a system where 	2 ∼ 5� and �1D

�
∼ 0.1,

nonlinearities at a few-photon level can be observed for an
optical density dopt � 6200.

First, let us consider the case of positive κ . In Fig. 4,
we observe that at large-enough optical density, the system
can have very different transmission spectra for low and high
intensities that classically correspond to having one and two
polaritons (photons) inside the system, respectively. Although
we have ignored the quantization of photons in this section,
we can develop some insight into the transmission properties
of one- and two-photon states. Loosely speaking, if we fix the
input field frequency to lie at the one-photon (linear) trans-
mission peak (δ0), the system would block the transmission
of incident two-photon states. More realistically, suppose we
drive the system with a weak classical field (coherent state),
which can be well-approximated as containing only zero-,
one-, and two-photon components. We then expect that the
one-photon component will be transmitted through the system,
while the two-photon component will be reflected, leading
to antibunching of the transmitted light. We note that the
general spirit of this conclusion is sound; however, the correct
description of the system is achieved by taking into account
the quantization of photons, which is presented in the next
sections.

A similar analysis holds for the case of negative κ . Note that
the sign of κ depends on the detuning of the photonic field from
the atomic transition |c〉 → |d〉, which can easily be adjusted
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FIG. 5. (Color online) For positive (negative) nonlinearity, in the
perturbative limit, the transmission spectrum shifts to the right (left)
of linear transmission spectrum (solid line), which is shown as a
dotted line (dashed line). The incoming intensity corresponds to one
photon in the system.

in an experiment. This is in contrast to conventional nonlinear
optical fibers and nonlinear crystals, where the nonlinearity
coefficient is fixed in both magnitude and sign. We find that a
negative nonlinearity simply shifts the transmission spectrum
in the opposite direction as for the positive case, as shown in
Fig. 5, but all other conclusions remain the same. In particular,
we would expect antibunching to occur for this case as well,
when a weak coherent field is incident with its frequency
fixed to the linear transmission resonance. Surprisingly, the
quantum treatment (Sec. VII), shows that the above conclusion
is wrong and the system behaves very differently for negative
nonlinearity. We show that this difference in behavior can be
attributed to the presence of additional eigenstates (photonic
bound states) in the medium and their excitation by the incident
field.

For even larger nonlinearities or intensities, the transmis-
sion spectrum can become even more skewed and exhibit
bistable behavior, as similarly found in Ref. [40] in the context
of transport of Bose-Einstein condensates in one dimension.
There the classical NLSE (Gross-Pitaevskii equation) was
solved to find the mean-field transport properties of a con-
densate scattering off a potential barrier.

Instead of considering the switching effect as a function of
number of photons inside the medium, we can also consider
the number of photons that need to be sent into the system.
Clearly, to have a well-defined transmission amplitude without
substantial pulse distortion, the incident pulse must be long
enough so that it fits within the bandwidth of the system
resonance, as given in Eq. (21). To be specific, we consider
an input pulse whose duration is equal to the inverse of
the bandwidth, tb = ( d

π
)3tcoh. We can relate the number of

incoming photons to an average incident intensity:

|�+(0)|2 = Npol
tb

tcoh
= Npol

(d/π)3
(27)

Now since the number of incident photons and incoming
polaritons are the same, we can assign an average amplitude
to any incoming photons number by Eq. (27) and evaluate
the transmission. Hence, we can evaluate the number of
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FIG. 6. (Color online) Transmission vs the number of incident
photons. For each dopt, �/	1 is chosen so that the system exhibit a
similar transmission for one photon.

incident photons needed to observe a significant nonlinearity
and saturate the system. Figure 6 shows the transmittivity of
the nonlinear system as a function of number of photons in
the incoming wave packet. We observe that for high optical
densities (dopt > 1000), the transmittivity drops as the number
of incoming photons increases and the system gets saturated
for even few photons.

B. Dissipative regime

In this section, we investigate the system in the presence of
nonlinear absorption, where κ is imaginary. The nonlinear
dispersion of the previous case can simply be turned into
nonlinear absorption by setting the nonlinear detuning to
zero (	2 = 0,κ = �1D

2i�
). In the quantum picture, this term

does not affect the one-photon state, while two-photon states
can be absorbed by experiencing three atomic transitions,
|a〉 → |b〉 → |c → |d〉 and subsequently being scattered from
excited state |d〉 [41]. We consider the quantum treatment of
absorption later and first study the semiclassical limit here.

The presence of nonlinear absorption suppresses the trans-
mission of multiphoton states through the medium by causing
them to decay. This suppression becomes stronger for higher
intensities, as shown in Fig. 7. We have used the same optical
density (dopt) and 1D confinement (�1D/�) as in Fig. 4. We
observe that the effects of nonlinear absorption are stronger
than that of nonlinear dispersion studied in Sec. IV A, since
it occurs at resonance (	2 = 0) where the atomic response
is strongest. It is thus possible to observe its effect at even
lower intensities, corresponding to effective photon numbers
two orders of magnitude smaller than the dispersive case.
Much like the dispersive case, the suppression of transmission
of multiphoton components should yield antibunching in the
transmitted field. In this case, however, these components are
simply lost from the system (as opposed to showing up as a
bunched reflected field).

V. QUANTUM NONLINEAR FORMALISM:
FEW-PHOTON LIMIT

In this section, we describe a quantum-mechanical ap-
proach that enables one to solve the problem of quantum

transport of a small number of photons through the finite,
nonlinear system described in Sec. II. This few-photon number
limit is of particular interest since it captures the physics of
single-photon switching.

We find it convenient to study the dynamics of the system
of photons in the Schrödinger picture, where one can explicitly
solve for the few-body wave functions. This approach is made
possible by truncating the Hilbert space so that only subspaces
with nmax photons or less are present. In the following, we
consider the case where nmax = 2, although our analysis can
be easily extended to cover any other value. This truncation is
justified when the incident coherent field is sufficiently weak
that the average photon number is much smaller than one
inside the system (|α0|2d3 � 1, where α0 is the amplitude of
the incoming field). Thus, we can write the general state of the
system as

|ψ(t)〉 �
∫

dz1dz2φ(z1,z2,t)S
†(z1)S†(z2)|0〉

+
∫

dzθ (z,t)S†(z)|0〉 + ε|0〉. (28)

The first, the second, and the third term correspond to two-
photon, one-photon, and vacuum states, respectively. Note
that because of bosonic symmetrization, φ(z1,z2,t) should be
symmetric in z1 and z2. This formalism allows us to capture
any nontrivial spatial order between photons in our system
[e.g., the delocalization of two photons as represented by the
off-diagonal terms in φ(z1,z2)]. Since the NLSE Hamiltonian
commutes with the field number operator Ŝ†Ŝ, manifolds with
different field quanta are decoupled from each other inside
the medium. Therefore, the evolution for the one-photon and
two-photon manifolds under the NLSE Hamiltonian can be
written as

i
∂

∂t
φ(z1,z2,t) = − 1

2m

(
∂2

∂z2
1

+ ∂2

∂z2
2

)
φ(z1,z2,t)

+ 2κφ(z1,z2,t)δ(z1 − z2), (29)
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The optical depth for these calculations is chosen to be dopt = 3000.



i
∂

∂t
θ (z,t) = − 1

2m

∂2

∂z2
θ (z,t). (30)

However, the system is driven with an input field at
z = 0, which allows different manifolds to be coupled at the
boundaries. This is analogous to fiber soliton experiments
where a classical input field mixes quantum solitons with
different photon numbers [42–44]. In particular, for a classical
input field,


̂+(z = 0)|ψ(t)〉 = α(t)|ψ(t)〉, (31)


̂−(z = d)|ψ(t)〉 = 0|ψ(t)〉, (32)

which corresponds to a coherent state with (possibly time-
dependent) amplitude α(t) as an input at z = 0, and no
input (i.e., vacuum) at z = d. Since we specify that the
input coherent field is weak (α � 1), the amplitude of the
vacuum state is almost equal to one (ε � 1). The annihilation
operator in these equations reduces the photon number on
the left-hand side by one. Thus, such boundary conditions
relate different photon subspaces whose photon numbers differ
by one, for example, the two-photon and one-photon wave
functions. In the adiabatic limit where the antisymmetric part
of the field [A = (
̂+ − 
̂−)/

√
2] follows the symmetric part

[S = (
̂+ + 
̂−)/
√

2], we have


+ = 1√
2

(
S − i

2m
∂zS

)
, 
− = 1√

2

(
S + i

2m
∂zS

)
.

(33)

Therefore, the boundary conditions at z = 0 can be rewritten
as

1√
2

∫
dz1dz2

[
S − i

2m
∂zS

]
z=0

S†(z1)S†(z2)φ(z1,z2,t)|0〉

= α

∫
dzθ (z,t)S†|0〉, (34)

1√
2

∫
dz

[
S − i

2m
∂zS

]
z=0

S†(z)θ (z,t)|0〉 = α|0〉.

Using the identity
∫

[∂zS(z),S†(z′)]f (z′)dz′ = ∂zf (z), the
boundary conditions on the one-photon and two-photon wave
functions can be written as

φ(z1 = 0,z2,t) − i

2m
∂ (1)φ(z1,z2,t)|z1=0 = α√

2
θ (z2,t),

θ (z = 0,t) − i

2m
∂zθ (z = 0,t) =

√
2α, (35)

where ∂ (1) acts on the first parameter. This type of open
boundary condition is known as a Robin or mixed boundary
condition, which involves a combination of both the function
and its derivative. In the present case, the open boundary
conditions allow particles to freely enter and leave the system.
We emphasize that this process is noiseless, in that the loss
of population from the interior of our system is related by our
boundary condition equations to the flow of particle current
through the system boundaries. This is in contrast to an
optical cavity, for instance, where photons inside the cavity
leak dissipatively into the environment [45]. Similarly, the

boundary condition at z = d reads

φ(d,z,t) + i

2m
∂ (1)φ(d,z,t) = 0, (36)

θ (d,t) + i

2m
∂zθ (d,t) = 0. (37)

Given the boundary conditions and the equations of motion
in the interior, we can completely solve for the photon wave
functions.

Once the wave functions are determined, it is possible to
determine the intensity profile as well as any other correlation
function for the photons. For example, the intensity of the
forward-going polariton is

I (z,t) = 〈ψ(t)|
̂†
+(z)
̂+(z)|ψ(t)〉

= 〈1|
̂†
+(z)
̂+(z)|1〉 + 〈2|
̂†

+(z)
̂+(z)|2〉, (38)

where |j 〉 denotes the component of the total wave function
|ψ(t)〉 containing j photons. The first and second terms on the
right thus correspond to the one- and two-photon contributions
to the intensity. By rewriting expressions in terms of S instead
of (
̂+,
̂−), we obtain

I (z,t) = 1

2

∣∣∣∣θ (z) − i

2m
∂zθ (z)

∣∣∣∣
2

+ 2
∫

dz′
∣∣∣∣φ(z′,z) − i

2m
∂ (2)φ(z′,z)

∣∣∣∣
2

. (39)

Similarly, the second-order correlation function for the for-
ward field is

〈ψ |
̂†2
+ (z)
̂2

+(z)|ψ〉

=
∣∣∣∣φ(z,z) − i

m
∂ (1)φ(z,z) − 1

4m2
∂ (1)∂ (2)φ(z,z)

∣∣∣∣
2

, (40)

which in our truncated space only depends on the two-photon
wave function. Now we evaluate the normalized second-order
correlation function g2(z), which characterizes the photon
statistics of an arbitrary field. This function takes the form

g2(z) = 〈ψ |
̂†2
+ (z)
̂2

+(z)|ψ〉
|〈ψ |
̂†

+(z)
̂+(z)|ψ〉|2
(41)

and physically characterizes the relative probability of de-
tecting two consecutive photons at the same position z. If
this quantity is less (greater) than one, the photonic field is
antibunched (bunched). In particular, if g2(z) = 0, the field
is perfectly antibunched and there is no probability for two
photons to overlap in position. In our truncated Hilbert space,
g2(z) of the transmitted field is given by

g2(z = d) � 〈2|
†2
+ (d)
2

+(d)|2〉
|〈1|
†

+(d)
+(d)|1〉 + 〈2|
†
+(d)
+(d)|2〉|2

.

(42)

We note that this expression can be simplified, since at
z = d, we have 
− = 1√

2
(S + i

2m
∂zS) = 0 and 
+ = √

2S.
Therefore,

g2(d) = 4|φ(d,d)|2
[|θ (d)|2 + 4

∫
dz′|φ(z′,d)|2]2

. (43)



We can also evaluate the stationary two-time correlation, which
is defined in the Heisenberg picture as

g2(z,τ ) = 〈ψ |
†
+(z,0)
†

+(z,τ )
+(z,τ )
+(z,0)|ψ〉
|〈ψ |
†

+(z,0)
+(z,0)|ψ〉|2
, (44)

where the denominator is simplified in the stationary steady-
state regime. This correlation function characterizes the
probability of detecting two photons at position z but separated
by time τ . We can rewrite g2(z,τ ) in terms of wave functions
in the Schrödinger picture in the following way. We first
note that the expression |ψ̃(0)〉 = 
̂+(z,0)|ψ〉 appearing in
the equation above can be thought of as a new wave function,
which describes the state of the system after a photon is initially
detected at time t = 0 and position z. This new state naturally
has one less photon than the original state, and by simplifying
the expressions, it can be written as

|ψ̃(0)〉 =
∫

θnew(z′)S†(z′)|0〉 + εnew|0〉, (45)

where the new one-photon and vacuum amplitudes are given
by

θnew

√
2

= φ(d,z′,t = 0) − i

2m
∂ (1)φ(d,z′,t = 0), (46)

εnew = 1√
2

[θ (d,t = 0) − i∂θ (d,t = 0)] . (47)

Here we have assumed that z = d, since we are interested in
the transmitted field. Now Eq. (44) can be written as

g2(d,τ ) = 〈ψ̃(0)|
̂†
+(d,τ )
̂+(d,τ )|ψ̃(0)〉/|〈ψ̃(0)|ψ̃(0)〉|2.

(48)

The numerator describes the expectation value for the intensity
operator Î (τ ) = 
̂

†
+(d,τ )
̂+(d,τ ) in the Heisenberg picture

given an initial state |ψ̃(0)〉. However, we can easily convert
this to the Schrödinger picture by moving the evolution from
the operator to the state, that is, by evolving |ψ̃(0)〉 under the
same evolution equations [Eqs. (29) and (30)] and boundary
conditions [Eq. (35)] that we used earlier. Therefore, the
correlation function g2(z,τ ) will be given by

g2(z,τ ) = 〈ψ̃(τ )|
†
+(z)
+(z)|ψ̃(τ )〉

|〈ψ(0)|
†
+(z)
+(z)|ψ(0)〉|2

. (49)

VI. ANALYTICAL SOLUTION FOR NLSE WITH
OPEN BOUNDARIES

In this section, we show that a NLSE system with open
boundary conditions yields analytical solutions in absence of
an outside driving source (α0 = 0). To obtain the analytical
solutions, we use the Bethe ansatz technique [25,32]. This
ansatz specifies that the eigenstates consist of a superposition
of states in which colliding particles exchange their wave
numbers ki . Unlike the typical formulation, the values of
ki here can be complex to reflect the open nature of our
boundary conditions, which allow particles to freely enter or
leave. In particular, we present the one-, two- and many-body
eigenmodes of the system along with their energy spectra.
Finding certain eigenmodes of the system (e.g., bound states)

helps us understand the correlation functions and also spatial
wave functions which are numerically calculated later in
Sec. VII for a driven system.

A. One-particle problem

First, we calculate the fundamental modes for the one-
particle states. These modes are of particular interest when we
later want to construct the many-body wave function of the
interacting system in the absence of an input field.

Specifically, we want to find solutions of the Schrödinger
equation for a single particle in a system of length d

i
∂

∂t
θ (z,t) = − 1

2m

∂2

∂z2
θ (z,t), (50)

subject to open boundary conditions. The boundary condition
for the undriven system at z = 0 is given by

θ (0) − i

2m
∂zθ (0) = 0 (51)

and similarly for z = d,

θ (d) + i

2m
∂zθ (d) = 0. (52)

We look for stationary solutions of the form θ (z,t) = e−iδt θ (z),
where θ (z) = A sin(kz) + B cos(kz). For simplicity, we as-
sume m = 1/2. Therefore, we recover the quadratic dispersion
relation δ = k2. The values of k are allowed to be complex
to reflect the open nature of our boundary conditions, which
allows particles to freely enter or leave. By enforcing the
boundary conditions we get a set of equations for the
coefficients A,B,

B − iAk = 0,

(A − iBk) sin(kd) + (B + iAk) cos(kd) = 0,

which yields the characteristic equation for finding eigen-
modes and eigenenergies of system,

e2ikd =
(

k + 1

k − 1

)2

. (53)

Therefore, the normalized corresponding wave function for
each allowed k will be

θ (z) = A[sin(kz) + ik cos(kz)],
(54)

A2 = 4k

2dk(1 + k2) + (k2 − 1) sin(2dk)
.

We note that in the limit of large optical density d � 1, the
lowest energy modes of the open system are very close to
those of a system with closed boundary conditions, whose
characteristic equation is given by kd = nπ . For example, at
d = 100, the wave number corresponding to lowest energy
is k � 0.0314 − i0.000 63 � π/100. We note that the many-
body solutions of the system in the presence of very strong
interactions (large κ) can be constructed from these single-
particle solutions and proper symmetrization, as we show in
Sec. VI E.



B. Two-particle problem

In this section, we study the problem of two particles
obeying the NLSE with mixed boundary conditions. We wish
to solve

Eφ(z1,z2) = − 1

2m

(
∂2

∂z2
1

+ ∂2

∂z2
2

)
φ(z1,z2)

+ 2κφ(z1,z2)δ(z1 − z2), (55)

where E is the energy of the system and can be complex.
Again, we assume the mass is entirely real, m = 1/2.

We should note that the conventional method of separation
of variables cannot be applied in this case. The reason for
this can be understood in the following way. On one hand,
if we ignore the δ interaction term in the evolution equation
of the two particles, finding the eigenfunctions is essentially
equivalent to solving the Laplace equation in a box with
mixed boundary conditions. Therefore, for this problem the
natural separation of variables involves solutions given by
products of functions f (z1) and g(z2). On the other hand,
if we neglect the boundaries, the problem of two particles
interacting at short range can be solved by utilizing the
center of mass and relative coordinates and invoking solutions
involving products of functions f̃ (z1 + z2) and g̃(z1 − z2). We
immediately see that the two sets of solutions are irreconcilable
and thus separation of variables is not applicable when both
the boundary conditions and interaction term are present.

We thus take a different approach, using a method similar
to the Bethe ansatz method for continuous, 1D systems
[25]. Specifically, we solve the Schrödinger equation in the
triangular region where 0 � z1 < z2 � d, and we treat the
interaction as a boundary condition at z1 = z2. In other words,
when two particles collide with each other at z1 = z2, they can
exchange momenta, which is manifested as a cusp in the wave
function at z1 = z2. Hence, for the boundary conditions in this
triangular region, we have

φ(0,z2) − i∂z1φ(0,z2) = 0, (56)

φ(z1,d) + i∂z2φ(z1,d) = 0, (57)

(∂z2 − ∂z1 )φ(z1,z2)|z2=z1 = κφ(z1,z2)|z2=z1 . (58)

We note that the last boundary condition is deduced from
integrating Eq. (55) across z1 = z2 and enforcing that the wave
function is symmetric,

(∂z2 − ∂z1 )φ(z1,z2)|z2=z+
1

− (∂z2 − ∂z1 )φ(z1,z2)|z2=z−
1

= 2κφ(z1,z2)|z1=z2 . (59)

Inside the triangle, the solution consists of superpositions
of free particles with complex momenta. Since particles can
exchange momenta when they collide at z1 = z2, we should
consider solutions of the following form:

φ(z1,z2) =
∑
{ε}

Aεe
iε1k1z1+iε2k2z2 + Bεe

iε1k2z1+iε2k1z2 , (60)

where the summation should be performed on all sets of signs
ε = ±1. Given the terms containing Aε , the terms Bε then
arise from the scattering of the particles off each other. Let us

first consider the portion of the wave function containing the
terms Aε , which we can write in the form

φA(z1,z2) = eik1z1+ik2z2 + αe−ik1z1+ik2z2

+βe−ik1z1−ik2z2 + γ e+ik1z1−ik2z2 , (61)

where the energy is equal to E = k2
1 + k2

2 and could be
complex. Similar to the single-particle solutions, the presence
of the imaginary part in the energy reflects the fact that
the two-particle state stays a finite amount of time inside the
system. Applying boundary conditions at z = 0 and z = d

subsequently generates four equations relating α,β,γ , where
one of them is redundant. Their solution reduces the wave
function to

φA(z1,z2) = eik1z1+ik2z2 + k1 + 1

k1 − 1
e−ik1z1+ik2z2

+ k1 + 1

k1 − 1
γ e−ik1z1−ik2z2 + γ e+ik1z1−ik2z2 , (62)

where γ = k2−1
k2+1e2ik2d . A similar expression results for the

portion of φ(z1,z2) containing the Bε terms, once the boundary
conditions at z = 0 and z = d are applied:

φB(z1,z2) = 1

t

(
eik2z1+ik1z2 + k2 + 1

k2 − 1
e−ik2z1+ik1z2

)

+ γ ′

t

(
k2 + 1

k2 − 1
e−ik2z1−ik1z2 + e+ik2z1−ik1z2

)
,

where γ ′ = k1−1
k1+1e2ik1d , and t is a coefficient to be determined

from the boundary condition at z1 = z2. To find t , it is
convenient to rewrite each of the terms in φA,B as a prod-
uct of relative coordinate (r = z2 − z1) and center-of-mass
coordinate [R = (z1 + z2)/2] functions,

φ̃A(R,r) = eipR−iqr + k1 + 1

k1 − 1
e−iqR+ipr (63)

+ γ
k1 + 1

k1 − 1
e−ipR+iqr + γ eiqR−ipr , (64)

φ̃B(R,r) = 1

t

(
eipR+iqr + k2 + 1

k2 − 1
eiqR+ipr (65)

+ γ ′ k2 + 1

k2 − 1
e−ipR−iqr + γ ′e−iqR−ipr

)
, (66)

where p = (k1 + k2) and q = (k1 − k2)/2. The boundary
condition at z1 = z2 leaves the center-of-mass parts of the
wave function unaffected, but yields the following condition
on the relative coordinates,

∂rφ(R,r)|r=0+ = κ√
2
φ(R,r)|r=0+ , (67)

where φ = φA + φB is the total wave function in the triangular
region. We should satisfy this boundary condition separately
for each of the center-of-mass momentum terms e±ipR,e±iqR

in the total wave function. This leads to three independent
equations (one in four is redundant). However, we introduce a
new parameter (t ′) to simplify the equations, which turns them
into four equations:

t = k1 − k2 + iκ

k1 − k2 − iκ
, t ′ = k1 + k2 + iκ

k1 + k2 − iκ
(68)



t t ′
(

k1 + 1

k1 − 1

)2

= e2ik1d , (69)

t ′
(

k2 + 1

k2 − 1

)2

= te2ik2d , (70)

which can be written in the following short form:

e2ikid = (ki + 1)2

(ki − 1)2

∏
j �=i

(ki − kj + iκ)(ki + kj + iκ)

(ki − kj − iκ)(ki + kj − iκ)
, (71)

where i,j can be (1,2). These are transcendental equations
for (k1,k2), which generate the spectrum of two interact-
ing particles. We can also write the wave functions [φ =
φA(z1,z2) + φB(z1,z2)] in the region (0 � z1 < z2 � d) in
a more compact way by using the single-particle solutions
ηk(z) = sin(kz) + ik cos(kz):

φA(z1,z2) = 4

k1 − 1

eik2d

k2 + 1
ηk1 (z1)ηk2 (d − z2), (72)

φB(z1,z2) = 4t−1

k2 − 1

eik1d

k1 + 1
ηk2 (z1)ηk1 (d − z2). (73)

It is interesting to note that in the limit of strong interaction
(either for positive or negative κ), the solutions are very similar
to the noninteracting case. The reason can be seen from the
transcendental Eqs. (71), in the limit κ → ±∞. We then re-
cover the same characteristic equations e2ikd = ( k+1

k−1 )2 for both
wave vectors as the noninteracting case, Eq. (53). We should
note that there are some trivial solutions to the transcendental
Eqs. (71), which do not have any physical significance. For
example, equal wave vectors k1 = k2. Although one can find
such wave vectors, this solution is readily not a solution to
Eq. (55), since it does not satisfy the interacting part (this
solution only contains center of mass motion). One can also
plug back the wave vectors into wave function and arrive at a
wave function equal to zero everywhere. Another example is
when one of the wave vectors is zero. In this case, one can also
show that the wave function is zero everywhere. If (k1,k2) are
solutions to the transcendental equations, then (±k1, ± k2) are
also solutions with equal energies. In next two sections, we
investigate nontrivial solutions to the transcendental equation
for two particles and discuss the related physics.

C. Solutions close to noninteracting case

The transcendental equations allow a set of solutions with
the wave vectors close to two different noninteracting modes
say (m,n). In the noninteracting regime, any mode can be pop-
ulated by an arbitrary number of photons. However, once the
interaction is present, photons cannot occupy the same mode
and therefore, the photons will reorganize themselves and each
acquire different modes. Figure 8 shows a normal mode wave
function of a nondriven system in both noninteracting and
strongly interacting regime (κd � 1). The wave function has
a cusp on its diagonal and diagonal elements are depleted for
both repulsive and attractive strong interaction.

This is a manifestation of fermionization of bosons in
1D systems in the presence of strong interaction [25,46].
Such solutions can exist both for repulsive and attractive
interactions. However, we note in the case of attractive
interaction such solutions are not the ground state of the

z

z

κ=0 κd=50
κd=−50

FIG. 8. (Color online) The amplitude of the two-photon wave
function for (m = 1, n = 2) mode when the system is not driven. By
increasing the interaction, photons self-organize inside the medium
and exhibit antibunching (depletion of diagonal elements). For this
plot, d = 30.

system and solutions with lower energies exist which are
discussed below. We later argue that indeed on the repulsive
side, the antibunching behavior of a driven system is due to
the repulsion of the photons inside the medium. We can also
estimate the energy of such modes, which is always positive. In
the strong interacting regime, particles avoid each other and,
therefore, their energy of a strongly two interacting bosons
E(m,n) will be equal to the energy of a system which has two
noninteracting bosons, one in state m and the other in state n.
This is shown in Fig. 9, where by increasing the interaction
strength the energy of interacting particles reaches that of the
noninteracting particles. As we pointed out in the previous
section (Sec. VI A), the energy of modes [E(n)] in an open box
has an imaginary part which represents how fast the particle
leave the system. However, for large systems (d � 1), this
decay is very small compared to the energy of the mode and
one can approximate the energy of an open system by that of a
closed box [i.e., E(n) � ( nπ

d
)2]. Therefore, the energy of two

strongly interacting photons (κd � 1), in the limit of large
system (d � 1), is given by

E(n,m) �
(nπ

d

)2
+

(mπ

d

)2
. (74)

We note that our strongly interacting system is characterized
by the parameter κd which is the same γ parameter conven-
tionally used for interacting 1D Bose gas. More precisely, the γ

parameter which is the ratio of the interaction to kinetic energy
can be simplified in our case for two particles: mκd/2 = κd/4.
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E(1,2)

E(1,3)

FIG. 9. (Color online) Energy of two-photon states. By increasing
the interaction strength (κd � 1) the energy of interacting particles
[red, E(1,2); blue, E(1,3)] reaches that of the noninteracting particles
(black). For a large system (in this case d = 30 � 1), the energy limit
is equal to energy of particles in a closed box (green). The error bars
show that imaginary part of the energies.
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FIG. 10. (Color online) Energy of bound states versus strength
of nonlinearity. Green (solid) curves are obtained by solving tran-
scendental Eqs. (71). Blue (dashed) curves are estimated based on
Eb

n � 2( nπ

d
)2 − κ2

2 . In this plot d = 30.

D. Bound-states solution

For attractive interaction (κ < 0), the mode equation (71)
admits solutions which take the form of photonic bound
states [30–32]. Specifically, in the reference frame of the
center of mass, two particles experience an attractive δ

function interaction −2|κ|δ(z2 − z1) → −√
2|κ|δ(r), which

allows one bound state in the relative coordinate. Therefore,
the part of the wave function describing the relative coordinate
roughly takes the form eiq|r|, where the relative momentum
q = (k1 − k2)/

√
2 � i|κ|/√2 is imaginary and its energy is

about −κ2/2. On the other hand, the center-of-mass momen-
tum can take a discrete set of values that are determined by the
system boundary conditions. We find that the center-of-mass
solutions can be approximately described by two different
types. The first type is where the real part of each photon wave
vector roughly takes values allowed for a single particle in
a box, such that k1 � ( nπ

d
) + i κ

2 and k2 � ( nπ
d

) − i κ
2 . In this

case the center of mass has wave vector p = k1 + k2 � 2( nπ
d

).
The corresponding energies for these states are

Eb
n � 2

(nπ

d

)2
− κ2

2
. (75)

Here the first term on the right corresponds to the energy of
the center-of-mass motion, and the second term corresponds to
the bound-state energy of the relative motion. Figure 10 shows
that the energies estimated in this way agree very well with the
exact values obtained by solving the transcendental Eqs. (71).

κd=-10κd=-4κ=0

z

z

FIG. 11. (Color online) The amplitude of the two-photon wave
function for a bound state when the system is not driven. By increasing
interaction, photons becomes more bunched. (k1,k2) � ( nπ

d
) ± i κ

2 .
For this plot, d = 60; n = 3.
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FIG. 12. (Color online) Energy of bound states versus strength
of nonlinearity. Green (solid) curves are obtained by solving tran-
scendental Eqs. (71). Blue (dashed) curve are estimated based on
Eb

n � ( nπ

d
)2 − κ2

2 . In this plot, d = 30.

The second type of solution allowed for the center of mass
motion is where its energy approximately takes a single-
particle value, p2

2(2m) = ( nπ
d

)2 where p = k1 + k2 � √
2( nπ

d
).

Therefore, the momentum of individual particles will be given
by k1 � ( nπ√

2d
) + i κ

2 , k2 � ( nπ√
2d

) − i κ
2 and the energy of this

paired composite can be estimated as

Eb
n �

(nπ

d

)2
− κ2

2
. (76)

Again, the estimated energies agree well with exact solutions,
as shown in Fig. 11. We note that some of the estimated allowed
energies for the two types of center of mass solutions coincide
(e.g., the lowest lying energy level in Fig. 10 and Fig. 12).

The energies of this series of bound states decrease with
increasing strength of nonlinearity |κ|. Now, suppose we drive
the system with a coherent field of fixed frequency δ, while
varying κ . The system is expected to display a set of resonances
as |κ| is increased, each time δ is equal to some particular
bound state energy Eb

n . This effect, in fact, gives rise to
oscillatory behavior in the correlation functions as a function
of κ , as we see later [Figs. 18(a) and 18(b)].

The wave-function amplitude of a typical bound state is
shown in Fig. 13. Due to the attractive interaction, diagonal
elements z1 = z2 become more prominent as |κ| increases,
indicating a stronger bunching effect for the photons, and these
states become more tightly bound in the relative coordinate.
The center of mass of the bound states can acquire a free
momentum that is quantized due to the system boundary con-
ditions (e.g., k � nπ/d). Figure 13 shows the wave function of

FIG. 13. (Color online) The amplitude of the two-photon wave
function for a bound state for a nondriven system. By increasing
interaction, photons becomes more bunched. (k1,k2) � ( nπ√

2d
) ± i κ

2 .
For this plot, d = 60; n = 3.



the third bound state (n = 3). The three peaks evident for large
|κ| reflect the quantum number of the center-of-mass motion.

E. Many-body problem

In this section, we obtain the general solution for the
many-body case. For the many-body system, the Schrödinger
equation takes the form

Eφ(z1, . . . ,zN ) = − 1

2m

∑
i

∂2

∂z2
i

φ(z1, . . . ,zN ) (77)

+
∑
〈i,j〉

2κφ(z1, . . . ,zN )δ(zi − zj ), (78)

where 〈i,j 〉 indicates pairs of particles. The open boundary
conditions for the many-body problem are given by[

φ(z1, . . . ,zN ) − i
∂

∂zi

φ(z1, . . . ,zN )

]
zi=0

= 0, (79)

[
φ(z1, . . . ,zN ) + i

∂

∂zi

φ(z1, . . . ,zN )

]
zi=d

= 0. (80)

Before presenting the general many-body solution, we first
study the limit of very large interaction strength for two
particles. In the limit of hardcore bosons where κ → ∞, the
expressions can be simplified since t,t ′ = −1 and eikd = k+1

k−1
for both k = k1,2. Then, the two components of the wave
function φA and φB take very similar forms:

φA(z1,z2) = 4

(k1 − 1)(k2 − 1)
ηk1 (z1)ηk2 (z2), (81)

φB(z1,z2) = −4

(k1 − 1)(k2 − 1)
ηk2 (z1)ηk1 (z2). (82)

The generalization to the many-body solution is straightfor-
ward for the hardcore boson case (also see Ref. [47]):

φ(z1,z2, . . . ,zN ) =
⎛
⎝ N∏

j=1

1

(kj − 1)

⎞
⎠ ∣∣∣∣ det

1�j,k�N
ηj (zk)

∣∣∣∣ . (83)

Similar to two-body solution, we note that such solutions are
present both for positive and negative κ . Since the system is
1D, strong interaction leads to fermionization of bosons (in
this case photons) [25,46].

We can also extend the many-body solution for an arbitrary
interaction strength, following Refs. [25,48]. Similar to the
two-body case, we can construct the general many-body wave
function of the form

φ(z1,z2, . . . ,zN ) =
∑

ε

Aε

∑
P

BP ei
∑

i εpi
kpi

zi , (84)

where the first sum is over forward- and backward-going
waves (ε = ±1) and the second sum is over different
momentum permutations of the set {k} = (k1,k2, . . . ,kN );
therefore, there are 2NN ! terms. We can find BP

coefficient by requiring
∑

P BP

∏
i<j eiεpi

kpi
zi to be

solution to the Schrödinger equation [Eq. (78)]. We can
write these coefficients in a compact way according to
Gaudin [49,50], BP = ∏

i<j (1 + iκ
εpi

kpi
−εpj

kpj

) with the total

energy E = ∑
i k

2
i . Now we apply the boundary condition

Eq. (79) which relates coefficient Aε . For a given momentum
permutation P = (p1,p2,, . . . ,pN ), by considering the terms

corresponding to different signs of εpi
, the boundary condition

requires Aε to satisfy equations of the form

(1 + εpi
kpi

)Aε1,...,εpi
,...,εN

∏
j ( �=pi )

(
1 + iκ

εpi
kpi

− εj kj

)

+ (1 − εpi
kpi

)Aε1,...,(−εpi
),...,εN

∏
j ( �=pi )

(
1 + iκ

−εpi
kpi

− εj kj

)

= 0.

The above equations can be satisfied by the following solution
for Aε :

Aε =
∏
i<j

(
1 − iκ

εiki + εj kj

) N∏
m=1

(
1 − 1

εmkm

)
. (85)

Therefore, the wave function can be written as

φ(z1,z2, . . . ,zN )

=
∑

ε

∑
P

N∏
m=1

(
1 − 1

εmkm

)
e[i(εp1 kp1 x1+···+εpN

kpN
xN )]

×
∏
i<j

[(
1 − iκ

εiki + εj kj

)(
1 + iκ

εpi
kpi

− εpj
kpj

)]
.

(86)

Similar to the two-body case, we have to subject this
solution to the boundary condition at other end (i.e., z = d)
to determine the momenta ki’s. This condition yields the
transcendental equations for momenta:

e2ikid = (ki + 1)2

(ki − 1)2

∏
j �=i

(ki − kj + iκ)(ki + kj + iκ)

(ki − kj − iκ)(ki + kj − iκ)
. (87)

If we assume only two particles in the system, one can
easily verify that the above transcendental equations reduce
to two-body transcendental equation derived in the previous
section [Eq. (71)].

VII. QUANTUM TRANSPORT PROPERTIES

In this section, we investigate transport properties of the
photonic nonlinear 1D system in the regimes of attractive,
repulsive, and absorptive interactions between photons. We
present numerical solutions for the transport of photons
incident from one end of the waveguide (a driven system),
while using the analytical solutions of the nondriven system
(Sec. VI) to elucidate the various behaviors that emerge in the
different regimes.

A. Repulsive interaction (κ > 0)

We first study the quantum transport properties of the
system in the dispersive regime where the nonlinearity co-
efficient is almost real and positive (κ > 0), such that photons
effectively repel each other inside the system.

We assume that a weak coherent field is incident to the
waveguide at one end, z = 0, with no input at the other
end, z = d [similar to Fig. 1(b)]. We fix the detuning of
the input field to δ0 = (π/d)2, which corresponds to the
first transmission resonance in the linear regime (Sec. III).
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FIG. 14. (Color online) g2(τ = 0) reaches the steady state after a

time interval which is set by the bandwidth of the system, one-photon
state (green, dotted) is partially transmitted while the transmission
of the two-photon state (red, dashed) is further suppressed due the
nonlinear dispersion. This has been generated for a system with
�1D/� = 10% an dopt = 160.

Because we have assumed a weak input field, we can apply
the techniques described in Sec. V to describe the transport.
Our numerical techniques for solving these equations are given
in Appendix B. While the numerical results presented in this
and the following sections are evaluated for a specific set of
parameters (system size, detuning, etc.), the conclusions are
quite general. Numerically, we begin with no photons inside
the medium and evaluate quantities such as the transmission
intensity and correlation functions only after the system
reaches steady state in presence of the driving field. In Fig. 14,
the transmission of the single-photon intensity

T1 = 〈1|
†
+(d)
+(d)|1〉

〈1|
†
+(0)
+(0)|1〉

, (88)

the transmission of the two-photon intensity

T2 = 〈2|
†
+(d)
+(d)|2〉

〈2|
†
+(0)
+(0)|2〉

, (89)

and the transmitted correlation function g2(z = d,τ = 0) are
shown as the system evolves in time. The system reaches its
steady state after a time of the order of the inverse of the
system bandwidth (Sec. III). In fact, T1 coincides with the
linear transmission coefficient of the system in the absence of
the nonlinearity.

First, we note that the single-photon wave function is
not affected by the presence of the nonlinearity and will be
perfectly transmitted in the absence of linear losses. Thus, in
our truncated Hilbert space, the only subspace affected by κ is
the two-photon wave function, which is shown in Fig. 15. We
clearly observe that the nonlinearity causes repulsion between
two photons inside the system, as the wave function along the
diagonal z1 = z2 becomes suppressed while the off-diagonal
amplitudes become peaked (indicating the delocalization of the
photons). This behavior closely resembles that of the natural
modes of the system, as calculated in Sec. VI. A similar
behavior involving the “self-organization” of photons in an
NLSE system in equilibrium has been discussed in Ref. [7].

κ=0 κd=1.5 κd=3.0

FIG. 15. (Color online) Two-photon wave function |φ(z1,z2)|
exhibiting delocalization. We have assumed no dissipation (�′ = � =
0) in this plot. d = 30 for different values of κ .

In the presence of linear absorption (discussed in Sec. III),
the system will not be perfectly transmitting even on reso-
nance, and therefore in a realistic situation the transmittivity
will be less than one (T1 < 1). Note, however, that such absorp-
tion would result in a classical output given a classical input.
Significantly, in the presence of a nonlinearity, we find that the
output light can acquire nonclassical character. Specifically,
the transmitted light exhibits antibunching [g2(z = d,τ =
0) < 1], which becomes more pronounced with increasing
κd2 (Fig. 16). This effect partly arises from the suppression
of transmission of two-photon components, due to an extra
nonlinear phase shift that shifts these components out of trans-
mission resonance. In fact, these components are more likely to
get reflected, which causes the reflected field to subsequently
exhibit bunching behavior. We note that this effect is similar
to photon blockade in a cavity (e.g., see Refs. [9,11,12]). In
addition, additional antibunching occurs due to the fact that
two-photon components inside the system tend to get repelled
from each other. This effect arises due to the spatial degrees
of freedom present in the system, which is fundamentally
different than switching schemes proposed in optical cavities
(e.g., Refs. [9,11,12]) or waveguides coupled to a pointlike
emitter [3,23]. In the limit where κ → ∞, the transmitted
field approaches perfect antibunching, g2(d,τ = 0) = 0.

In an experimental realization, the requirement to see the
photon repulsion (κd2 � 40) for a system with �1D/� = 10%
would be a coherent optical length of d � 40 when 	2/� = 1.
Therefore, at least an optical density of dopt � 160 is needed
for T1 � 20%. The antibunching in the transmitted light is
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FIG. 16. (Color online) g2(τ = 0) as a function of nonlinearity.
For large system sizes d � 1, the antibunching of the system scales
with κd2.
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FIG. 17. (Color online) Repulsive photons. Correlation function
g2(τ = 0) of the transmitted light when the frequency is set to the
single-photon transmission resonance with T1 � 20% and 	2

�
= 5.

more pronounced as the optical density increases, which
increases the effective system finesse (Fig. 17).

B. Attractive interaction (κ < 0)

In this section, we study the quantum transport properties
of the system in the presence of dispersive nonlinearity with
negative coefficient. Contrary to the semiclassical prediction,
we show that the second-order correlation function of the
transmitted field oscillates as function of nonlinear interaction
strength and can exhibit both bunching and antibunching. We
explain the origin of this behavior in terms of the analytical
solutions obtained in Sec. VI B.

In Fig. 18(a), we plot g2(τ = 0) for the transmitted field
versus κd. Initially, the system exhibits antibunching behavior
for small values of |κ|d which indicates that multiphoton
components tend to switch themselves out of transmission
resonance. However, as we increase |κ|d, oscillations develop
in the correlation function, exhibiting strong bunching behav-
ior at particular values of κd. Thus, unlike the repulsive case,
a competing behavior arises between the photon switching
effect and the resonant excitation of specific bound states
within the system, as we describe below. In particular, the
bound state energies Eb

n decrease quadratically with changing
κ , according to Eq. (76) or Eq. (75), which is shown in
Fig. 18(b). For a fixed detuning δ, the oscillation peaks
(where g2 is largest) correspond to situations where the
energy of a bound state becomes equal to the energy of two
incoming photons (Eb

n = 2δ). This effect is further confirmed
by examining the two-photon wave function at each of these
oscillation peaks [Fig. 18(a)]. We clearly observe that these
wave functions correspond to the bound states calculated in
Sec. VI B. Similar to Figs. 11 and Fig. 13, it is readily seen
that the wave functions at these peaks are localized along the
diagonal, indicating a bound state in the relative coordinates
and leading to the bunching effect in transmission. On the other
hand, an increasing number of nodes and antinodes develop
along the diagonal for increasing |κ|d, which are associated
with the higher momenta of the center-of-mass motion. We
note that such resonances deviate significantly from the the
semiclassical picture, where antibunching was predicted for
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FIG. 18. (Color online) (a) Output correlation function g2(τ =
0) as a function of nonlinearity. When the negative nonlinear
strength is changed to higher values and g2 exhibits resonances
at certain values of κd � (0,6,10,14, . . .). In this plot the system
size is d = 30; however, for other system sizes the same behaviors
were observed around similar values of κd . The two-photon wave
function (|φ(z1,z2)|) for four values of nonlinearity is shown.
(b) Corresponding bound-state energies (green solid lines) which
become resonant with incoming photon energy (black dotted line) for
specific nonlinearities. We have assumed no dissipation (�′ = � = 0)
in these plots.

both positive and negative nonlinearity. We also note that
in cavity QED systems this effect is not present since these
systems are single mode.
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FIG. 19. (Color online) g2(τ = 0) reaches the steady-state after
a time interval which is set by the bandwidth of the system, one-
photon state (green dotted line) is partially transmitted while the
two-photon state (red dashed line) is strongly attenuated due the
nonlinear absorption. This plot has been generated for a system with
�1D/� = 10% and dopt = 70.



The experimental requirement to see such behaviors is more
stringent than the photon repulsion in the previous section. For
example, if we want to observe the second photonic bound state
(κd � 5) for a system with �1D/� = 0.2, the coherent optical
length should be at least d � 200 when 	2/� = −5. To
achieve a reasonable signal (linear transmission T1 = 1%) an
optical density of dopt = 3500 is needed. Importantly, however,
we have shown that the presence of bound states inside the
nonlinear medium can be probed with classical light simply
by examining higher-order correlation functions in the output
field, rather than sending in complicated quantum inputs.

C. Dissipative regime (κ = i|κ|)
In this section, we study the transport properties of the

system in the presence of nonlinear absorption, and calculate
its effect on the transmitted light and its correlation functions.

A purely absorptive nonlinearity arises when the detuning
	2 is set to zero in our atomic system [see Fig. 1(a)]. This
nonlinear loss also leads to antibunching in the transmitted
field, as multiphoton components become less likely to
pass through the waveguide without being absorbed. Linear
absorption, on the other hand, affects transmission of single-

d
Γ

1D
/Γ

single-photon

two-photon

Tr
an

sm
is

si
o

n

opt

1.0 (a)

50 100 150 200

0.05

0.1

0.15

0.2

0.25

0.3

Γ 1
D
/Γ

dopt

(b)

FIG. 20. (Color online) (a) One-photon state is partially transmit-
ted (T1) while the two-photon state transmission (T2) is suppressed
due the nonlinear absorption. This suppression is more pronounced
for higher optical density and cooperativity. (b) Correlation function
g2(τ = 0) of the transmitted light when the frequency is set to the
single-photon transmission resonance with T � 20% and 	2

�
= 0.
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FIG. 21. (Color online) In the presence of the nonlinear absorp-
tion ( 	2

�
= 0), the two-photon wave function is strongly suppressed

comparing to the absence of the nonlinear absorption (	2 � �).
These plots has been generated for a system with �1D/� = 10%,
T1 � 20%, and dopt = 70.

and multiphoton components equally. Figures 19 and 20
show how two-photon and one-photon states are transported
differently in the nonlinear absorptive system (realistic linear
losses are included in this calculation).

We note that the two-photon wave function is attenuated due
the nonlinear absorption, while it is not deformed, as shown
in Fig. 21. In an experimental realization of such a system
with �1D/� = 10%, an optical coherent length of d � 20 is
enough to yield a relatively large antibunching (g2 < 0.3). In
order to have high transmission (T1 = 20%) for single photons
an optical density of dopt � 70 is required. Among the various
effects predicted in this article, the antibunching induced by
the dissipative nonlinearity is easier for implementation. For
example, �1D/� � 0.6% and dopt � 180 is demonstrated in
Ref. [18] and also �1D/� � 3% and dopt � 30 is reported in
Ref. [19].

All of the physics related to the photon correlation function
is described again by a product of the coherent optical length
and the nonlinearity coefficient (|κ|d) (since the nonlinear
absorption is equal to the nonlinear absorption coefficient
times the length of the medium). However, for a fixed
optical density, since the nonlinear transition is on resonance,
the magnitude of the nonlinear coefficient |κ| is enhanced
compared to the nonlinear dispersive case. We note that in the
presence of nonlinear absorption, one has to also consider the
effect of accompanied noise. However, the effect of noise for
an ensemble of many atoms which are driven by a weak laser
field, is negligible, and therefore, using the NLSE with a decay
term is sufficient and consistent. A rigorous demonstration of
the validity of such approximation is the subject of further
research. We also note a related study [51] in the dissipative
regime which appeared during the preparation of this paper.

VIII. CONCLUSIONS

We have developed a technique to study few-photon
quantum dynamics inside 1D nonlinear photonic system. This
technique allows us to study the system even in regimes where
nonlinearities are significant even at a few-photon level, where
we find that the behavior of the system deviates significantly
from estimates based on classical formalism. Specifically,
when the system is driven by classical light, the strong optical
nonlinearity manifests itself in the correlation functions of the
outgoing transmitted light. In particular, when the interaction
between photons is effectively repulsive, the suppression



of multiphoton components results in antibunching of the
transmitted field and the system acts as a single-photon switch.
In the case of attractive interaction, the system can exhibit
either antibunching or bunching, associated with the resonant
excitation of bound states of photons by the input field.
These effects can be observed by probing statistics of photons
transmitted through the nonlinear fiber.
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APPENDIX A: EIT-BAND GAP

In this appendix, we show that how in an EIT system, where
the control field is a standing wave, a band-gap structure can be
developed. In particular, we show the presence of transmission
resonances at the band-gap edge by taking into account the
full expression for the atomic susceptibilities. We show that at
the band-gap edge, we recover that same resonances that we
presented in the main text for small detunings.

We consider a λ-level scheme, where a standing control
field has coupled the forward- and backward-going probe
together, similar to Fig. 1 without the nonlinear transition
(c-d). Following [52], we assume the noises to be negligible,
and therefore, the atomic equations of motion to the leading
order in E± are

∂t σ̂
+
ab = +(i	1 − �/2)σ̂+

ab + i�σ̂ac + ig
√

2πE+, (A1)

∂t σ̂
−
ab = +(i	1 − �/2)σ̂−

ab + i�σ̂ac + ig
√

2πE−, (A2)

∂t σ̂ac = −γ0σ̂ac + i�σ̂+
ab + i�σ̂−

ab, (A3)

and the evolution equation of the photonic fields are written as

(∂t + c∂z)E+ = i	KE+ + ig
√

2πn0σ̂
+
ab, (A4)

(∂t − c∂z)E− = i	KE− + ig
√

2πn0σ̂
−
ab. (A5)

The wave-vector mismatch can be ignored by including
a small shift in the two-photon detuning. By taking the
Fourier transform of the atomic equation of motion, one
can solve for atomic polarization and obtain the self- and
cross-susceptibilities. We can define a unit length based on the
absorption length Labs = c�

2πg2n0
and write the field equation

as

∂z̃E+ = i	̃3E+ + iχs(δ)E+ + iχc(δ)E−,
(A6)

−∂z̃E− = i	̃3E− + iχs(δ)E− + iχc(δ)E+,

where the self- and cross-susceptibilities and the detuning are
given by

χs(δ) = i
�

�′
�′�0 + �2

�′�0 + 2�2
, (A7)

χc(δ) = −i
�

�′
�2

�′�0 + 2�2
, (A8)

	̃3 = 	3

�

�2

2πg2n0
= δ

η

�

|	1| , (A9)

−40 −20 0 20 40 60 800

0.2

0.4

0.6

0.8

1

Δ3 /Γ

Δ1/Γ=−50, d  =5, =20

 

 
Transmission
Reflection

opt

Δ1/ Γ=−50, d  =50, =20
 

Transmission
Reflection

opt

−40 −20 0 20 40 60 800

Δ3 /Γ
 

0.2

0.4

0.6

0.8

1

 

Transmission
Reflection

−40 −20 0 20 40 60 800

Δ3 /Γ
 

0.2

0.4

0.6

0.8

1

Δ Ω

Ω

Ω

1/ Γ=−50, d   =1000, =20
opt

FIG. 22. (Color online) By increasing dopt, the band-gap structure
becomes more pronounced.



where �′ = �/2 − i	1 − i	3, �0 = γ0 − i	3, and 	3 is the
two-photon detuning of the probe from the pump field which is
related to the dimensionless two-photon detuning in the main
text (	3 = 2 �2

	1
δ � 	1). We note that in most cases, 	̃3 is very

small for slow group velocities [ �2

2πg2n0
= ( �

�
)2 �2

2πg2n0
� 1],

and therefore the corresponding term can be neglected for
simplicity.

In order to obtain transmission and reflection coefficient,
one should solve the couple mode equations Eq. (A6) with
proper boundary conditions. Therefore, we consider a system
which is driven with a weak coherent field at (z = 0).
Therefore, the boundary conditions can be set to

E+(z = 0) = E0, (A10)

E−(z = d) = 0. (A11)

We evaluate the transmission coefficient [E+(z = d)/E0],
and the reflection coefficient [E−(z = 0)/E0] by numerical
methods using BVP5C in MATLAB. In particular, we are
interested in the Raman regime; in other words, the detuning
is very large |	1| � � and also we assume 	1 < 0. First,
we consider the case where the EIT width is smaller than the
one-photon detuning, that is, � � |	1|. Figure 22 shows the
reflectivity and transmittivity of the system for different optical
densities. In the regime with low optical density, the spectrum
corresponds to a shifted Raman transition at 	3 � 2 �2

	1
and an

EIT window around 	3 � −	1. In higher optical densities,
the system develops a band gap for −� � 	3 � 0. Figure 22
shows that in media with higher optical density, the band gap
becomes more prominent.

As we discussed in the main text, we are interested in
the band-gap edge where the transmission peaks are present
and the system acts like an effective cavity. Figure 23 shows
a closeup of the transmittivity and reflectivity spectrum in
Fig. 22(c) at the band-gap edge. We can observe that several
resonances occur at the edge due to the finite size of the system.
By positioning at the one of the transmission peaks, the system
behaves as an effective cavity, where the decay rate of the
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FIG. 23. (Color online) Transmission resonances at the edge of
the band gap.
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FIG. 24. (Color online) Band-gap structure for strong control
fields (� > 	1).

cavity will be given by the width of the transmission peak.
Therefore, the present results, including the full susceptibil-
ities of the system, is consistent with the model presented
earlier where we had approximated the system to be around
	3 = 0.

We add that alternatively, one can assume a strong control
field so that the EIT windows would be smaller than the
one-photon detuning � > |	1|. Similar to the previous case
� < |	1|, the system develops a band gap. As shown in
Fig. 24, the band gap is formed between −� � 	3 � �,
similar to modulated EIT with ac-stark shift as discussed
in Ref. [34].

APPENDIX B: NUMERICAL METHODS

In this section, we describe the numerical methods that have
been used to simulate the evolution of the photonic quantum
state and the related correlation functions, in the limit where
we truncate the Hilbert space to two photons or less. The partial
differential equations for the one-photon and two-photon wave
functions (29), (30) are turned into difference equations by
discretizing space and time and are evolved forward in time
using the Du Fort-Frankel scheme [53]. This algorithm is
explicit in time—that is, the next time step function is explicitly
given by the past time function—and is also unconditionally
stable. We note that the system under investigation is open
and it is driven out of equilibrium; therefore, conventional
analytical methods for approaching the NLSE such as Bethe
ansatz or quantum inverse scattering [26] are not applicable
here.

The one-photon wave function can be easily integrated and
solved analytically. However, we describe how to obtain the
one-photon wave function numerically and then generalize this
technique to obtain the two-photon wave function. First, we
mesh space and time and reduce the differential equations to
a difference equation. If we choose the time step k and the
space step h, the discretized time and space will be x = z/h

and s = t/k and the system length d = Nh. Then following



the Du Fort-Frankel scheme [53], the evolution equation takes
the form

θ (x,s + 1) − θ (x,s − 1)

2k
= i

2mh2
[θ (x + 1,s) + θ (x − 1,s)

− θ (x,s + 1) − θ (x,s − 1)],

(B1)

where the position take all values inside the boundary (2 �
x � N − 1). By rearranging the above equation, the explicit
form of the equation can be obtained,(

1 + ik

mh2

)
θ (x,s + 1) = θ (x,s − 1) + ik

mh2
[θ (x + 1,t)

+ θ (x − 1,t) − θ (x,s − 1)].

(B2)

Therefore, inside the boundaries, the wave function at time
s + 1 can be obtained knowing the wave function at times s

and s − 1. The boundary condition at z = 0, that is, x = 1, is
given by

α = θ (1,s + 1) + θ (2,s + 1)

2
− i

θ (2,t + 1) − θ (1,s + 1)

2mh
.

(B3)

Equivalently,

θ (1,s + 1) = α + ( − 1
2 + i

2mh

)
θ (2,s + 1)

1
2 + i

2mh

, (B4)

and similarly for the boundary condition at z = d, that is,
x = N , we have

θ (N,s + 1) =
( − 1

2 + i
2mh

)
θ (N − 1,s + 1)

1
2 + i

2mh

. (B5)

Therefore, by having the above boundary conditions and the
initial condition θ (x,s = 1) = 0, the wave function can be
calculated at any time inside the boundaries (2 � x � N − 1).
The order of accuracy of the Du Fort-Frankel scheme is given
by O(h2) + O(k2) + O(k2h−2) and it is consistent as k/h

tends to zero [53].
Similarly, we can write a difference equation for the two-

photon wave function. The δ interaction can be approximated
by a Gaussian distribution. The space domain is meshed so that
	z1 = 	z2 = h. The evolution equation for the two-photon
wave function reads(

1 + 2ik

mh2

)
φ(x,y,s + 1)

= ik

mh2
[φ(x + 1,y,s) + φ(x − 1,y,s)]

+ ik

mh2
[φ(x,y + 1,s) + φ(x,y − 1,s)]

+ 2
ik

mh2
φ(x,y,s − 1) + φ(x,y,s − 1)

− 2k
2iκ

σ
√

2π
Exp

(
− (x − y)2

2σ 2

)
φ(x,y,s). (B6)

The boundary condition at z = 0 is given by

α

2
θ (y,s + 1) = φ(1,y,s + 1) + φ(2,y,s + 1)

2

− i
φ(2,y,s + 1) − φ(1,y,s + 1)

2mh
, (B7)

where σ is the length scale characterizing the distance of the
two-photon interaction. Approximating the δ function with a
Gaussian is valid if σ � d. On the other hand, we should
have h � σ so that the Gaussian function would be smooth.
Equivalently,

φ(1,y,s + 1) =
1
2αθ (y,s + 1) + ( − 1

2 + i
2mh

)
φ(2,y,s + 1)

1
2 + i

2mh

,

(B8)

and similarly for the boundary condition at z = d, we have

0 = φ(N,y,s + 1) + φ(N − 1,y,s + 1)

2

+ i
φ(N,y,s + 1) − φ(N − 1,y,s + 1)

2mh
, (B9)

which gives

φ(N,y,s + 1) =
( − 1

2 + i
2mh

)
φ(N − 1,y,s + 1)

1
2 + i

2mh

. (B10)

Once the wave function is known at any point in time and
space, we can evaluate the correlation functions. In particular,
the two-photon correlation function g2(d,τ = 0) is given by
Eq. (42), where the first and the second derivatives at any time
are given by the following expressions:

∂ (1)φ(d,d) = 1

2mh
[φ(N,N ) − φ(N − 1,N )]

(B11)

∂ (1)∂ (2)φ(d,d) = 1

4m2h2
[φ(N,N ) − φ(N − 1,N)

−φ(N,N − 1) + φ(N − 1,N − 1)].

Note that in evaluation of g2(τ ), once the first photon is
detected the two-photon wave function collapses to zero. This
seems to be contradictory with the driven boundary condition
Eq. (35) where the two-photon state at the boundaries is
proportional to the one-photon wave function which is not
zero. This apparent inconsistency occurs because we have
neglected higher number photon states in our truncation.
However, this inconsistency only leads to higher-order
corrections to g2(τ ) in the input field amplitude α, which is
assumed to be weak (α � 1).
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