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Abstract – An approach to solve the critical problem of testing quantum effects of spatial
noncommutativity is proposed. Magnetic hyperfine structures in a Rydberg system induced by
fractional angular momentum originated from spatial noncommutativity are discussed. The orders
of the corresponding magnetic hyperfine splitting of the spectrum ∼10−7–10−8 eV lie within the
limits of accuracy of current experimental measurements. Experimental tests of physics beyond the
standard model are the focus of broad interest. We note that the present approach is reasonably
achievable with current technology. The proof is based on very general arguments involving only
the deformed Heisenberg-Weyl algebra and the fundamental property of angular momentum.
Its experimental verification would constitute an advance in understanding of fundamental
significance, and would be a key step towards a decisive test of spatial noncommutativity.

Introduction. – As one of the current candidates
in tracking down new physics beyond the standard
model, quantum mechanics in noncommutative space
(NCQM) [1–21] should be verifiable1. Modifications of
spatial noncommutativity (NC) to normal quantum
theory depending on vanishingly small NC parameters,
which lead to NC quantum effects, are usually far beyond
experimental accuracy. Therefore, a widely held view is
that NCQM can only make predictions outside the range
of experimental observation. However, the conclusion is
premature [20]. Indeed, attempts in recent experiments
performed by Connerade et al. [20] suggest that there
may be a way to test for NCQM.
Recently, it has been found [14,19,21] that the vanish-

ingly small NC constants [5,12], which usually appear
in NC corrections of any physical observable, cancel out

(a)E-mail: jzzhang@ecust.edu.cn
1This paper focuses on the low energy relics of noncommutative

quantum theory and construct formalism, which closely relates to
a way testable by current experiments. It is enough to work in
deformed formalism at the NCQM level.

in the fractional angular momentum (FAM) originated
from spatial noncommutativity under well-defined condi-
tions. It turns out that FAM results in the unusual zero-
point value �/4. This provides a distinct signature of
spatial noncommutativity, which survives into the normal
quantum scale. The difficulty involved in testing spatial
noncommutativity via FAM is that direct measurements
of FAM are a challenge enterprise.
With particular emphasis on feasible experimental tests,

this paper proposes an approach of testing spatial noncom-
mutativity via measuring magnetic hyperfine structures
(MHFS [22,23]) induced by FAM in a Rydberg system.
The orders of the corresponding splitting of MHFS ∼ 10−7
–10−8 eV lie within the limits of accuracy of current exper-
imental measurements, and can be detected by using exist-
ing technology. The significant advance of the proposed
method is that it solves a critical outstanding problem of
NC quantum effects being unmeasurable, paves the way
for notable progress and will lead to the first real test
of spatial noncommutativity. Our proof is based on a very
general argument involving only the deformed Heisenberg-
Weyl algebra and the fundamental property of angular
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momentum. Therefore, if it is achieved experimentally,
this will constitute an advance in understanding of funda-
mental significance.

Review of FAM originated from spatial noncom-
mutativity [14,15,19,21]. – We investigate ion motion
in the laboratory system, trapped in a uniform magnetic
fieldB aligned along the z -axis and an electrostatic poten-
tial [21]

Veff = Veff,2+Veff,z =
mI

2
(ω2ρxixi+ω

2
zz
2), (1)

(the summation convention is used, i, j = 1, 2), where mI
is ion mass, ωρ and ωz are characteristic frequencies,
respectively, in the (x1, x2)-plane and z-direction. The
vector potential Ai of B is chosen as Ai =−Bεijxj/2,
Az = 0. The Hamiltonian H(x, p) of the trapped ion
can be decomposed into H =H2+Hz, where Hz(z, pz) =
p2z/2mI +mIω

2
zz
2/2, and

H2(x, p) =Hk,2+Veff,2 =
1

2mI
p2i +

1

2
ωcεijpixj

+
1

2
mIω

2
Px
2
i , (2)

where Hk,2 =
∑
i(pi− q∗Ai)2/2mI is the mechani-

cal kinetic energy operator which is different from
the canonical kinetic energy operator pipi/2mI . H2
is a two-dimensional Chern-Simons Hamiltonian
with the cyclotron frequency ωc = q

∗B/mI , effective
charge q∗ =Z∗e(> 0) and the characteristic frequency
ωP = (ω

2
ρ +ω

2
c/4)

1/2. In the following, we focus on H2.
The deformed Hamiltonian H2(x̂, p̂) in noncommutative

space can be obtained by reformulating the corresponding
undeformed H2(x, p) in terms of deformed canonical vari-
ables x̂i and p̂i which satisfy two-dimensional deformed
Heisenberg-Weyl algebra

[x̂i, x̂j ] = iξ
2εijθ, [x̂i, p̂j ] = i�δij , [p̂i, p̂j ] = iξ

2εijη,

where θ and η are the constant parameters of spatial
noncommutativity, independent of position and momen-
tum; εij is a two-dimensional antisymmetric unit tensor
with ε12 =−ε21 = 1, ε11 = ε22 = 0. The scaling factor ξ is
defined as ξ = (1+ θη/4�2)−1/2.
The deformed Heisenberg-Weyl algebra can be realized

by xi and pi as follows:

x̂i = ξ

(
xi− 1

2�
θεijpj

)
, p̂i = ξ

(
pi+

1

2�
ηεijxj

)
,

where xi and pi satisfy the undeformed Heisenberg-Weyl
algebra [xi, xj ] = [pi, pj ] = 0, [xi, pj ] = i�δij . The deformed

H2(x̂, p̂) can be further expressed by xi and pi as Ĥ2(x, p):

Ĥ2(x, p) = Ĥk,2(x, p)+ V̂eff,2(x)

≡ 1

2M
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where the effective parameters M,G,ΩP and K are
defined as

1
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≡ ξ2
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,
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,

MΩ2P ≡ ξ2
(
1

mI
c22+

1

2
mIω

2
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)
,

K ≡ MΩ2P −
1

4M
G2,

and c1 = 1+mIωcθ/4�, c2 =mIωc/2+ η/2�. Ĥ2 can be
changed into two uncoupled harmonic modes [14,21].
Similarly, the deformed angular momentum Jz(x̂, p̂) =
εij x̂ip̂j can be expressed by undeformed variables xi and
pi as

Ĵz(x, p) = εijxipj − 1
2�
ξ2 (θpipi+ ηxixi) .

The corrections due to spatial noncommutativity are
terms O(θ) and/or O(η), which lead to Ĵz taking a
fractional value. The existing upper bounds of θ and η are
θ/(�c)2 ≤ (10TeV)−2 [5] and |√η| ≤ 1μeV/c [12]. O(θ)
and O(η) are vanishingly small, so that the corrections
of spatial noncommutativity are beyond the limits of
measurable accuracy of experiments.

Reduction for massive system. – We found a
testable effect of spatial noncommutativity in the reduced
system of Ĥ2. Because Ĥ2 and Ĥk,2 do not commute,
different from the massless model considered in [24], the
difficulty of reduction for the massive model is how to
treat the mechanical kinetic energy Ĥk,2. To get rid of
this difficulty, the reducing procedure is adopted in the
following steps.
The ion oscillates harmonically with an axial frequency

along the z-axis (its energy alternates between kinetic and
potential energy). In the (1, 2)-plane, it executes a super-
position of a fast circular cyclotron motion of an effec-
tive cyclotron frequency with a small radius (its energy
is almost exclusively kinetic energy), and a slow circu-
lar magnetron drift motion of an effective magnetron
frequency in a large orbit (its energy is almost exclu-
sively potential energy). V̂eff,2 is reduced by reducing
the amplitudes of the radio-voltage and the dc voltage
applied between the electrodes of the ring and two end
caps of the combined trap. We use, e.g., Doppler cooling
to slow the energy of ion down to the mK and then cool
the ion to the ground state of Ĥ2 with the sideband cool-
ing [25,26]. By synchronizing the laser field with V̂eff,2
reduction, the ion is kept in the ground state of the reduc-
ing Ĥ2. In V̂eff,2→ 0 the axial and the magnetron-like
motions disappear, only the cyclotron motion survives.

Thus Ĥ2→ Ĥ(V̂→0)2 = Ĥk,2, and the energy of the survived

motion is the ground value Êk,0.
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Taking Ĥ
(V̂→0)
2 = Êk,0 as the initial condition, the

reduced system is obtained by resetting an electric field Ẽ
of harmonic potential mI(ω̃

2
ρxixi+ ω̃

2
zz
2)/2, which leads

to a full Hamiltonian H̃2 = Ĥk,2+ K̃xixi/2 (in eq. (3) we

replace ωρ with ω̃ρ, then K and G are replaced with K̃

and G̃). Ẽ satisfies the condition that the ion is trapped in
the first stability range of the Paul trap. Thus Ẽ is weak.
The original B is fixed such that the corresponding energy
interval ΔÊk = Êk,1− Êk,0 is large enough so that Ẽ cannot
disturb the ion from the ground state |Êk,0〉 to the first
excited state |Êk,1〉 of Ĥ(V̂→0)2 . Thus the system remains

in the ground state. In the subspace {|Êk,0〉i} of the
ground state, for any state |ψ〉=∑i ci|Êk,0〉i we obtain
H̃2|ψ〉= (Ĥk,2+ K̃xixi/2)|ψ〉= (Êk,0+ K̃xixi/2)|ψ〉.
Therefore, in the subspace {|Êk,0〉i} of the ground state,
H̃2 is reduced to

H̃2→ Êk,0+ 1
2
K̃xixi ≡ H̃(0)2 . (4)

The reduced system H̃
(0)
2 is a constrained one [21].

The Lagrangian corresponding to H̃2 is L̃2 =Mẋiẋi/2+
G̃εij ẋixj/2− K̃xixi/2. The reduced Lagrangian corre-
sponding to H̃

(0)
2 is L̃

(0)
2 = G̃εij ẋixj/2− K̃xixi/2− Êk,0.

The definition of canonical momenta pi ≡ ∂L̃(0)2 /∂ẋi does
not determine the velocities ẋi as functions of pi and xj ,
but gives the relations between pi and xj :

ϕ̃i ≡ pi+ 1
2
G̃εijxj = 0. (5)

According to Dirac’s formalism of quantizing a constrained
system, such relations are primary constraints [27,28].
Because the Poisson brackets {ϕ̃i, ϕ̃j}P = G̃εij �= 0, the
Dirac brackets are determined, {xi, pj}D = δij/2, etc. The
constraints ϕ̃i are strong conditions. They are used to
eliminate dependent variables: four variables (xi, pi), (i=
1, 2) are reduced to two independent ones (e.g., x1, p1).
Using these constraints to eliminate dependent variables,
the corresponding quantum commutators of independent
variables x̃≡√2x1 and p̃≡

√
2p1 are [x̃, p̃] = i�, etc. Then

H̃
(0)
2 is rewritten as 1-dimensional harmonic Hamiltonian

plus Êk,0. The full Hamiltonian H̃2 has two harmonic
modes [14,21]. The reduction to the reduced phase space
alters the symplectic structure. It leads to one mode of
H̃2 going to infinity, decoupling from the system, and

only one mode H̃
(0)
2 surviving2. H̃

(0)
2 has a reduced set

of eigenstates, and the eigenvalues of Ĵz then become

J̃n = �J̃
(
n+
1

2

)
, (n= 0, 1, 2, · · ·), (6a)

2We compare dynamics in the present reduction and the reduc-
tion in the massless limit of [24]. The Lagrangian L̃2, the reduced

L̃
(0)
2 and the constraints ϕ̃i are similar to the Lagrangian L, eq. (1),
the reduced L0, eq. (5) and the constraints Ci, eq. (17) of [24]. The

reduction L̃2→ L̃(0)2 is similar to the reduction L→L0 of [24]. In
both reductions, therefore, the similar Chern-Simons–type behavior
and the truncated states decoupling are obtained.

J̃ = 1− mIωcθ
4�

− η

mIωc�+m2I ω̃
2
ρθ+ η

, (6b)

where the two terms O(θ) and O(η) are corrections due
to the spatial noncommutativity, which are inaccessible to
experiment because they are vanishingly small.
In the case of both position-position and momentum-

momentum noncommuting, there is an effective intrinsic
magnetic field Beff ∼ η [21]. Thus a further limit-
ing process of diminishing the external magnetic
field B (ωc) to zero is meaningful, and the surviving
system has nontrivial dynamics. In this limit we have
η/(mIωc�+m

2
I ω̃
2
ρθ+ η)→ η/(m2I ω̃2ρθ+ η). Using the

consistency condition3 η=m2I ω̃
2
ρθ, this leads to a cancel-

lation between the NC parameters θ and η, so that
this term equals 1/2, and J̃ = 1/2−mIωcθ/4�, where
1/2 dominates J̃ . Therefore, the dominant value of the
zero-point angular momentum J̃0 assumes a fractional
value4: �/4. This is a distinct NC signal, which is within
the limits of measurable accuracy of current experiments.

MHFS induced by FAM J̃0. – We consider a doubly
charged alkaline-earth ion I++ caught in a combined-
field trap. The trapping mechanism is provided by a
uniform magnetic field B aligned along the z-axis and an
electrostatic potential (1). For an alkaline-earth atom, the
outer subshell has two s electrons, and the inner shells are
completely filled. When the two s electrons of the outer
shell are ionized, the resulting double-ion I++ also has
rotational symmetry and resembles an effective spherical
nucleus. We consider an electron injected into the trap
and the captured electron together with this ion forms
a singly charged ion I+ which is still stably trapped. It
is required that the principal quantum number n of the
captured electron is large enough so that the system is a

3The proportionality of the NC parameters θ and η is determined
by fundamental principles. At the quantum mechanics level, the
general structures of the deformed annihilation and creation opera-
tors which satisfy a complete and closed deformed bosonic algebra
at the non-perturbation level were obtained in ref. [16]. The propor-
tionality η=Kθ between the NC parameters θ and η is clarified from
the consistency of the deformed Heisenberg-Weyl algebra with the
deformed bosonic algebra. θ is a fundamental constant. K depends
on some dynamical parameters of the Lagrangian. From the defini-
tion of momenta being the partial derivatives of the Lagrangian with
respect to the NC coordinates, the dependence of η on the dynamical
parameters of the considered system is understood.
4There is a subtle point related to taking the meaningful limits

θ, η→ 0 and B→ 0. In the limits θ, η→ 0, the deformed dynamics
in NC space is reduced to an undeformed one in commutative space.

The reduced system H̃
(0)
2 is a constrained one. The deformed Pois-

son brackets of the constraints are {ϕ̃i, ϕ̃j}P = G̃εij . In the limits
θ, η→ 0, they are reduced to undeformed ones in commutative space,
{ϕi, ϕj}P =mIωcεij . If we followed with B→ 0(ωc→ 0), we would
obtain {ϕi, ϕj}P = 0, thus Dirac brackets of canonical variables
would not be determined, and the system would not survive at the
quantum level. This indicates that in eq. (6b) when we take θ, η→ 0
first to yield the conventional result, it makes no sense to follow
with B→ 0. On the other hand, if we take B→ 0 first, the deformed
Poisson brackets are reduced to {ϕi, ϕj}P = (m2Iω2ρθ+ η)εij/�.
This shows that the subsequent limit θ, η→ 0 also is meaningless.
Therefore, only in NC space nontrivial dynamics of the reduced

system H̃
(0)
2 survives at the quantum level in the limit B→ 0.
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Rydberg one. In a reasonable approximation, the energy
spectrum of the Rydberg electron is calculated on a similar
basis as for a hydrogen-like system.
According to the above analysis, in the case where

both position-position and momentum-momentum oper-
ators are noncommuting, and under the aforementioned
conditions, the trapped ion I++ possesses FAM J̃0. Corre-
spondingly, there is a zero-point magnetic momentum μ̃0,

μ̃0 =
Z∗e
2mI
J̃0 = Z

∗μN
A�

J̃0, (7)

where mI =AmP (mP is the proton mass and A is
the nuclear mass number), μN = e�/2mp is the nuclear
magneton.
The magnetic interaction between the magnetic momen-

tum μ̃0 and the magnetic fields of the Rydberg electron
induces the magnetic hyperfine structures of the energy
spectrum of the Rydberg electron. Thus the measure-
ment of FAM J̃0, through the corresponding μ̃0, is turned
into measuring MHFS of the Rydberg electron. Similar
to MHFS generated by nuclear spin [22,23], splitting of
MHFS induced by J̃0 of the ion I++ can be calculated in
two equivalent approaches [22]: investigating the interac-
tion of the ion I++ on the Rydberg electron, or discussing
the equivalent interaction of the Rydberg electron on the
ion I++. In the following, we apply the second approach.
To get a clean signal of such induced MHFS, we choose

some even-even nucleus, because the nuclear spin of an
even-even nucleus is zero.

The magnetic hyperfine interaction [22,23]. In the
center-of-mass system the magnetic hyperfine split-
ting of the energy spectrum of the Rydberg electron
induced by J̃0 of the ion I++ is described by the effec-
tive hyperfine interaction Hamiltonian H

(hfs)
in between

�̃μ0 =−(Z∗μN/A�)(0, 0, J̃0) of the ion I++ and the
magnetic fields generated at the position of the ion
I++ by the Rydberg electron. The corresponding split-
ting and intervals of the electronic energy spectrum

are ΔE
(hfs)
nljmj

= 〈nljmj |H(hfs)in |nljmj〉=AnljJ̃0mj�,
ΔE

(hfs)
nlj (Δmj)≡ΔE(hfs)nljmj

−ΔE(hfs)nljmj′
=AnljJ̃0Δmj�,

where Δmj =mj −mj′ .
We consider the even-even nucleus of magnesium (Z =

12, A= 24). When two s electrons at the M shell are
ionized, the ion Mg++ has a spherical configuration. The
Rydberg electron should fill shells of n> 3. We estimate
the magnetic hyperfine splitting and intervals of the
spectrum of the Rydberg electron of n= 6, l= 0.
For an s electron, l= 0, j = 1/2,mj =±1/2,Δmj = 1.

Owing to the non-vanishing electronic charge density
at the ion Mg++, the only contribution to the Hamil-

tonian H
(hfs)
int comes from the Fermi contact interac-

tion. From An0 12 = (8/3)(me/Amp)α
4(mec

2)(Z∗/n)3/�2,
it follows that the magnetic hyperfine splitting and inter-
vals have orders

ΔE
(hfs)

60 12
±1
2

=±1
2
A60 12

J̃0�∼±5.5× 10−8 eV, (8a)

ΔE
(hfs)

60 12
(1) =ΔE

(hfs)

60 12
1
2

−ΔE(hfs)
60 12

−1
2

∼ 1.1× 10−7eV. (8b)

Measurements of ΔE
(hfs)
nljmj

and/or ΔE
(hfs)
nlj (Δmj)

directly determine FAM J̃0, thus providing signals of
spatial noncommutativity.

Testing spatial noncommutativity via MHFS by
FAM J̃0. – An ionic core with a closed shell configu-
ration such as Mg++ is a conceptually ideal system to
testing spatial noncommutativity. Mg++ is trapped by a
combination of an electrostatic potential (1) and a uniform
magnetic field B aligned along the z-axis [21]. According

to the mentioned approach, the reduced system Ĥ
(0)
2 is

realized. In the well-defined limits, the surviving system
has nontrivial dynamics, and FAM of Mg++ is J̃0. To make
J̃0 observable, we inject an electron into the trap, captur-
ing it in a high Rydberg state of an appropriate principal
quantum number n by Mg++. The coupling between μ̃0
of Mg++ and the magnetic fields generated at the posi-
tion of Mg++ by the Rydberg electron will induce the
magnetic hyperfine splitting of the electronic energy spec-
trum, which is a signal of spatial noncommutativity. Their
orders are ∼ 10−7–10−8 eV, which lie within the limits of
measuring accuracy of current experiments. This experi-
ment can be achieved by existing technology, for example,
high-resolution laser spectroscopy. Considering the pollu-
tion from other interactions during the measurement, we
should pick up the true signal contributing the magnetic
hyperfine splitting induced by FAM. This is achieved by
the experiments which are performed twice: one with the
magnetic field detuned to zero and one without the detun-
ing process.

Summary. – NCQM is a candidate of possible new
physics. At first sight, it seems that NCQM is unverifiable.
However, we found that MHFS induced by FAM is one of
the most important effects of spatial noncommutativity
which, under well-defined conditions, lies within the range
of normal laboratory measurements. Physics beyond the
standard model is speculative. Its experimental tests
are the focus of broad interest, especially the MHFS
approach is reasonably achievable with current technology.
Comparing with the experiments performed on quasi-
bound Rydberg states in crossed fields [20], via a Chern-
Simons process [19], using modified electron momentum
spectroscopy [21] and others, MHFS is the most effective
approach. Based on the unique feature of the MHFS
approach, its experimental observation will be a key step
towards a decisive test of confirming or ruling out spatial
noncommutativity.
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