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We study the influence of geometry of quantum systems underlying space of states on its quantum

many-body dynamics. We observe an interplay between dynamical and topological ingredients of

quantum nonequilibrium dynamics revealed by the geometrical structure of the quantum space of states.

As a primary example we use the anisotropic XY ring in a transverse magnetic field with an additional

time-dependent flux. In particular, if the flux insertion is slow, nonadiabatic transitions in the dynamics are

dominated by the dynamical phase. In the opposite limit geometric phase strongly affects transition

probabilities. This interplay can lead to a nonequilibrium phase transition between these two regimes. We

also analyze the effect of geometric phase on defect generation during crossing a quantum-critical point.

Introduction.—The profound interplay and interrelation
of geometry and physics was the focus in both fields since
creation of the general theory of relativity, in which quan-
tities responsible for the geometry of space-time are de-
termined by the physical properties of the matter living in
this space and vice versa. The relevant geometry language
in this case is a Riemannian geometry. Gauge principle of
classical gauge theories found its natural description and
nice interpretation in terms of theory of fiber bundles, a
subject of differential geometry [1]. Monopoles and in-
stantons of the gauge theory have profound topological
meanings which is the property of defining fiber bundle.
Many of these notions appeared in various condensed
matter systems at equilibrium. Thus, defects in He and
liquid crystals are classified according to the homotopy
theory, certain phase transitions are associated to prolifera-
tion of topological defects. Topology plays a vital role in,
e.g., Hall effects and topological insulators.

Another intriguing phenomenon emerging in quantum
mechanics, that relates geometry and physics, is the Berry
phase. The latter is acquired in addition to the familiar
dynamical phase during adiabatic evolution [2]. It can be
observed in interference experiments and in the Aharonov-
Bohm effect. The deep geometrical significance of the
Berry phase was revealed as well [3]. Therefore, it is also
referred to as the geometric phase. We point that while the
Berry phase is usually associated with adiabatic processes,
the geometric phases describe transformations of arbitrary
eigenstates and are thus not tied to the adiabaticity. In
condensed matter probably its most transparent manifesta-
tion is in the Haldane phenomena (a presence or absence of
the excitation gap in 1D spin chain depending on the value
of spins).

Until now all these manifestations of the geometric
phase were associated to equilibrium and adiabatic phe-
nomena. Here we demonstrate for the first time a direct
relevance of topology and geometry of the quantum space

of the many-body system for the measurable quantities
defining a nonequilibrium evolution of the system far
from the adiabatic limit. We show that these effects are
very significant in the regions close to the quantum phase
transition. We thus demonstrate a profound interplay of
geometry and topology of the phase space of the quantum
many-body system in its out of equilibrium dynamics.
In equilibrium, a Riemannian structure is introduced to

quantum mechanics by the quantum geometric tensor
(QGT) [4,5]. The QGT Q�� is defined for an arbitrary

eigenstate jni by

Q��ð�; jniÞ :¼ hnj@ �@�jni � hnj@
 
�jnihnj@�jni; (1)

for �; � ¼ 1; . . . ; p, labeling the system’s parameters ��
which form a manifold M. Its real part is a Riemannian
metric tensor g�� on M that is related to the fidelity

susceptibility which describes the systems response to a
perturbation and therefore is an important quantity, e.g., in
the study of quantum phase transitions (QPT) [5]. The
imaginary part is related to the two-form (Berry curvature)
F�� :¼ @�A� � @�A� ¼ �2=Q��, where A�ð�; jniÞ :¼
ihnj@�jni is the connection one-form. Geometric phase

[2] of the state jni is given by its integral along a closed
loop C in parameter space �n ¼

R
C A�d�

�. It is easy to

check that after a simple gauge transformation, the

Schrödinger equation ij _c i ¼ Ĥjc i written in the instan-
taneous basis jni such that jc i ¼ P

nanjni can be put into
the following form

_a n ¼ �
X
m�n

Mnm exp½iEnmðtÞ � i�nmðtÞ�am; (2)

whereMnm ¼ hnj@tjmi. This equation highlights the com-
petition between the dynamical phase EnmðtÞ ¼R
t
0½�nð�Þ � �mð�Þ�d� and the geometric phase �nmðtÞ ¼R
t
0½A�ðjniÞ � A�ðjmiÞ�d�.
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The main purpose of the present work is to demonstrate
how geometric effects show up in quantum dynamics.We do
it using an example of a driven XY model which we intro-
duce in the next paragraph. Generalizations of some of our
results to more generic setups are discussed in the supple-
mentary material [6]. The main findings of our Letter is that
geometric phase effects on transition probabilities are small
for slow nearly adiabatic driving protocols, i.e., that the
leading nonadiabatic transitions are determined by the dy-
namical phase. Contrary, in the fast limit geometric phase
strongly affects transitions between different levels. We also
found that the interplay of geometric and dynamical phases
can lead to nonequilibrium phase transitions causing sharp
singularities in density of excited quasiparticles and pumped
energy as a function of the driving velocity. This quantum-
critical behavior can happen without undergoing by the
system an actual quantum phase transition in the instanta-
neous basis [7]. In the limit of slowly driving the system
through a quantum-critical point with an additional rotation
in the parameter space we find that the geometric phase
modifies the scaling of the observables with the driving
velocity and enhances nonadiabatic effects.

The rotated XY spin chain.—Let us consider a standard,
although rich and illustrative example of XY ring in a
transverse magnetic field. The Hamiltonian of this system
[8,9] is defined by

Ĥ 0¼�
XN
l¼1

�
1þg

2
�̂xl �̂

x
lþ1þ

1�g
2

�̂yl �̂
y
lþ1þh�̂zl

�
(3)

with periodic boundary conditions, i.e., �̂	Nþ1 ¼ �̂	1 . The
number of spins N is assumed to be even and the spin 1=2
on the site l is represented by the usual Pauli matrices �̂	l ,
with 	 2 fx; y; zg. Further, the anisotropy for the nearest
neighbor spin-spin interaction along the x and y axis is
described by the parameter g and h denotes the magnetic
field along the z axis.

At g ¼ 0 this Hamiltonian has an additional U(1) sym-
metry related to spin-rotations in the XY plain. At finite g
this symmetry is broken. Clearly, there is a continuous
family of ways breaking this symmetry yielding the iden-
tical spectrum. The corresponding Hamiltonians are re-
lated by applying a unitary rotation of all the spins
around the z axis by angle 
:

Ĥðg; h;
Þ ¼ R̂ð
; zÞĤ0ðg; hÞR̂yð
; zÞ; (4)

with the rotation operator R̂ð
; zÞ ¼ Q
N
l¼1 expð�i 
2 �̂zl Þ.

This transformation yields nontrivially complex instanta-
neous eigenstates, which is a necessary condition for ex-
istence of the nontrivial geometric phase [10].

The Hamiltonian (4) can be diagonalized using the
Jordan-Wigner and the Fourier transformations:

Ĥðg; h;
Þ ¼ �X
k

ĉyk Ĥkĉk; (5)

with Ĥk¼ðh�cospkÞ�̂zþgsinpkðsin2
�̂x�cos2
�̂yÞ,
ĉyk ¼ ðĉ�k; ĉyk Þ, pk ¼ 2�k

N , k ¼ �1;�2; . . . ;� N
2 and ĉk

are the Fourier transforms of the fermionic operators re-
sulting from the Jordan-Wigner transformation (see
Ref. [11] for details). By applying the Bogoliubov trans-
formation to (5) we can map it to a free fermionic

Hamiltonian with the known spectrum �kðg; hÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh� cospkÞ2 þ g2sin2pk
p

.
The set of quantum-critical points of this spin chain are

determined by the vanishing of the energy gap: 2�k0
¼ 0,

where k0 is defined by minimizing the excitation energy
@k�k ¼ 0. This condition defines quantum-critical regions
on M. For the model (4) the gap vanishes on the line
(g ¼ 0, �1 � h � 1), marking the anisotropic transition
and on the two planes (g 2 R, h ¼ �1), identifying the
Ising transitions [9,12]. The anisotropic transition line has
the critical exponents �1 ¼ 1 and z1 ¼ 1. On the other
hand, the Ising transition planes belong to the d ¼ 2
Ising universality class with the critical exponents �2 ¼ 1
and z2 ¼ 1 [12]. The points where the critical line and the
critical plane cross are multicritical points and belong to
the Lifshitz universality class with the critical exponents
�MC ¼ 1=2 and zMC ¼ 2. In Fig. 1 we depict the equili-
brium phase diagram of the rotated XY spin chain in the
parameter space (g, h, 
).
Dynamics of the rotated XY spin chain.—We explore

two driving protocols. The first one is driving the spin
rotation 
ðtÞ with a constant velocity. This corresponds
to circular paths in parameter space (see Fig. 1). It is the
simplest situation in which a nontrivial geometric phase
emerges. The second driving protocol consists of driving
the magnetic field hðtÞ and the spin rotation 
ðtÞ. This

FIG. 1 (color). The phase diagram of the rotated XY spin chain
in a transverse magnetic field in cylindrical coordinates: The two
red planes (h ¼ �1) indicate the Ising critical planes, (i.e. the
associated QPT belongs to the d ¼ 2 Ising universality class).
Whereas the blue line (g ¼ 0) marks the anisotropic transition
line. The black bold circle and helix describe the two driving
protocols we use in this Letter.
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results in helical paths in parameter space (Fig. 1) and
allows us to study the cross over from the well known
Landau-Zener scenario (no geometric phase) to the rotat-
ing driving regime (nontrivial geometric phase).

For either of the protocols we assume 
ðtÞ ¼ !t in the
time interval 0< t < tf, where !> 0 is the rate of change

of the spin rotation. Then the Schrödinger equation for the
coefficients a1;k and a2;k, that appear in the expansion of

state in the instantaneous basis, jc ik ¼ a1;kjg:s:ik þ
a2;kje:s:ik, becomes a system of linear differential equa-

tions with constant coefficients that can be solved exactly
(see the supplemental material [6]). From this solution we
compute the probability for finding the system in the
excited state

pex;k ¼ ja2;kð
fÞj2 ¼ g

ðjg:s:ikÞ
sin2½12 �kð!Þ
f�
½12 �kð!Þ�2

: (6)

Here �kð!Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½��k! � �A
;k�2 þ 4g

ðjg:s:ikÞ

q
, ��k :¼

�e:s:;k � �g:s:;k ¼ 2�k is the energy difference between the

excited and ground states of the kth subspace and �A
;k :¼
A
ðje:s:ikÞ � A
ðjg:s:ikÞ designates the corresponding dif-

ference of the connection one-forms: A
ðjg:s:ikÞ ¼
ikhg:s:j@
jg:s:ik and A
ðje:s:ikÞ ¼ ikhe:s:j@
je:s:ik.
Further, g

ðjg:s:ikÞ is the Riemannian metric tensor of

the kth ground state, which also defines the fidelity sus-
ceptibility along the 
 direction

g 

ðjg:s:ikÞ ¼ �khg:s:j@
je:s:ikkhe:s:j@
jg:s:ik
¼ jkhe:s:j@
jg:s:ikj2:

With this the total density of excited quasiparticles and the
energy density of excitations of the entire spin chain in the
thermodynamic limit can be calculated by

nex ¼
Z �

��
dk

2�
pex;k; �ex ¼

Z �

��
dk

2�
2�kpex;k: (7)

Before proceeding with the detailed analysis of these
two quantities let us make some qualitative remarks on
Eq. (6). (i) For the quench of infinitesimal amplitude

f ! 0 both geometric and dynamical phases are not

important and the transition probability is simply given
by the product of the square of the quench amplitude and
the fidelity susceptibility in agreement with general results
[13]. (ii) In the slow limit !� ��k and fixed 
f * 1 the

geometric phase is still not important while the dynamical
phase suppresses the transitions between levels such that
pex;k / g

ðjg:s:ikÞ!2=�2

k. This result is again in perfect

agreement with the general prediction for linear quenches
in the absence of geometric phase [13] given that in this
case ! is the velocity of the quench. (iii) The most inter-
esting and nontrivial situation where the geometric phase
strongly affects the dynamics occurs when both the
rotation frequency and rotation angle are not small: ! *
��k, 
f * 1. In particular, in the limit !! 1 and


f ¼ �n we recover pex;k ¼ 0. This trivial physical fact

that infinitely fast rotation can not cause transitions be-
tween levels actually comes from the mathematical iden-
tity ð�A
;kÞ2 þ 4g

ðjg:s:ikÞ ¼ ½Trð@
Þ�2 ¼ 4. For large

but finite ! and 
f ¼ �n, we find

pex;k � g

ðjg:s:ikÞsin2

�
��k�A
;k

2!

f

�
: (8)

If the rotation angle is not large n� 1 we see that the
transition probability in this case is directly proportional to
the square of the product of the geometric and dynamical
phase differences between the ground and excited states

pex;k � g

ðjg:s:ikÞ
�
�Ek��
;k

4�

�
2
; (9)

where ��
;k ¼ �A
;k
f ¼
R
f

0 A
;kd
 and �Ek ¼
��kT; T ¼ 2�=! is the rotation period. In the limit of
large rotation angle at fixed frequency �Ek � 1 and

f�Ek 	 1 the expression for the transition probability

saturates at a value independent of the geometric and
dynamical phases: pex � g

ðjg:s:ikÞ=2. Interestingly this

probability is entirely determined by the Riemannian met-
ric tensor, i.e., has a purely geometric interpretation.
From the discussion above we see that if we focus on the

limit of large
f and analyze the transition probability as a

function of ! we expect a smooth crossover between two
simple regimes both independent of the geometric phase:
pex;k � g

ðjg:s:ikÞ!2=��2

k at !� ��k and pex;k �
g

ðjg:s:ikÞ=2 at !	 ��k. A similar crossover between

fast and slow regimes is expected in the many-particle
situation. Thus one can naively expect that the influence
of the geometric phase on the dynamics in the limit of large

f is quite limited. The reality turns out to be much more

interesting though as we illustrate below. In this limit we
can simplify the k integrals in Eqs. (7) using the stationary
phase approximation. Then we find that the resulting be-
havior of nex and �ex exhibits a ‘‘cusp’’ at a critical driving
velocity !c determined by !c ¼ 1� h. This is illustrated
in Fig. 2. Because this singularity is recovered via the
stationary phase method we expect it to be valid for a class
of models with similar Hamiltonians. This cusp and the
associated ‘‘dynamical quantum phase transition’’ is di-
rectly related to the effect of geometric phase. To under-

stand this let us apply a unitary transform ÛkðtÞ ¼
diagðeþi
ðtÞ; e�i
ðtÞÞ, to go into a rotating frame, where
the geometric phase is removed from the Hamiltonian.
The resulting Hamiltonian in the rotating frame

reads Ĥk;rot¼½ðh�cospkÞþ@t
��̂zþgsinpkðsin2
�̂x�
cos2
�̂yÞ, where the spectrum takes the following form

�k;rot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhþ!� cospkÞ2 þ g2sin2pk

p
. From the spec-

trum we see that the Hamiltonian in the rotated frame
has a quantum phase transition at hþ!c ¼ 1. This tran-
sition gives raise to the cusp in Fig. 2. We note though that
the emergence of the cusp is nontrivial since by quenching
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rotation frequency we are pumping finite energy density to
the system. In the equilibrium this model does not have any
singularities at finite temperature. Thus this singularity is a
purely nonequilibrium phenomenon. Further, Fig. 2 illus-
trates nicely that for a small g the regime where nex and �ex

saturate with ! is close to !c. However for g > 1 the
dependence of the saturation point on g is approximated
numerically as !satðg; h ¼ 0Þ ¼ 51:7g0:54 þ 21:8g1:35.

Another possibility to analyze the interplay of geometric
and dynamical phases on excess energy and density of
excitations is to consider the following helical driving pro-
tocol: [hðtÞ ¼ �t, 
ðtÞ ¼ !�t], beginning in the ground
state at ti ¼ 0 and stopping at tf ¼ 2

� , i.e., crossing a

quantum-critical point. Now � plays the role of driving
velocity, both in h and, for ! � 0, in circular directions
and ! determines the helicity of the path. For ! ¼ 0 we
realize the usual Landau-Zener protocol and for !> 0
we describe a helical path in the parameter space. In
Fig. 3 we present the density of excitations obtained from
an exact numerical integration of the time-dependent
Schrödinger equation. We recover (Fig. 3) for ! ¼ 0

(lowest curve) the scaling nex �
ffiffiffiffi
�
p

, as expected by the
Kibble-Zurek scaling argument [14,15]. With increasing!
the density of excitations makes a crossover to a different
linear scaling regime with �. However, in accord with our
general discussion in the strict adiabatic limit we always

observe nex /
ffiffiffiffi
�
p

.
Conclusion.—In summary, we addressed how the

geometric phase influences quantum many-body
nonequilibrium dynamics. We showed that at intermediate
of fast driving regimes geometric phase strongly affects
transition probabilities between levels. We showed that a

dynamical quantum phase transition can emerge as a result
of a competition between the geometric and dynamical
phases. This transition manifests itself in the cusp in the
driving velocity dependence of various observables (like,
e.g., the density of excitation and the energy density) at
finite energy. This allows us to probe quantum criticalities
‘‘from a distance’’, without actually crossing them. Such a
possibility should be attractive from an experimental point
of view since the system does not need to undergo a QPT.
We also found that the geometric phase modifies the scal-
ing with the driving velocity as compared to the LZ scal-
ing. This can be related to effective topology-induced
interaction between the defects. This effect is stronger in
the gapless regions of the phase diagram. We also note that
our results rely only on the geometry of the phase space
and thus rather generic. We expect that they extend to other
protocols where one applies a time-dependent unitary
transformation to the Hamiltonian or other transformation
which involves nontrivial geometric phase. In particular,
similar considerations apply to the Dicke model realized in
Ref. [16]. This and possible other generalizations of our
results (e.g., for open [17] or turbulent [18] systems) will
be discussed in a separate work.
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